因数和倍数必背概念

合集下载

因数和倍数综合知识点总结

因数和倍数综合知识点总结

因数和倍数综合知识点总结一、因数和倍数的概念1. 因数的概念所谓因数,就是能够整除某个数的数。

例如,对于正整数12来说,它的因数包括1、2、3、4、6、12。

因为1、2、3、4、6、12能够整除12,所以它们都是12的因数。

与此同时,我们可以发现,12能够被1、2、3、4、6、12整除,因此1、2、3、4、6、12也可称为12的因数。

2. 倍数的概念倍数指的是某个数的整数倍。

例如,对于正整数3来说,6、9、12、15等都是3的倍数,因为它们分别是3的2倍、3的3倍、3的4倍、3的5倍。

反过来讲,如果一个数能够整除另一个数,那么这个数就是另一个数的倍数。

二、因数和倍数的基本性质1. 因数的性质(1)一个自然数必然有自身作为因数,也必然有1作为因数。

这是因为自然数可以被1和自己整除。

(2)若a是b的因数,b是c的因数,则a必然是c的因数。

这是因为若a能够整除b,b能够整除c,则a也能够整除c。

(3)最小的因数是1,最大的因数是这个数本身。

这是因为1可以整除任何数,而这个数本身必然能够整除自身。

2. 倍数的性质(1)一个自然数的倍数包括这个自然数本身和1。

这是因为任何数的倍数都包括它自身和1。

(2)若a是b的倍数,b是c的倍数,则a必然是c的倍数。

这是因为若a是b的倍数,b是c的倍数,那么a也必然是c的倍数。

(3)最小的倍数是0,最大的倍数是无穷大。

这是因为0是任何数的倍数,而自然数的倍数是无穷大的。

三、因数和倍数的计算方法1. 因数的计算方法(1)列举法。

就是通过试除法,把所有可能的因数列举出来,直到所有因数都列举完毕。

(2)分解质因数法。

将一个数进行质因数分解,可以得到所有的因数。

例如,56=2×2×2×7,56的因数包括1、2、4、7、8、14、28、56。

2. 倍数的计算方法(1)直接乘法。

将一个数乘以另一个数,即可得到这个数的倍数。

例如,3的倍数包括3、6、9、12、15等。

五年级数学上册第三单元的必背知识点

五年级数学上册第三单元的必背知识点

五年级数学上册第三单元的必背知识点一、用字母表示运算定律和公式1. 加法交换律:a+b=b+a2. 加法结合律:a+b+c=a+(b+c)3. 乘法交换律:a×b=b×a4. 乘法结合律:a×b×c=a×(b×c)5. 长方形周长公式:c=(a+b)×2(其中a和b分别为长和宽)6. 长方形面积公式:s=ab(其中a和b分别为长和宽)二、数与代数的基本概念1. x²的读法:x的平方,表示两个x相乘。

2. 2x的读法:两个x相加,或者是2乘x。

3. 方程的定义:含有未知数的等式称为方程。

4. 方程的解:使方程左右两边相等的未知数的值叫做方程的解。

5. 解方程:求方程的解的过程叫做解方程。

三、数量关系与公式1. 路程、速度、时间的关系:路程= 速度× 时间速度= 路程÷ 时间时间= 路程÷ 速度2. 总价、单价、数量的关系:总价= 单价× 数量单价= 总价÷ 数量数量= 总价÷ 单价3. 总产量、单产量、数量的关系:总产量= 单产量× 数量单产量= 总产量÷ 数量注意:数量不等于“总产量÷ 单价”,这里可能存在误解,应为数量=总产量÷单产量。

4. 工作总量、工作效率、工作时间的关系:工作总量= 工作效率× 工作时间工作效率= 工作总量÷ 工作时间工作时间= 工作总量÷ 工作效率四、倍数与因数的概念1. 整数:包括正整数、0、负整数,如-3、-2、-1、0、1、2、3……等。

2. 自然数:像0、1、2、3、4、5、6……这样的数是自然数,其中最小的自然数是0,没有最大的自然数。

3. 倍数与因数的依存关系:倍数与因数是相互依存的,不能单独说一个数是倍数或因数。

4. 倍数的特点:一个数的倍数的个数是无限的,最小的是它本身,没有最大的倍数。

小学数学必背知识点基础概念

小学数学必背知识点基础概念

小学数学必背知识点基础概念整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。

一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

一个数字所在的数位不同,表示的数的大小也不同。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。

因数与倍数知识点总结

因数与倍数知识点总结

因数与倍数知识点总结一、因数与倍数的概念1.1 因数的概念因数是指能够整除某个数(即余数为0)的数。

例如,6的因数有1、2、3、6,因为它们能够整除6。

1.2 倍数的概念倍数是指某个数的整数倍。

例如,6的倍数有6、12、18等等。

二、因数与倍数的性质2.1 因数的性质(1)1和本身是任何数的因数。

(2)如果一个数是另一个数的因数,那么这个数的倍数也是那个数的倍数。

(3)如果一个数能够整除被除数,那么它一定是被除数的因数。

2.2 倍数的性质(1)一个数的倍数是它本身的倍数。

(2)如果a是n的倍数,则an也是n的倍数。

(3)如果一个数是另一个数的公倍数,那么它的整数倍也是另一个数的公倍数。

三、因数与倍数的判断方法3.1 因数的判断方法(1)试除法:用一个数去除另一个数,如果余数为0,则这个数是另一个数的因数。

(2)列举法:列举出一个数的所有因数,包括1和它本身。

3.2 倍数的判断方法(1)用一个数去乘以另一个数,如果得到的结果等于这个数的整数倍,则这个数是另一个数的倍数。

(2)求出一个数的所有倍数。

四、倍数与因数的关系4.1 倍数与因数之间的关系因数和倍数之间存在着密切的关系。

如果a是b的因数,那么b一定是a的倍数;如果a 是b的倍数,那么b一定是a的因数。

4.2 因数与倍数的性质应用(1)因数与倍数的性质可以用于判断数的性质,比如判断一个数的奇偶性、判断是否为质数等。

(2)因数与倍数的概念可以用于解决实际问题,如计算最大公因数、最小公倍数等。

五、最大公因数与最小公倍数5.1 最大公因数的求解最大公因数是指两个或多个整数共有的因数中最大的那个。

求最大公因数有以下方法:(1)列举法:列举出两个数的所有因数,然后求出它们的公共因数中的最大值。

(2)辗转相除法:采用欧几里得算法进行求解,不断进行带余除法,直到余数为0,那么最后的除数就是最大公因数。

5.2 最小公倍数的求解最小公倍数是指两个或多个整数的公倍数中最小的那个。

因数与倍数必会知识点

因数与倍数必会知识点

因数与倍数必会知识点一、概念:1、自然数:表示物体个数的0、1、2、3……这样的数叫做自然数;2、因数、倍数(为了方便,研究因数、倍数时指的是非零自然数)如果a×b=c(a、b、c都是非零自然数),那么a是c的因数,b 是c的因数,c是a的倍数,c是b的倍数。

3、整除:如果a÷b=c(a和c是自然数,b是非零自然数),就说a能被b 整除。

4、偶数:能被2整除的自然数(个位上是0、2、4、6、8的数)。

5、奇数:不能被2整除的自然数。

(个位上是1、3、5、7、9的数)6、自然数除了奇数就是偶数。

7、质数:只有1和它本身2个因数的自然数。

例如2,5,17等;8、合数:至少有3个因数(有3个或3个以上因数)的自然数。

例如4,6,9等。

9、分解质因数:把1个合数写成几个质数相乘的形式。

(任何一个合数都可以写成几个质数相乘的形式)。

二、个数及最大最小:1、自然数有无数个;2、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

3、自然数中质数有无数个、合数也有无数个。

4、奇数中既有质数也有合数,例如3和5既是奇数又是质数,例如9和27既是奇数又是合数;5、偶数中只有2是一个质数,其余的都是合数;6、20以内有8个质数,分别是2、3、5、7、11、13、17、19切记!7、一个数最小的因数是1,最大的因数是它本身;8、一个数最小的倍数是它本身,没有最大的倍数;9、最小的偶数是0;最小的奇数是1;最小的质数是2;最小的合数是4;最小的自然数是0;1既不是质数也不是合数;在自然数中,既是奇数,又是合数的最小的数是9三、方法:1、怎样找出1个数的所有因数:从1开始成对的按顺序找,如12的所有因数1、12,2、6,3、4;2、怎样找1个数的倍数:依次乘以从1开始的每个自然数,例如8的倍数(8×1)8,(8×2)16……;3、倍数的特征:(1)2的倍数:个位是0、2、4、6、8的数都是2的倍数。

因数和倍数知识点归纳

因数和倍数知识点归纳

因数和倍数知识点归纳一、因数:1.定义:若整数a除以整数b,商为整数而没有余数,那么b就是a 的因数,同时a也是b的倍数。

2.性质:每个整数都有1和它本身作为因数,这两个因数称为它的“平凡因数”。

3.因数的表示:a.用数学符号表达:记作a,b(a能整除b),读作“a整除b”或“b能被a整除”。

b.用集合表示:将a的所有因数放在一对括号中,如{1,a}表示a的因数集合。

4.因数的判断:若a能整除b,则b是a的因数;若a能被b整除,则a是b的因数。

5.因数的个数:a.若n是一个合数(非素数),则它的因数个数一定大于2个。

b.若n是一个素数,它的因数只有1和它本身两个。

6.因数的性质:a.因数是整数,可以是正数、负数或零。

b.若x是y的因数,y是z的因数,则x也是z的因数。

7.因数的求法:a.可以通过试除法来求一个数的因数。

从2开始逐个试除,直到试除到该数的平方根为止。

b.可以通过质因数分解来求一个数的因数。

将该数分解为若干个质数的乘积,再根据乘法的交换律将质数分解表示的因数重新排列组合。

二、倍数:1.定义:若整数a除以整数b,商为整数,则a是b的倍数,b是a的约数。

2. 性质:对于任何整数a和正整数b,ab都是a的倍数,且ab/a=b。

3.倍数的表示:a.用数学符号表达:记作a∣b(a是b的倍数)。

b.用集合表示:将a的所有倍数放在一对括号中,如{a,2a,3a,...}表示a的倍数集合。

4.倍数的判断:若a是b的倍数,则b是a的因数。

5.最小公倍数(LCM):表示两个或多个数共有的最小倍数。

6.最大公约数(GCD):表示两个或多个数共有的最大因数。

三、公约数和公倍数:1.公约数:两个或多个数同时能够整除的因数,称为公约数。

a.公约数的求法:通过分别求出两个或多个数的因数集合,找出它们的交集即为它们的公约数。

b.公约数的性质:若a是b的公约数,而b是c的公约数,则a也是c的公约数。

2.公倍数:两个或多个数同时是另一个数的倍数,称为公倍数。

小学六年级必背公式知识讲解

小学六年级必背公式知识讲解

小学六年级必背公式1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2.1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3.速度×时间=路程路程÷速度=时间路程÷时间=速度4.单价×数量=总价总价÷单价=数量总价÷数量=单价5.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6加数+加数=和和-一个加数=另一个加数7被减数-减数=差被减数-差=减数差+减数=被减数8因数×因数=积积÷一个因数=另一个因数9被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1.正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2.正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3.长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4.长方体V:体积s:面积a:长b:宽h:高(1)表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5.三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6.平行四边形s面积a底h高面积=底×高s=ah7.梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9.圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10.圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷311.和差问题的公式总数÷总份数=平均数(和+差)÷2=大数(和-差)÷2=小数12.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14.植树问题:1)非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)#p#副标题#e#⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2)封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数15.盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数16.相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间17.追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间18.流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷219.浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量20.利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。

5年级小学数学知识点

5年级小学数学知识点

小学1-5年级必记的知识点1、小数的基本性质:在小数末尾添上零或者去掉零,小数的大小不变。

2、分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

3、商不变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小不变。

4、等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

一、公式(必须牢记并会应用)1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数11、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)二、小学数学图形计算公式 (必背)1、正方形: C=周长、 S=面积、 a=边长周长=边长×4 用字母表示: C=4a??面积=边长×边长用字母表示: S=a×a2、正方体: V=体积、 a=棱长表面积=棱长×棱长×6 用字母表示: S表=a×a×6体积=棱长×棱长×棱长用字母表示: V=a×a×a3、长方形: C=周长、 S=面积、 a=边长周长=(长+宽)×2 用字母表示:C=2(a+b)面积=长×宽用字母表示: S=ab4、长方体: V=体积、 s=面积、 a=长、 b=宽、 h=高表面积=(长×宽+长×高+宽×高)×2用字母表示:S=2(ab+ah+bh)体积=长×宽×高用字母表示: V=abh5、三角形: s=面积、 a=底、 h=高面积=底×高÷2 用字母表示: s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形: s=面积、 a=底、 h=高面积=底×高用字母表示:s=ah7、梯形: s=面积、 a=上底、 b=下底、 h=高面积=(上底+下底)×高÷2 用字母表示: s=(a+b)× h÷2三、五大运算定律及两个性质五大运算定律1、加法交换律:两数相加交换加数的位置,和不变。

小学生必背数学公式记忆口诀_公式总结

小学生必背数学公式记忆口诀_公式总结

小学生必背数学公式记忆口诀_公式总结
小学生必背数学公式
1、每份数份数=总数
总数每份数=份数
小学生必背数学公式:总数份数=每份数
2、1倍数倍数=几倍数
几倍数1倍数=倍数
几倍数倍数=1倍数
3、速度时间=路程
路程速度=时间
路程时间=速度
4、单价数量=总价
总价单价=数量
总价数量=单价
5、工作效率工作时间=工作总量
工作总量工作效率=工作时间
工作总量工作时间=工作效率
6、加数+加数=和
和-一个加数=另一个加数
7、被减数-减数=差
被减数-差=减数
差+减数=被减数
8、因数因数=积
积一个因数=另一个因数
9、被除数除数=商
被除数商=除数
商除数=被除数。

小学数学必背知识点汇总

小学数学必背知识点汇总

小学数学必背知识点汇总基本性质※小数的基本性质:在小数末尾添上零或者去掉零,小数的大小不变。

※分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

※比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值不变.※比例的基本性质:在比例里,两个外项的积等于两个内项的积。

※比例尺=图上距离÷实际距离(单位要相同)※商不变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小不变。

一.公式长方体有12条棱:4条长,4条宽,4条高,六个面;正方本有12条棱:每条棱都相等,有六个面,每个面都相等。

长立方体体积=长×宽×高正方体体积=棱长×棱长×棱长税后利息=本金×存款时间×利率×(1-20%)二.运算意义三.运算定律及性质加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)加减法的速算法:a-b=a-c-d 、a+b=a+c+d减法的性质:a-b-c=a-(b+c) 乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c积不变的性质:a×b=(a×c)×( b÷c) 除法的性质:a÷b÷c=a÷(b×c)商不变的性质:a÷b=(a÷c) ÷(b÷c)、a÷b=(a×c)÷(b×c)四.数的整除1.约数和倍数:如果数a 能被数b 整除,a就叫做b 的倍数,b就叫做a 的约数. (如:20÷5=4 20是5的倍数;5是20的约数)2.质数(素数):一个数除了1和它本身,不再有别的约数,这样的数叫做质数(素数)。

小学数学必背定义和性质

小学数学必背定义和性质

小学数学定义和性质一、加减乘除法的意义加法:把两个数合并成一个数的运算把两个小数合并成一个小数的运算把两个分数合并成一个分数的运算减法:已知两个加数的和与其中一个加数,求另一个加数的运算已知两个加数的和与其中一个加数,求另一个加数的运算已知两个加数的和与其中一个加数,求另一个加数的运算乘法:求几个相同加数的和的简便运算小数乘整数的意义与整数乘法意义相同。

一个数乘纯小数就是求这个数的十分之几,百分之几……分数乘整数的意义与整数乘法意义相同一个数乘分数就是求这个数的几分之几除法:已知两个因数的积与其中一个因数,求另一个因数的运算与整数除法的意义相同与整数除法的意义相同。

二、分数乘法概念总结¬1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

¬例如:3/7 ×5的意义是:表示求5个3/7 的和是多少。

¬2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。

)¬3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

¬例如:5×的意义是:表示求5的是多少。

¬4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。

)¬5.乘积是1的两个数互为倒数。

¬6.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

(1的倒数是1。

0没有倒数。

)¬¬注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

¬7.一个数(0除外)乘以一个真分数,所得的积小于它本身。

¬8.一个数(0除外)乘以一个假分数,所得的积大于或等于它本身。

¬9.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

2024年中考数学必背知识点

2024年中考数学必背知识点

2024年中考数学必背知识点(考前复习)一、整数运算1.整数的概念及表示法2.整数的四则运算规则3.整数的加法和减法性质4.整数的乘法和除法性质5.正数、负数和零的概念及性质6.整数的乘方运算二、比例与比例应用1.倍数和约数的概念及性质2.比例的概念和性质3.比例的化简和扩大4.比例的倒数和反比例5.速度与时间的关系6.相似三角形的性质与判定三、图形的认识与运动1.图形的分类和性质2.直线、线段和射线的概念3.角度的概念和性质4.平行线和垂直线的性质5.三角形和四边形的性质6.圆、直线和角的关系四、分数与分数运算1.分数的概念及表示法2.分数的基本性质与运算规则3.分数的整数和因数分解4.分数的比较和化简5.分数的加法和减法6.分数的乘法和除法五、代数与方程1.代数式的概念和运算规则2.字母代数式的化简和展开3.代数式的加法和减法运算4.代数式的乘法和除法运算5.一元一次方程的概念和解法6.平均数和代数均值不等式六、空间几何体1.空间几何体的概念与分类2.空间几何体的性质与判定3.空间几何体的表面积计算4.空间几何体的体积计算5.空间几何体的折叠和展开6.空间几何图形的投影和相似七、统计与概率1.统计图形的概念和绘制2.统计数据的集中趋势和离散程度3.简单事件和复杂事件的概念4.概率的概念和计算5.独立事件和互斥事件6.相对频率和概率的近似计算八、函数与方程1.函数的概念和性质2.函数的增减性和奇偶性判断3.一次函数和二次函数的性质4.图像的平移、翻转和缩放5.方法、方程和不等式的解法6.函数的复合和反函数以上是2024年中考数学必背知识点,希望对你的考前复习有所帮助。

记得多做题多练习,相信你一定能取得好成绩!祝你成功!。

五年级数学上册必背概念、公式

五年级数学上册必背概念、公式

五年级数学上册必背公式、概念第一单元:小数乘法1.小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

如:1.2×5表示5个1.2是多少。

2.一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。

如:1.2×0.5表示求1.2的十分之五是多少。

3.小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

乘得的积的小数位数不够,要在前面用0补足,再点上小数点。

4.一个数(0除外)乘1,积等于原来的数。

如:3.2×1=3.2一个数(0除外)乘大于1的数,积比原来的数大。

如:3.2×1.1=3.52一个数(0除外)乘小于1的数,积比原来的数小。

如:3.2×0.9=2.885.整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

6.公式:乘法交换律:a×b = b×a乘法结合律:a×b×c = a×(b×c)a×(b×c)= a×b×c乘法分配律:a×b + a×c = a×(b +c)a×(b +c) = a×b + a×ca×b-a×c = a×(b-c)a×(b-c) = a×b-a×c第二单元:位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定唯一一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

《倍数》倍数和因数

《倍数》倍数和因数

西方的倍数文化
在西方文化中,倍数也有着重要的地位。例如,在古希 腊的哲学中,毕达哥拉斯学派认为“万物皆数”,其中 就涉及到了倍数的概念。此外,在西方音乐中也有很多 与倍数相关的元素,例如交响乐中的乐器数量和音调都 是通过倍数来确定的。
感谢您的观看
THANKS
对数与指数
对数和指数是两个相反的概念,它们与倍数和因数也有一定的关系。例如,log(a*b) = log(a) + log(b),这个公式中就涉 及到了倍数的概念。
倍数和因数的历史与文化背景
中国的倍数文化
在中国传统文化中,倍数有着特殊的地位。例如,在中 国古代的诗词中,经常用倍数来表示数量的增加或减少 。此外,中国的传统音乐中也有很多与倍数相关的元素 ,例如二胡、笛子等乐器的音调都是通过倍数来确定的 。
06
倍数和因数的拓展知识
与倍数和因数相关的定理和公式
最大公约数和最小公倍数
最大公约数是两个或多个整数共有的最大正整数因子,最小公倍 数是两个或多个整数的最小公共倍数。它们与倍数和因数有密切 关系。
素数与合数
素数是只有1和它本身两个正因数的自然数,合数是除了1和它本 身以外还有其他正因数的自然数。它们是研究倍数和因数的基础 。
因数与除法的关系
除法
在数学中,除法是一种基本的算术运算, 用于计算一个数被另一个数整除的程度。
关系
因数是除法运算的结果之一,当一个数能 被另一个数整除时,这个数就是另一个数 的因数。
04
倍数和因数的应用
倍数在生活中的应用
01
确定物品数量
在日常生活中,我们经常使用倍数来确定物品的数量。例如,当我们
因数来简化表达式和求解方程。
倍数和因数在计算机科学中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二单元必备内容
1.在算式12÷2=6或2×6=12中,(12)是(2和6)的倍数,(2和6)就是(12)的因数。

(因数)与(倍数)是相互依存的。

2.( 1 )是任何非0自然数的因数。

1只有( 1 )个因数是它本身。

任何一个大于1的
自然数至少有( 2 )个因数。

3.一个数的最小因数是( 1),最大因数是( 它本身)。

一个数的最小倍数是( 它本身),
( 没有)最大的倍数。

一个数的因数的个数是(有限的),一个数的倍数的个数是(无限的)。

4.整数中,是2的倍数的数叫做(偶数)(0也是偶数),不是2的倍数的数叫做(奇数)。

或者说个位上是(0,2,4,6,8)的数是偶数,个位上是(1,3,5,7,9)的数是奇数。

5.个位上是0,2,4,6,8的数这个数就是(2的倍数)。

6.一个数(各个数位上的数字和是3的倍数),这个数就是3的倍数。

7.一个数个位上是0,2,4,6,8并且(各个数位上的数字和是3的倍数),这个数就是
6的倍数。

(或者说这个数既是2的倍数又是3的倍数)
8.个位上是( 0或5 )的数,这个数就是5的倍数。

9.个位上是( 0 )的数,这个数就是10的倍数。

(也就是说这个数既是2的倍数又是5
的倍数)。

10.个位上是( 0 )并且( 各个数位上的数字和是3)的倍数,这个数既是2和5的倍数又
是3的倍数。

(也就是2×3×5/30的倍数)
11.(各个数位上的数字和是9)的倍数,这个数就是9的倍数。

12.一个整数的(末尾两位数)是4的倍数,这个数就是4的倍数。

13.一个数(个位上是5)并且(各个数位上的数字和是3)的倍数,这个数就是3×5/15
的倍数。

14.一个数,如果(只有1和它本身)两个因数,那么这样的数叫做质数。

(或者素数)。

除2之外,所有的质数都是(奇数)。

15.一个数,如果除了1和它本身还有别的因数,那么这样的数叫做(合数)。

一个合数
至少有(3)个因数。

除2之外所有的偶数都是(合数)。

16.任何一个合数都可以写成(几个质数相乘)的形式。

质数相乘的积一定是(合数)。

17.任何一个合数都可以写成(两个质数的和)的形式。

除2之外,任意两个质数的和都
是合数。

18.(1)既不是质数,也不是合数。

最小的质数是(2),最小的合数是(4)。

最小的偶
数是(0),最小的奇数是(1),即是奇数又是合数的一位数是(9),既是偶数又是合数的一位数是(4,6,8)。

既是偶数又是质数的数是( 2 )。

19.按因数的个数分自然数分为(质数、合数、1和0)。

20.按2的倍数分自然数分为(偶数和奇数)。

21.偶数+偶数=(偶数),偶数—偶数=(偶数),奇数+奇数=(偶数),
奇数-奇数=(偶数)偶数--奇数=(奇数),偶数+奇数=(奇数),
奇数×奇数=(奇数),偶数×偶数=(偶数),奇数×偶数=(偶数)
1.在算式12÷2=6或2×6=12中,()就是()和()的倍数,()和()就是()的因数。

()与()是相互依存的。

2. ( )是任何非0自然数的因数。

1只有( )个因数是它本身。

任何一个大于1的自然
数至少有( )个因数。

3.一个数的最小因数是( ),最大因数是( )。

一个数的最小倍数是( ),( )最大
的倍数。

一个数的因数的个数是( ),一个数的倍数的个数是( )。

4.整数中,是2的倍数的数叫做( )(0也是偶数),不是2的倍数的数叫做( )。

或者说个位上是( )的数是偶数,个位上是( )的数是奇数。

5.个位上是0,2,4,6,8的数这个数就是( )的倍数。

6.一个数( ),这个数就是3的倍数。

7.一个数个位上是0,2,4,6,8并且( ),这
个数就是6的倍数.也就是说这个数既是( )的倍数又是( )的倍数。

8.个位上是( )的数,这个数就是5的倍数。

9.个位上是( )的数,这个数就是10的倍数。

也就是说这个数既是()的倍数又
是()的倍数。

10.个位上是( )并且( )的倍数,这个数既是2和5
的倍数又是3的倍数。

也就是()的倍数
11.一个数()的倍数,这个数就是9的倍数。

12.一个数( )是4的倍数,这个数就是4的倍数。

13.一个数个位上()并且()的倍数,这
个数就是3×5/15的倍数。

14.一个数,如果()两个因数,那么这样的数叫做质数。

(或者
素数)。

除2之外,所有的质数都是()。

100以内的质数有(
_________________________________________________________________________
______________________________________ )。

15.一个数,如果除了1和它本身还有别的因数,那么这样的数叫做()。

一个
合数至少有()个因数。

除2之外所有的偶数都是()。

16.任何一个合数都可以写成()的形式。

质数相乘的积一定
是()。

17.任何一个合数都可以写成()的形式。

除2之外,任意两个质数的
和都是()。

18.()既不是质数,也不是合数。

最小的质数是(),最小的合数是()。

最小的偶数是(),最小的奇数是(),即是奇数又是合数的一位数是(),既是偶数又是合数的一位数是()。

既是偶数又是质数的数是()。

19.按因数的个数分自然数分为()。

20.按2的倍数分自然数分为()。

21.偶数+偶数=(),偶数—偶数=(),奇数+奇数=(),
奇数-奇数=()偶数--奇数=(),偶数+奇数=(),
奇数×奇数=(),偶数×偶数=(),奇数×偶数=()。

相关文档
最新文档