多次相遇和追及问题( B级 ).学生版

合集下载

五年级奥数.行程-.多人相遇和追及问题(-B级-).学生版

五年级奥数.行程-.多人相遇和追及问题(-B级-).学生版

二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【巩固】 甲、乙、丙三人每分分别行60米、50米和40米,甲从B 地、乙和丙从A 地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A ,B 两地的距离. 例题精讲知识框架多人相遇和追及问题【例 2】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【例 3】甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。

已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?【巩固】甲、乙、丙三辆车同时从A地出发驶向B地,依次在出发后5小时、5512小时、612小时与迎面驶来的一辆卡车相遇。

已知甲、乙两车的速度分别是80千米/时和70千米/时,求丙车和卡车的速度。

四年级奥数行程火车过桥和火车与人的相遇追击问题B级学生版

四年级奥数行程火车过桥和火车与人的相遇追击问题B级学生版

火车过桥和火车与人的相遇追及知识框架火车过桥常见题型及解题方法??时间速度(一)、行程问题基本公式:路程??总时间;平均速度总路程??相遇路程相遇时间(二)、相遇、追及问题:速度和??追及路程;追及时间速度差(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题?人的速度) ×迎面错过的时间(追及的时间)(火车速度;总路程解法:火车车长() =4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间;)超车问题:相当于追及问题,2(.解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

例题精讲米长的大桥用时多少?米每秒的速度前进,它通过一座22060 1】一列火车长200米,以【例米,全车通过一条隧道需要米,每秒钟行驶秒钟,求这条隧道长多少米?【巩固】一列火车长1636090隧道长?火车火车火车行驶路程米,以同样的速度通过一 630小红站在铁路旁,一列火车从她身边开过用了 21秒.这列火车长2【例】分钟.这座大桥长多少米?座大桥,用了1.5以同样速米的大桥需要秒,【巩固】小胖用两个秒表测一列火车的车速。

小学数学行程专题 多次相遇与追及问题 PPT+课后作业 带答案

小学数学行程专题 多次相遇与追及问题   PPT+课后作业  带答案
小东比小芳多走:10-6=4(个) 小东追上小芳的次数:4÷2=2(次) 答:小东从后面追上小芳2次。
Байду номын сангаас题4
小芳和小俞老师分别从一段长200米的马路的两端同时相向出发,做往返运动。小芳每分 钟走40米,小俞老师每分钟走60米。20分钟后,两人停止运动。 (1)在这期间,小芳和小俞老师迎面相遇多少次? (2)在这期间,小俞老师从后面追上小芳多少次? (3)在这期间,小俞老师和小芳迎面相遇和追及相遇一共多少次?
从后面追上

同向追上
A
B

迎面相遇可不算哦!
甲、乙两人同时从A、B两地出发,在A、B两地之间来回散步。 (1)当甲第一次从后面追上乙时,甲比乙多走__1___个全程。 (2)甲从第一次从后面追上到第二次从后面追上乙时,甲比乙又多走__2___个 全程。 (3)甲从第二次从后面追上到第三次从后面追上乙时,甲比乙又多走__2___个 全程。
答:经过2个小时,甲车第一次从后面追上乙车。 (2)路程差:2个全程
追及时间:35×2÷(75-40)=2(小时) 答:再经过2个小时,甲车第二次从后面追上乙车。
例题3
甲、乙两车分别从 A、B 两地同时出发,相向而行,在 A、B 两地之间不停往返行驶。当 甲车行驶了12 个全程时, 乙车行驶了 4 个全程,那么甲车从后面追上乙车多少次?
(1)从开始出发到第一次从后面追上,路程差为1个全程 追及时间:200÷(120-70)=4(小时) 答:经过4小时,小汽车第一次从后面追上大巴。
(2)从第一次追上到第二次从后面追上,路程差为2个全程 追及时间:200×2÷(120-70)=8(小时) 答:再经过8小时,小汽车第二次从后面追上大巴。
相邻两次同向追及之间,两者的路程差都是2个全程; 从出发到第1次同向追及,两者的路程差是2个全程; 从出发到第2次同向追及,两者的路程差是4个全程; 从出发到第3次同向追及,两者的路程差是6个全程; 从出发到第n次同向追及,两者的路程差是2n个全程。

四年级奥数行程火车与火车的相遇与追及问题B级学生版

四年级奥数行程火车与火车的相遇与追及问题B级学生版

四年级奥数行程火车与火车的相遇与追及问题B级学生版火车与火车的相遇与追及知识框架火车过桥常见题型及解题方法时间速度(一)、行程问题基本公式:路程??总时间;平均速度总路程??相遇路程相遇时间(二)、相遇、追及问题:速度和追及路程;追及时间速度差(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题人的速度) ×迎面错过的时间(追及的时间);=总路程) (火车速度解法:火车车长(4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,×错车时间;) 快车速度—慢车速度(=) 总路程(解法:快车车长+慢车车长对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

例题精讲,慢车在前面22173米,车速是每秒慢车的车身长是142米,车速是每秒17米,快车车身长是【例 1】?行驶,快车从后面追上到完全超过慢车需要多少时间两车同向行驶,从第米.340米,每秒行20200【巩固】有两列火车,一列长米,每秒行32米;一列长一列车的车头追及第二列车的车尾,到第一列车的车尾超过第二列车的车头,共需多少秒?1,那么列10秒,如果列车速度减少米的列车,追上长一列长72108米的货车到完全超过用了 2【例】5秒。

专题一:追及相遇问题(学生版)

专题一:追及相遇问题(学生版)

专题一追及、相遇问题追及、相遇问题是匀变速直线运动常见的问题。

它考查综合运用多个物理学规律和公式以及部分数学方法解决较复杂运动学问题的能力,重点是抓好两个物理量的关系和一个状态:1.位移关系;2.时间关系;3.临界状态:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

1.追及问题(1)匀加速运动追击匀速运动,当二者速度相同时相距最远。

(2)匀速运动追击匀加速运动,当二者速度相同时追不上以后就永远追不上了。

此时二者相距最近。

(3)匀减速直线运动追匀速运动,当二者速度相同时假设追不上,以后就永远追不上了,此时二者相距最近。

(4)匀速运动追匀减速直线运动,当二者速度相同时相距最远。

被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

(5)匀加速直线运动追匀加速直线运动,除常规解法外,还可以以一个运动物体当参考系,找出相对速度、相对加速度、相对位移,进而求解。

2.相遇问题相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。

3.追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。

(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。

追及的主要条件是两个物体在追上时位置坐标相同。

(3)寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。

利用这些临界条件常能简化解题过程。

(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解。

4.相遇类问题的分析思路(1)列出两物体运动的位移方程,注意两个物体运动时间之间的关系。

(2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系。

五年级奥数.行程 .多次相遇和追及问题

五年级奥数.行程 .多次相遇和追及问题

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

五年级奥数.行程 .多次相遇和追及问题

五年级奥数.行程 .多次相遇和追及问题

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

行程(多次相遇)问题—2022-2023学年五年级数学思维拓展 学生版

行程(多次相遇)问题—2022-2023学年五年级数学思维拓展 学生版

周二2022-2023学年小学五年级思维拓展专题 行程(多次相遇)问题知识精讲专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间=追及距离÷速度差如果上述的几种情况交织在一起,组成的应用题将会丰富多彩、千变万化。

解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。

典例分析1.(2019•岳麓区)甲、乙两人同时从A地出发,在直道A、B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙,两地相距80米,求A、B两地相距多少米?2.(2019•郑州)如图,ABCD是一个边长为6米的模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进(乙车速度小于甲车速度),结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?周二3.(2018春•江宁区期末)小欣和小鸣分别从一座桥的两端同时相向出发,往返于两端之间.小欣每分钟走65米,小鸣每分钟走70米,经过5分钟后两人第二次相遇.这座桥长多少米?4.(2018•广东)甲乙二人分别从A、B两地出发相向而行,到达目的地后马上掉头回到出发地,他们第一次相遇距A地800米,第二次距B地500米,A、B两地相距多少米?真题演练一、选择题(共5小题,满分5分,每小题1分)1.(1分)(2015秋•漳州期末)爸爸和儿子去2km外的公园,爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程.儿子立刻返回,遇到爸爸后又骑向公园,到公园又返回⋯直到爸爸到达公园.儿子从出发开始一共骑了()A.2kmB.4kmC.6km2.(1分)甲乙两人分别从桥的两端同时出发,往返于桥的两端之间。

小学思维数学:行程问题之多次相遇和追及-带详解

小学思维数学:行程问题之多次相遇和追及-带详解

多次相遇和追及问题1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答 【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答 【解析】 17 【答案】17【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【考点】行程问题 【难度】2星 【题型】解答 【解析】 176 【答案】176【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答 【解析】 甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。

(小学奥数)多次相遇和追及问题

(小学奥数)多次相遇和追及问题

1. 學會畫圖解行程題2. 能夠利用柳卡圖解決多次相遇和追及問題3. 能夠利用比例解多人相遇和追及問題板塊一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,多人相遇與追及問題雖然較複雜,但只要抓住這個公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.【例 1】 甲、乙兩名同學在周長為300米圓形跑道上從同一地點同時背向練習跑步,甲每秒鐘跑3.5米,乙每秒鐘跑4米,問:他們第十次相遇時,甲還需跑多少米才能回到出發點?【巩固】 甲乙兩人在相距90米的直路上來回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他們同時分別從直路兩端出發,10分鐘內共相遇幾次?知識精講 教學目標3-1-4多次相遇和追及問題【巩固】甲、乙兩人從400米的環形跑道上一點A背向同時出發,8分鐘後兩人第五次相遇,已知每秒鐘甲比乙多走0.1米,那麼兩人第五次相遇的地點與點A沿跑道上的最短路程是多少米?【例 2】甲、乙二人從相距60千米的兩地同時相向而行,6時後相遇。

如果二人的速度各增加1千米/時,那麼相遇地點距前一次相遇地點1千米。

問:甲、乙二人的速度各是多少?板塊二、運用倍比關係解多次相遇問題【例 3】上午8點8分,小明騎自行車從家裏出發,8分鐘後,爸爸騎摩托車去追他,在離家4千米的地方追上了他.然後爸爸立即回家,到家後又立刻回頭去追小明,再追上小明的時候,離家恰好是8千米,這時是幾點幾分?【例 4】甲、乙兩車同時從A地出發,不停的往返行駛於A,B兩地之間。

已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都在途中C地。

問:甲車的速度是乙車的多少倍?【例 5】如圖,甲和乙兩人分別從一圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運動,當乙走了100米以後,他們第一次相遇,在甲走完一周前60米處又第二次相遇.求此圓形場地的周長.【巩固】A、B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇.已知C離A有75米,D離B有55米,求這個圓的周長是多少米?【巩固】如右圖,A,B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇。

五年级奥数.行程 .多次相遇和追及问题( B级 ).学生版

五年级奥数.行程 .多次相遇和追及问题( B级 ).学生版

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程; 第3次相遇,共走5个全程; …………, ………………; 第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………, ………………; 第N 次相遇,共走2N 个全程; 3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程 多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡知识框架多次相遇与追及问题柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?【例 2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.例题精讲【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。

六年级奥数.行程.相遇和追及(ABC级).学生版

六年级奥数.行程.相遇和追及(ABC级).学生版

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间追及时间 =(甲的速度-乙的速度)×追及时间追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

个物体所走的是同一路径。

´ìï¸íï¸î¸ìï´íï¸î路程路程==速度和相遇相遇速度和速度和==路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程追及路程==速度差追及速度差速度差==追及路程追及知识框架相遇和追及问题能够解决行程中复杂的相遇与追及问题能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题 能够利用柳卡图、比例解决多次相遇和追及问题能够利用柳卡图、比例解决多次相遇和追及问题一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】 乙二人同时从A 地去B 地,甲每分钟行60米,乙每分钟行90米,乙到达B 地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B 地,A 、B 两地相距多少米?两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧 培优 易错 难

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

多次相遇和追及问题(-B级-).学生版

多次相遇和追及问题(-B级-).学生版

多次相遇和追及问题(-B-).级学生版.柳卡解行程多次相遇与追及知识框架一、由简单行程问题拓展出的多次相遇问题”这一条基本所有行程问题都是围绕“时间?速度?路程关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系 1. 两地相向出发:个全程;次相遇,共走第11 3次相遇,共走个全程;第2 个全程;3次相遇,共走5第Page 2 of 32马可波(剥)罗---------脑袋转转:那个动物可以剥萝卜柳卡解行程………………;…………,个全程;N次相遇,共走2N-1第个全程。

2次,剩下的次与次之间都是注意:除了第1 米。

米,以后每次都走2N即甲第1次如果走了N 2. 同地同向出发: 2个全程;第1次相遇,共走 4个全程;第2次相遇,共走个全程;3次相遇,共走6 第………………;…………,2N个全程;N 第次相遇,共走 3、多人多次相遇追及的解题关键几个全程多次相遇追及的解题关键路程差多人相遇追及的解题关键——柳卡三、解多次相遇问题的工具柳卡图,不用基本公式解决,快速的解法是直接距离图,再画上密密麻麻的交叉线,按要求数-画时间交点个数即可完成。

折线示意图往往能够清晰的体现运Page 3 of 32马可波(剥)罗---------脑袋转转:那个动物可以剥萝卜“相遇的次数”,“相遇的地点”,柳卡解行程动过程中以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲,地出发,不停的往返行驶于A乙两车同时从甲、A】【例 1两地之间。

已知甲车的速度比乙车快,并且两车B地。

问:甲C出发后第一次和第二次相遇都在途中车的速度是乙车的多少倍?Page 4 of 32马可波(剥)罗---------脑袋转转:那个动柳卡解行程6 60千米的两地同时相向而行,甲、乙二人从相距【巩固】千米/时,那1时后相遇。

小学数学 行程问题之多人多次追及与相遇问题 PPT+作业(带答案)

小学数学 行程问题之多人多次追及与相遇问题  PPT+作业(带答案)
若快车追上慢车,则两车的行驶方向是__________。
答案: (1)东边 (2)路程差÷速度差 (3)9
28
作业5:
答案:
10000-100=9900(米) 9900÷5= 1980(米) 10000-1980=8020(米)
29
作业6:
答案:改为丙的速度是100米/分,
已知,甲乙相遇 7 分钟后,甲又与丙相遇,
第一站:两人多次相遇追 及问题
准备题1
设全程为1
甲的速度为 1
10
乙的速度为 1
15
路程差: 1 ×3= 1
15
5
1÷( 1 − 1 )=6(小时)
5
10 15
答:甲6小时后可以追上乙车
3
准备题2
(1)2个全程 (2)4个全程 (3)2个全程
4
例1
(1)900×2÷(25-20)=360(小时) 答:出发360小时后,甲车第一次从后面追上乙车。 (2)900×2÷(25-20)=360(小时) 答:又经过360小时后,甲车第二次从后面追上乙车。 总结:从同一地点出发,从后面追上总是快车比慢车多走两个全程。 5
10
练习3
14
(1)1000×(1+2)÷(30-25)=600(小时) 答:出发600小时后,甲车第二次从后面追上乙车。 (2)1000÷(30-25)=200(小时) 答:又经过200小时后,甲车第三次从后面追上乙车。
11
练习4
第一次相遇小新走了半个全程+200米,第一次追上小东,
14 小新共走1.5个全程+600米,是第一次相遇时候所走路
程的3倍,则小东共走的路程也是第一次相遇时候的3倍, 那么小东第一次相遇时走了:(200+600)÷(3-1) =400米,AB相距:(400+200)×2=1200米 答:AB两地相距1200米。

(完整版)多次相遇和追及问题

(完整版)多次相遇和追及问题

教学目标1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题知识精讲板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例1】(难度等级※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4 米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【解析】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10 倍,为300 10 3000米,因为甲的速度为每秒钟跑3.5 米,乙的速度为每秒钟跑 4 米,所以这段时间内甲共行了3.53000 3.5 1400米,也就是甲最后一次离开出发点继续行了200 米,可知甲还需行3.5 4300 200 100米才能回到出发点.【巩固】(难度等级※)甲乙两人在相距90 米的直路上来回跑步,甲的速度是每秒 3 米,乙的速度是每秒2 米.如果他们同时分别从直路两端出发,10 分钟内共相遇几次?【解析】17一共六百秒,第一次相遇是两人总共跑一个90米,以后是180 米相遇次。

相对速度每秒五米。

第一次相遇是18秒。

180 米相遇需要36秒。

此后是582秒总共有16次。

所以相遇17次。

解析】【巩固】(难度等级※)甲、乙两人从400米的环形跑道上一点 A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1 米,那么两人第五次相遇的地点与点 A 沿跑道上的最短路程是多少米?【解析】176甲乙每分钟速度和:400 ×5÷8=250 米每分钟,甲比乙多:0.1 ×60=6 米甲每分钟:(250+6)÷2=128 米128 ×8 ÷400=2 (224)相遇点与 A 最短路程为400-224=176 米【解析】、运用倍比关系解多次相遇问题例2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家 4 千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8 千米,这时是几点几分?解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8 =12(千米)这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12 ÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8 ×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16 (千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16 千米需要16分钟. 8+8+16=32.所以这时是8 点32 分。

多次相遇和追及问题含答案

多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

小学数学行程问题之多人多次相遇和追及问题含答案

小学数学行程问题之多人多次相遇和追及问题含答案

多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。

如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?【例 2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。

甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动。

甲、乙两人在第几次相遇时A地最近?最近距离是多少米?【巩固】A、B两地相距950米。

甲、乙两人同时由A地出发往返锻炼半小时。

甲步行,每分钟走40米;乙跑步,每分钟行150米。

则甲、乙二人第___ __次迎面相遇时距B地最近。

【例 5】甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。

已知甲车的速度是 15千米/时,乙车的速度是25千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。

求A,B两地的距离。

【巩固】欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米。

两人同时从A点出发,到达B点后返回,已知他们第二次迎面相遇的地点距离AB的中点5米,AB之间的距离是________。

【例 6】甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜。

已知甲、乙的速度分别为1.0米/秒和0.8米/秒。

问:(1)比赛开始后多长时间甲追上乙?(2)甲追上乙时两人共迎面相遇了几次?【巩固】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?【例 7】甲、乙两人分别从A、B两地同时出发相向而行,乙的速度是甲的23,二人相遇后继续行进,甲到B地、乙到A地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A、B两地相距千米.【巩固】小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米.【例 8】A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么到两车第三次相遇为止,乙车共走了多少千米?【巩固】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?【例 9】A,B两地间有条公路,甲从A地出发步行到B地,乙骑摩托车从B地出发不停顿地往返于A,B 两地之间。

他们同时出发,80分后两人第一次相遇,100分后乙第一次超过甲。

问:当甲到达B 地时,乙追上甲几次?【巩固】电子玩具车A与B在一条轨道的两端同时出发相向而行,在轨道上往返行驶。

已知A比B的速度快50%,根据推算,第20072008次相遇点相距58厘米,轨道长厘米。

2007次相遇点与第2008【例 10】A、 B 两地相距1000 米,甲从 A地、乙从 B 地同时出发,在 A、 B 两地间往返锻炼.乙跑步每分钟行150米,甲步行每分钟行 60米.在 30分钟内,甲、乙两人第几次相遇时距 B 地最近(从后面追上也算作相遇)?最近距离是多少?【巩固】A、 B 两地相距 950 米.甲、乙两人同时由 A地出发往返锻炼半小时.甲步行,每分钟走 40 米;乙跑步,每分钟行 150 米.则甲、乙二人第几次迎面相遇时距 B 地最近?【例 11】A、B两地相距950m,甲、乙两人同时从A地出发,往返A、B两地跑步90分钟.甲跑步的速度是每分钟40m;乙跑步的速度是每分钟150m.在这段时间内他们面对面相遇了数次,请问在第几次相遇时他们离B点的距离最近?【巩固】A、 B 两地相距 2400 米,甲从 A地、乙从 B 地同时出发,在 A、 B 两地间往返锻炼.甲每分钟跑 300 米,乙每分钟跑 240 米,在 30 分钟后停止运动.甲、乙两人第几次相遇时距 A 地最近?最近距离是多少?【例 12】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【巩固】 一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【随练1】如右图,A ,B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇。

已知C 离A 有80米,D 离B 有60米,求这个圆的周长。

乙甲CDB A课堂检测【随练2】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【随练3】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【随练4】A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?【随练5】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?家庭作业【作业1】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【作业2】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【作业3】甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇。

他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇。

求两次相遇地点的距离。

【作业4】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远.【作业5】湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回。

两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。

问:两岛相距多远?【作业6】在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B 点,又过8分两人再次相遇。

甲、乙环行一周各需要多少分?【作业7】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。

相关文档
最新文档