全等三角形(基础证明题)

合集下载

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB证明:延长CD 与P ,使D 为CP 中点。

连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2ABADBCBACDF21E3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴AB=AE。

在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF (∠1=∠2)。

4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BEA7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:1CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。

2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。

3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。

4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。

5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。

6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。

7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。

8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。

9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。

10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。

11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。

12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。

13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。

14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。

15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。

16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。

18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。

19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。

20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。

全等三角形证明经典40题(含答案)

全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠ 2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

AD B C3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又,EF ∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠EB ACDF21 E A∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。

全等三角形证明题及答案15道

全等三角形证明题及答案15道
1.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证: BC=ED.
证明:∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
即:∠EAD=∠BAC,
在△EAD和△BAC中
∠B=∠E AB=AE
∠BAC=∠EAD ,
∴△ABC≌△AED(ASA),
∴BC=ED.
全等三角形的判定与性质.
如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF, AE=CF,BE=DF.求证:△ADE≌△CBF.
∴△BCF≌△CBD(ASA). 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF(HL), ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
直角三角形全等的判定
如图,△ABC中,∠ABC=∠BAC=45°,点 P在AB上,AD⊥CP,BE⊥CP,垂足分别为D, E,已知DC=2,求BE的长.
∵∠ABC=∠BAC=45° ∴∠ACB=90°,AC=BC ∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90° ∴∠DAC=∠BCE 又∵∠ADC=∠CEB ∴△ACD≌△CEB ∴BE=CD=2.
:∵AC平分∠BAD, ∴∠BAC=∠DAC, 在△ABC和△ADC 中, AB=AD ∠BAC=∠DAC AC=AC , ∴Fra bibliotekABC≌△ADC.
全等三角形的判定.
9.如图,已知点E,C在线段BF上,BE=CF, AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.

全等三角形证明经典30题

全等三角形证明经典30题

全等三角形证明经典30题1. 两角和相等定理证明:设△ABC 和△DEF 是两个三角形,如果∠A = ∠D 且∠B = ∠E,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:通过顶角顶点 C 、 F、和共边 CF 作直线段 CF,延长直线段 CF 至点 X,使得 CX = CE。

步骤二:连接线段 AX。

步骤三:证明∠AXB = ∠EXF:由于∠A = ∠D,所以∠AXB = ∠DXE(共同的角度)。

又由于∠B = ∠E,所以∠DXE = ∠EXF。

因此,∠AXB = ∠EXF。

步骤四:证明∠ABX = ∠EFX:由于∠B = ∠E,所以∠ABX = ∠EXF(共同的角度)。

因此,∠ABX = ∠EFX。

步骤五:证明 AB = EF:由于 CX = CE,且∠ABX = ∠EFX,根据 SSS(边-边-边)全等三角形定理,则可得∆ABX ≌ ∆EFX。

因此,AB = EF。

综上所述,根据两角和相等定理,已经证明了△ABC ≌△DEF。

2. SAS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,∠A = ∠D,且 AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 BC 和 EF。

步骤二:证明∠ABC = ∠DEF:由于 AB = DE,且∠A = ∠D,根据线段角度定理,可得∠ABC = ∠DEF。

步骤三:证明 BC = EF:由于 AC = DF,且∠ABC = ∠DEF,根据 SAS(边-角-边)全等三角形定理,可得△ABC ≌△DEF。

综上所述,根据SAS全等三角形定理,已经证明了△ABC ≌△DEF。

3. SSS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,BC = EF,且AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 AC 和 DF。

步骤二:连接线段 BC 和 EF。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形证明100题(经典)

全等三角形证明100题(经典)

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。

2:已知:D 是AB 中点,∠ACB=90°,求证:12CD AB:3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2:4:已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADB CBA CDF2 1 E5:已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE :6:.:如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB8:已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BEP D ACB9:已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10:如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .11:如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA :FA ED C B12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13:已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):14:如图:DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

(完整版)全等三角形证明经典100题

(完整版)全等三角形证明经典100题

1.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD12. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD AB2ADC B3.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A21B EC F D4.已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB5.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CACB D6.已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE7.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD8. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B9.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A21B EC F D10. 已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB11.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CACB D12. 已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、 CE 分别均分∠ ABC 、∠ BCD ,且点 E 在 AD上。

求证: BC=AB+DC 。

13.已知: AB//ED ,∠ EAB= ∠ BDE , AF=CD , EF=BC ,求证:∠ F=∠ CE DCFA B14.已知: AB=CD ,∠ A= ∠ D,求证:∠ B= ∠ CADB C15.P 是∠ BAC 均分线 AD 上一点, AC>AB ,求证: PC-PB<AC-AB CAP DB16. 已知∠ ABC=3 ∠ C,∠ 1=∠2, BE⊥ AE ,求证: AC-AB=2BE17.已知, E 是 AB 中点, AF=BD , BD=5 , AC=7 ,求 DCDF A CE B18.( 5 分)如图,在△ABC 中, BD=DC ,∠ 1=∠ 2,求证: AD ⊥ BC.19.( 5 分)如图, OM 均分∠ POQ ,MA⊥ OP,MB ⊥OQ , A、B 为垂足, AB 交 OM 于点N.求证:∠ OAB=∠OBA(完满版)全等三角形证明经典100题20.( 5 分)如图,已知AD ∥BC,∠ PAB 的均分线与∠ CBA 的均分线订交于E, CE 的连线交 AP 于 D.求证: AD+BC=AB.PCEDA B21.( 6 分)如图,△ ABC 中, AD 是∠ CAB 的均分线,且AB=AC+CD,求证:∠ C=2∠ BACD B22.( 6 分)如图①, E、F 分别为线段AC 上的两个动点,且DE ⊥AC 于 E, BF⊥AC 于 F ,若 AB=CD , AF=CE, BD 交 AC 于点 M.(1)求证: MB=MD , ME =MF(2)当 E、F 两点搬动到如图②的地址时,其余条件不变,上述结论可否成立?若成立请恩赐证明;若不成立请说明原由.23.( 7 分)已知:如图,DC ∥AB,且 DC =AE, E 为 AB 的中点,( 1)求证:△ AED≌△ EBC.( 2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):AE O DB C24.( 7 分)如图,△ABC 中,∠ BAC=90 度, AB=AC, BD 是∠ ABC 的均分线, BD 的延长线垂直于过 C 点的直线于 E,直线 CE 交 BA 的延长线于 F .求证: BD =2CE.F25、( 10 分)如图: DF=CE, AD=BC,∠ D=∠ C。

全等三角形证明50题(含答案)

全等三角形证明50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=2ADBC2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DEADB C∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。

全等三角形证明100题(经典)

全等三角形证明100题(经典)

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。

2:已知:D 是AB 中点,∠ACB=90°,求证:12CD AB:3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2:4:已知:∠1=∠2,CD=DE ,EF 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

A BC DEF 21 DABC ADB CBA CDF2 1 E7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB8:已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE9:已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10:如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .FAED C BP DACB11:如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA:12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立请给予证明;若不成立请说明理由.13:已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):14:如图:DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

15:如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

OEDC BAFED CBAMFECBA16:AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

全等三角形证明经典50 题 (含答案 )1.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AA DB CD C B2. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB23.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A A1 21 2BFECDEC FD B4.已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=AC5.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CA6.已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、 CE 分别均分∠ ABC 、∠ BCD ,且点 E 在 AD上。

求证: BC=AB+DC 。

E DCFA B13.已知: AB//ED ,∠ EAB= ∠ BDE , AF=CD , EF=BC ,求证:∠ F=∠ C14.P 是∠ BAC 均分线 AD 上一点, AC>AB ,求证: PC-PB<AC-AB CAP DB15. 已知∠ ABC=3 ∠ C,∠ 1=∠2, BE⊥ AE ,求证: AC-AB=2BE16.已知, E 是 AB 中点, AF=BD , BD=5 , AC=7 ,求 DCDF A CE B18.如图,在△ABC 中, BD =DC ,∠ 1=∠ 2,求证: AD⊥BC .19.如图, OM 均分∠ POQ ,MA ⊥ OP,MB⊥ OQ , A、 B 为垂足, AB 交 OM 于点 N.求证:∠ OAB=∠OBA20.( 5 分)如图,已知 AD ∥BC,∠ PAB 的均分线与∠ CBA 的均分线订交于 E, CE 的连线交AP 于 D .求证: AD +BC =AB.PACEDCD BA B21.如图,△ ABC 中, AD 是∠ CAB 的均分线,且AB=AC+CD,求证:∠ C=2∠ B22.( 6 分)如图①, E、F 分别为线段AC 上的两个动点,且DE ⊥AC 于 E, BF⊥AC 于 F ,若 AB=CD , AF=CE, BD 交 AC 于点 M.(1)求证: MB=MD , ME =MF(2)当 E、F 两点挪动到如图②的地点时,其他条件不变,上述结论可否建立?若建立请赐予证明;若不建立请说明原因.23.已知:如图,DC∥ AB,且 DC =AE, E 为 AB 的中点,( 1)求证:△ AED≌△ EBC.( 2)观看图前,在不添协助线的状况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):AE ODB C24.( 7 分)如图,△ ABC 中,∠ BAC=90 线垂直于过 C 点的直线于 E,直线 CE 交求证: BD =2CE.度, AB=AC, BD 是∠ ABC 的均分线, BD 的延伸BA 的延伸线于 F.FAED证明:B C25、如图: DF=CE, AD=BC,∠ D=∠ C。

全等三角形证明经典40题(含答案)

全等三角形证明经典40题(含答案)

1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求AD 的长 .AB CD解:延伸AD 到 E,使 AD=DE∵D 是 BC中点∴BD=DC在△ ACD和△ BDE中AD=DE∠B DE=∠ ADCBD=DC∴△ ACD≌△ BDE∴A C=BE=2∵在△ ABE中AB-BE< AE< AB+BE∵A B=4即 4-2< 2AD<4+21<AD< 3∴A D=22.已知: BC=ED,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2证明:连结BF 和 EF∵BC=ED,CF=DF,∠ BCF=∠ EDF∴三角形 BCF全等于三角形EDF(边角边 )∴BF=EF,∠CBF=∠ DEF连结 BE在三角形BEF中 ,BF=EF∴ ∠EBF=∠ BEF。

∵ ∠ABC=∠ AED。

∴ ∠ABE=∠AEB。

∴AB=AE。

在三角形ABF 和三角形AEF中AB=AE,BF=EF,∠A BF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF∴三角形 ABF 和三角形AEF全等。

∴ ∠BAF=∠ EAF (∠ 1=∠ 2)。

A A12FCDEB已知:∠ 1=∠ 2,CD=DE,EF如图,四边形ABCD中, AB∥DC,BE、CE分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。

求证:BC=AB+DC。

在 BC上截取 BF=AB,连结 EF∵BE 均分∠ ABC∴∠ ABE=∠ FBE又∵ BE=BE∴⊿ ABE≌⊿ FBE( SAS)∴∠ A=∠ BFE∵AB 知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段 AB,CD所在的直线交于E,则:△AED是等腰三角形。

∴ AE=DE而 AB=CD∴ BE=CE∴△ BEC是等腰三角形∴∠ B=∠ C.是∠ BAC均分线 AD 上一点, AC>AB,求证: PC-PB<AC-AB在 AC 上取点 E,使 AE= AB。

全等三角形证明经典30题

全等三角形证明经典30题

全等三角形经典题目精选1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CAB C D EF 21 AD B CDA B C B ACDF2 1 EC D B A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C10.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCDC B A FE A B C DPD A CB13.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .14.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA15.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .PED CB A16.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BD CB A17.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,F A E DCBAF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.18.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):O E DC B A19.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .FEDC B A20、如图:DF=CE,AD=BC,∠D=∠C。

三角形全等证明基础练习试题打印

三角形全等证明基础练习试题打印

专业知识分享探索三角形全等的条件练习题1、已知AD 是△ABC 的中线,BE ⊥AD ,CF ⊥AD ,证明:BE=CF2、已知AB=CD ,AE=BF ,CE=DF ,求证:AE ∥BF 。

3、已知AB=CD ,BE=CF ,AF=DE ,求证:AB ∥CD4、已知在四边形ABCD 中,AB=CD ,AD=CB ,求证:AB ∥CD 。

5、已知CD ∥AB ,DF ∥EB ,DF=EB ,求证:AF=CE 。

D AB CCBB DB专业知识分享6、已知BE=CF ,AB=CD ,∠B=∠C ,求证:AF=DE 。

7、已知AB=CD , ∠A=∠C ,AE=CF ,求证:EB ∥DF 。

8、已知,M 是AB 的中点,∠1=∠2,MC=MD ,求证:∠C=∠D 。

9、已知∠1=∠2,∠3=∠4,求证:AC=AD 。

10、已知∠E=∠F ,∠1=∠2,AB=CD ,求证:AE=DF 。

11、已知ED ⊥AB ,EF ⊥BC ,BD=EF ,求证:BM=ME 。

ACMEFBB CEMA BA ECB A D专业知识分享12、已知AC=AB ,AE=AD , ∠EAB=∠DAC ,求证:∠B=∠C13、已知AD=AE ,∠B=∠C ,求证:AC=AB 。

14、已知∠1=∠2,BC=AD ,求证:△ABC ≌△BAD 。

15、已知AB=AC , ∠1=∠2,AD=AE ,求证:△ABD ≌△ACE 。

16、已知AD=AE ,BD=CE ,∠1=∠2,求证:△ABD ≌△ACEA D EB CA BAB CD E12 B D ADEC 1 2B专业知识分享17、已知AB=AC ,AD=AE ,∠1=∠2,求证:CE=BD18、已知CE ⊥AB ,DF ⊥AB ,AC ∥DB ,AC=BD ,求证:CE=DF 。

19、已知∠1=∠2,AC=BD ,E ,F ,A ,B 在同一直线上,求证:∠3=∠420、已知DO ⊥BC ,OC=OA ,OB=OD ,求证:CD=AB21、已知CE=DF ,AE=BF ,AE ⊥AD ,FD ⊥AD ,求证:A C ∥BD22、已知AB 与CD 相交于点E ,EA=EC ,ED=EB ,求证:△AED ≌△CEBC AE BF D A E D C B O CD AE FB 21 3 4 A CBD EC AE BF DAD BEFG 1 2 C专业知识分享23、已知AB=AC ,D ,E 分别是AB ,AC 的中点。

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案)连接CE,在△CEA和△CEB中,∠XXX∠CEB,CE=CE,∠XXX∠BEC=90°,∴△CEA≌△CEB(AAS)∴AE=BE在△AED和△BED中,∠AED=∠BED,AD=BD,∠XXX∠EBD,∴△AED≌△BED(SAS)∴AE=BE 又∠B+∠D=180°,∴ABCD为四边形,AC=BD=AD+BC AE=BE,∴AE+AD+BE=2AE+AD=AD+AC=AD+AD+BC=2AD+BC=AD +BD+BC=AD+BEXXX⊥XXX∴∠ABE=90°-∠1,∠DBE=90°-∠2ADE=∠ABE=90°-∠1,∠XXX∠DBE=90°-∠2又∠1=∠2,∴∠ADE=∠BDCADE≌△BDC(AAS)AD=BC,AC-AB=AD-BD=BC-BD又因为BD=2BE(在直角三角形BDE中,根据勾股定理可得BD=2BE)AC-AB=BC-2BE=2BE(在三角形ABC中,根据角度和定理可得∠B=180°-4∠C,又∠ABC=3∠C,因此∠B=60°,所以三角形ABC为等边三角形,即AC=BC)。

AC-AB=2BE,证毕。

1.根据题意,可知在等腰三角形ABD中,AE是角BAD的角平分线,因此AE垂直BD。

同时,由于AB=AD,所以点E也是BD的中点,即BD=2BE。

又因为BD=CD=AC-AB,所以AC-AB=2BE。

根据已知条件,可得E是AB的中点,AF=BD=5,BD=CD=AC-AB=7-5=2.因此,DC=CF=2.2.由题意可知,BD=DC,且∠1=∠2.因此,△ABD和△ACD是全等三角形(边角边),即AB=AC,∠BAD=∠CAD。

又因为AE是△XXX的中垂线,所以AE⊥BC,即AD⊥BC。

3.根据题意,可知OM平分∠POQ,MA⊥OP,MB⊥OQ,且AB交OM于点N。

八年级全等三角形简单证明题及解答(5道)

八年级全等三角形简单证明题及解答(5道)
八年级全等三角形简单证明题及解 答(5道)
汇报人:XX
目 录
• 题目一:基本的全等三角形证明 • 题目二:利用角平分线性质证明 • 题目三:通过边边边条件证明 • 题目四:结合中线性质进行证明 • 题目五:综合应用多种性质证明 • 总结与拓展
01
题目一:基本的全等三角形证明
题目描述
• 已知三角形$ABC$和三角形$DEF$,其中$AB = DE$,$AC = DF$,$\angle BAC = \angle EDF$。求证:$\triangle ABC \cong \triangle DEF$。
由第二步可知,△BDE∽△CFD。
详细解答
4. 第四步,根据相似三角形的性质,对应边成比例,所以BD/CF=DE/DF。
5. 第五步,因为BD=AD(已知),所以AD/CF=DE/DF。又因为AE/EC=DE/EF(已知), 所以AD/CF=AE/EC。
6. 第六步,交叉相乘得AD*EC=AE*CF,即AE/AD=EC/CF。又因为∠A=∠ACF(对顶角相 等),所以△ADE∽△ACF。
第三步,根据相似三 角形的性质,有 AB/AC = BD/DC。
综上,我们证明了 AB/AC = BD/DC。
03
题目三:通过边边边条件证明
题目描述
已知
△ABC和△DEF中,AB = DE,BC = EF,AC = DF。
求证
△ABC ≌ △DEF。
题目描述
【分析】
本题主要考察全等三角形的判定方法——边边边条件。根据已知条件,我们可以 直接应用边边边定理来证明两个三角形全等。
题目描述
01
【解答】
02
证明
03
04
∵ 在△ABC和△DEF中,AB = DE,BC = EF,AC = DF(已
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
D
B
B
全等三角形——基础证明
1.把下列命题改写成“如果……”“那么……”的形式,指出它的题设和结论,并写出他们的逆命题. (1)同位角相等,两直线平行;
解:如果_______________________,那么_____________________;
题设为:________________________,结论为:________________________;
逆命题为:____________________________________________
(2)两直线平行,同旁内角互补;(3)对顶角相等;(4)全等三角形的对应边相等;(5)平行四边形对应角相等;
2.三角形全等的判定方法有:_________,___________,_____________,___________
,________;
3.全等三角形用符号______来表示;其对应边_______对应角_________;
4.如图,在△ABC中,AB AC
=,AD平分BAC
∠,求证:△ABD≅△ABD
(第4题图) (第5题图) (第6题图)
5.如图,已知ABC D
∠=∠,ACB CBD
∠=∠,判断图中的两个三角形是否全等,并说明理由;
6.如图, △ABC是等腰三角形,,
AD BE分别是,
BAC

△ABD和△BAE全等吗?请说明你的理由.
7.如图在ABCD中,求证ABD CDB
∆≅∆
(第7题图) (第8题图)
8.如图,,,
DE AB DF AC AE AF
⊥⊥=,你能找到一对全等的三角形吗?并证明你的结论.
1
2
B
A E
D
B
9.已知
AB 与CD 相交于O ,A D ∠=∠,CO BO =。

求证:AO DO =
10.如图,在ABC 中,BD CD =,,BE AB DF AC ⊥⊥,,E F 为垂足,DE DF =,求
证:BE
CF =
11.如图,在直线l 上找出一个点P ,使得点P 到AOB ∠的两边第12题图) (第13题图)
12.如图,已知,AE
CE BD AC =⊥,求证:AB CD AD BC +=+
13.如图, 在△ABC 中,,ABC ACB ∠∠的平分线交于D ,EF 经过D ,且EF ∥BC ,求证:EF
BE CF =+
14.如图,E 是AOB ∠平分线上一点,,EC AO ED BO ⊥⊥,垂足分别为,C D ,求
证:EDC ECD ∠=∠
(第14题图) (第15题图)
15.如图,AB ∥DE ,AC ∥DF ,BC ∥EF 。

求证:ABC DEF ∆≅∆
A
D
B
16.如图,,,
AE DB BC EF BC
==∥EF。

求证:ABC DEF
∆≅∆
17.已知.,,
AB DF AC DE BE CF
===,求证
18.如图,,
AC BD BC AD
==。

求证:ABC
∆≅
第19题图)
19. 如图12,B D
∠=∠∠=∠。

求证:ABC ADC
∆≅∆
20. 如图A B
∠=∠,CE∥DA,CE交AB于E。

求证:
(第20题图) (第21题图)
21. 如图,在△ABC中,AB AC
=,D是BC的中点,,
DE AB DF AC
⊥⊥,,E F是垂足,求证:DE DF
=
22.如图,BDA CEA
∠=∠,AE AD
=。

求证:AB AC
=
(第23题图) (第24题图)
23.如图,C D
∠=∠,CE DE
=。

求证:BAD ABC
∠=∠
3。

相关文档
最新文档