第二节 光电效应及器件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光照射在物体上可以看成是一连串的具有一定能量的光子轰击这些物体的表面;光子与物体之间的联接体是电子。所谓光电效应是指物体吸收了光能后转换为该物体中某些电子的能量而产生的电效应。光电效应可分成外光电效应和内光电效应两类。

一.外光电效应(External photoelectric effect)

在光的照射下,使电子逸出物体表面而产生光电子发射的现象称为外光电效应。

根据爱因斯坦假设:一个电子只能接受一个光子的能量。因此要使一个电子从物体表面逸出,必须使光子能量ε大于该物体的表面逸出功A。各种不同的材料具有不同的逸出功A,因此对某特定材料而言,将有一个频率限νo(或波长限λo),称为“红限”。当入射光的频率低于νo时(或波长大于λo),不论入射光有多强,也不能激发电子;当入射频率高于νo时,不管它多么微弱也会使被照射的物体激发电子,光越强则激发出的电子数目越多。红限波长可用下式求得:

(8-2)

式中. c——光速。

外光电效应从光开始照射至金属释放电子几乎在瞬间发生,所需时间不超过10-9s。基于外光电效应原理工作的光电器件有光电管和光电倍增管。

图8.3 光电管图8.4 光电管受光照发射电子光电管种类很多,它是个装有光阴极和阳极的真空玻璃管,结构如图8.3

与电源连接在管内形成电场。光电管的阴极受到适当所示。图8.4阳极通过R

L

的照射后便发射光电子,这些光电子在电场作用下被具有一定电位的阳极吸引,

在光电管内形成空间电子流。电阻R

上产生的电压降正比于空间电流,其值与

L

照射在光电管阴极上的光成函数关系。如果在玻璃管内充入惰性气体(如氩、氖等)即构成充气光电管。由于光电子流对惰性气体进行轰击,使其电离,产生更多的自由电子,从而提高光电变换的灵敏度。

光电倍增管的结构如8.5所示。在玻璃管内除装有光电阴极和光电阳极外,尚装有若干个光电倍增极。光电倍增极上涂有在电子轰击下能发射更多电子的材料。光电倍增极的形状及位置设置得正好能使前一级倍增极发射的电子继续轰击后一级倍增极。在每个倍增极间均依次增大加速电压。设每级的培增率为

δ,图8.5 光电倍增管

若有n级,则光电倍增管的光电流倍增率将为δn。

二.内光电效应(Internal photoelectric effect)

光照射在半导体材料上,材料中处于价带的电子吸收光子能量,通过禁带跃入导带,使导带内电子浓度和价带内空穴增多,即激发出光生电子-空穴对,从而使半导体材料产生电效应。光子能量必须大于材料的禁带宽度ΔE

才能产生内

g

(nm)。通常纯净半导光电效应。由此可得内光电效应的临界波长λo=1293/ΔE

g

体的禁带宽度为1eV左右。

内光电效应按其工作原理可分为两种:光电导效应和光生伏特效应。

1.光电导效应

半导体受到光照时会产生光生电子-空穴对(electron-hole pairs),使导电性能增强,光线愈强,阻值愈低。这种光照后电阻率变化的现象称为光电导效应。基于这种效应的光电器件有光敏电阻和反向偏置工作的光敏二极管与三极管。

(1)光敏电阻(photo resistors)光敏电阻是图8.6 光敏电阻的工作原理

一种电阻器件,其工作原理如图8.6所示。使用时,可加直流偏压(无固定

极性),或加交流电压。

光敏电阻中光电导作用的强弱是用其电导的相对变化来标志的。禁带宽度较大的半导体材料,在室温下热激发产生的电子-空穴对较少,无光照时的电阻(暗电阻)较大。因此光照引起的附加电导就十分明显,表现出很高的灵敏度。

为了提高光敏电阻的灵敏度,应尽量减小电极间的距离。对于面积较大的光敏电阻,通常采用光敏电阻薄膜上蒸镀金属形成梳状电极。为了减小潮湿对灵敏度的影响,光敏电阻必须带有严密的外壳封装。光敏电阻灵敏度高,体积小,重量轻,性能稳定,价格便宜,因此在自动化技术中应用广泛。

(2)光敏二极管(photodiode) PN结可以光电导效应工作,也可以光生伏特效应工作。如图8.8所示,处于反向偏置的PN结,在无光照时具有高阻特性,反向暗电流很小。当光照时,结区产生电子-空穴对,在结电场作用下,电子向N 区运动,空穴向P区运动,形成光电流,图8.7 光敏电阻梳状电极方向与反向电流一致。光的照度愈大,光电流愈大。由于无光照时的反偏电流很小,一般为纳安数量级,因此光照时的反向电流基本上与光强成正比。

图8.8 光电二极管原理图图8.9 光电三极管原理图

(3)光敏三极管(photo transistors) 它可以看成是一个bc结为光敏二极管的三极管。其原理和等效电路见图8.9。在光照作用下,光敏二极管将光信号转换成电流信号,该电流信号被晶体三极管放大。显然,在晶体管增益为β时,光敏三极管的光电流要比相应的光敏二极管大β倍。

光敏二级管和三极管均用硅或锗制成。由于硅器件暗电流小、温度系数小,又便于用平面工艺大量生产,尺寸易于精确控制,因此硅光敏器件比锗光敏器件更为普通。

光敏二极管和三极管使用时应注意保持光源与光敏管的合适位置(见图

8.10)。因为只有在光敏晶体管管壳轴线与入射光方向接近的某一方位(取决于透镜的对称性和管芯偏离中心的程度),入射光恰好聚焦在管芯所在的区域,光敏

管的灵敏度才最大。为避免灵敏度变化,使用中必需保持光源与光敏管的相对位置不变。

图8.10 入射光方向与管壳轴线夹角示意图图8.11 PN结光生伏特效应原理图

2.光生伏特效应(Photo Voltage Effect)

光生伏特效应是光照引起PN结两端产生电动势的效应。当PN结两端没有外加电场时,在PN结势垒区内仍然存在着内建结电场,其方向是从N区指向P区,如图8.11所示。当光照射到结区时,光照产生的电子-空穴对在结电场作用下,电子推向N区,空穴推向P区;电子在N区积累和空穴在P区积累使PN结两边的电位发生变化,PN结两端出现一个因光照而产生的电动势,这一现象称为光生伏特效应。由于它可以像电池那样为外电路提供能量,因此常称为光电池。

光电池(photocell)与外电路的连接方式有两种(图8.12):一种是把PN结的两端通过外导线短接,形成流过外电路的电流,这电流称为光电池的输出短路电流(IL),其大小与光强成正比;另一种是开路电压输出,开路电压与光照度之间呈非线性关系;光照度大于1000lx时呈现饱和特性。因此使用时应根据需要选用工作状态。

图8.12 光电池的开路电压输出(a)和短路电流输出(b)

硅光电池是用单晶硅制成的。在一块N型硅片上用扩散方法渗入一些P型杂质,从而形成一个大面积PN结,P层极薄能使光线穿透到PN结上。硅光电池也称硅太阳能电池,为有源器件。它轻便、简单,不会产生气体污染或热污染,特别适用于宇宙飞行器作仪表电源。硅光电池转换效率较低,适宜在可见光波段工作。

二、常用的光电器件

将光信号(或光能)转变成电信号(或电能)的器件叫光电器件。现已有光敏管、

相关文档
最新文档