电机转速控制系统实验报告

合集下载

电机转速控制实验报告

电机转速控制实验报告

电机转速控制实验报告
1. 实验目的
本实验旨在研究电机转速控制的原理和方法,通过实际操作和数据分析来加深对电机控制的理解,并验证控制算法的有效性。

2. 实验原理
电机转速控制是通过改变电机供电电压或者改变电机绕组的接线方式来控制电机的转速。

在本次实验中,我们将采用调制技术来实现电机转速的控制。

3. 实验设备与材料
- 电机:直流电机
- 控制器:单片机控制器
- 传感器:转速传感器
- 电源
- 连接线
4. 实验步骤
1. 搭建实验电路:将电机和传感器连接至控制器,并接通电源。

2. 编写控制程序:根据所选的控制算法,编写相应的控制程序,并将其烧录至控制器中。

3. 运行实验:根据预设条件,控制电机的转速并记录数据。

4. 数据分析:对实测数据进行分析,验证控制算法的有效性。

5. 实验结果与分析
在实验过程中,我们采用了调制技术来实现电机转速的控制。

通过对控制程序的设计和实验数据的分析,我们得出以下结论:
- 当调制信号的频率增加时,电机的转速也随之增加,说明控制算法的设计是成功的。

- 通过调整调制信号的占空比,我们可以实现对电机转速的精确控制。

6. 实验总结
通过本次实验,我们深入了解了电机转速控制的原理和方法。

实验结果表明,调制技术能够有效地实现电机转速的控制,并且可以通过调整参数来实现不同的控制效果。

在实验过程中,我们还学习了如何编写控制程序和分析实验数据。

这些都对我们进一步深入研究电机控制提供了良好的基础。

7. 参考文献
- 电机控制技术原理与应用教材
- 直流电机转速控制实验指导书。

测控实验报告电机驱动及转速测量实验

测控实验报告电机驱动及转速测量实验

测控实验报告电机驱动及转速测量实验实验目的:1.理解电机驱动的基本原理;2.掌握电机的驱动方式及控制方法;3.学会使用光电编码器测量电机转速;4.了解电机在不同转速下的性能特点。

实验器材:1.电机驱动装置;2.光电编码器;3.转速测量仪。

实验步骤:1.将电机与电机驱动装置连接,并接通电源;2.设置电机驱动的参数,包括电流、电压等;3.钳住电机的轴心,使其不能转动;4.将光电编码器与电机轴连接;5.将转速测量仪连接到光电编码器,并设置好测量参数;6.解除电机的钳住状态,使其开始旋转;7.启动转速测量仪并记录电机的转速;8.增加电机驱动的电流或电压,再次记录电机的转速;9.重复步骤7和8,直至达到一定的转速范围。

实验数据处理:1.将实验记录的电机转速数据整理成表格,包括不同电流或电压下的转速;2.绘制电机转速与电流或电压之间的关系曲线;3.分析曲线的特点,如转速与电流或电压的线性关系、转速的上限等。

实验结果与讨论:根据实验数据和曲线分析可得:1.电机的转速与电流或电压呈正相关关系,增加电流或电压会使电机的转速增加;2.当电流或电压达到一定值时,电机的转速会趋于稳定,不再继续增加;3.电机在低速和高速情况下性能可能有所变化,如启动力矩、转速稳定性等。

实验结论:通过电机驱动及转速测量实验,我们掌握了电机驱动的基本原理和控制方法,学会使用光电编码器测量电机转速,并了解了电机在不同转速下的性能特点。

实验结果显示,电机的转速与电流或电压呈正相关关系,并且当电流或电压达到一定值时,电机的转速趋于稳定。

此外,电机在低速和高速情况下的性能可能有所变化。

这些实验结果对电机的应用、控制和优化具有重要的参考价值。

交流异步电机调速系统实验报告

交流异步电机调速系统实验报告

交流异步电机调速系统实验报告引言在电力系统中,电机调速是一个非常重要且复杂的问题。

随着技术的不断发展,异步电机调速系统成为了广泛应用的一种方案。

本实验旨在通过搭建和调试一个交流异步电机调速系统,来研究其调速性能和控制策略。

实验目的1.理解交流异步电机调速系统的工作原理;2.掌握电机调速系统的基本组成和实验搭建方法;3.研究不同控制策略对电机调速性能的影响;4.分析实验结果,评价不同控制策略的优劣。

实验原理1.异步电机工作原理:异步电机由主电路和励磁电路组成。

主电路中的三相对称电压产生一个旋转磁场,而励磁电路中的电压和电流则产生感应转子电动势和转矩,使得电机运转起来。

2.异步电机调速原理:异步电机调速主要通过控制转子电阻、定子电压以及改变电机的励磁电流来实现。

常见的调速方法有直接转矩控制(DTC)、矢量控制(VC)等。

实验设备和步骤1.实验设备:–交流异步电动机–实验控制器–电压调节器–电流测量仪–速度测量仪–控制软件2.实验步骤:1.搭建电机调速系统的硬件连接,确保各设备按照要求连接并接通电源。

2.在控制软件中选择合适的控制策略,并设置调速参数。

3.运行实验控制器,观察电机的调速性能,并记录实验数据。

4.根据实验数据分析电机的调速性能,并评价不同控制策略的优劣。

实验结果分析根据实验数据,我们可以得出以下结论:1.不同控制策略对电机调速性能的影响:–直接转矩控制(DTC)可以实现较好的转矩和速度响应,但对转子电阻参数变化较为敏感。

–矢量控制(VC)具有较好的转矩和速度响应特性,并且对转子电阻参数变化不敏感。

2.不同电机负载对调速系统的影响:–在轻载情况下,不同控制策略的性能相对较为接近。

–在重载情况下,矢量控制(VC)表现出较好的调速稳定性和承载能力。

结论本实验通过搭建和调试交流异步电机调速系统,研究了不同控制策略对电机调速性能的影响,并分析了不同负载下的调速系统性能。

通过实验结果,我们得出了以下结论:1.矢量控制(VC)相比直接转矩控制(DTC)具有更好的转矩和速度响应特性,且对转子电阻参数变化不敏感。

单片机直流有刷电机系统控制实验报告

单片机直流有刷电机系统控制实验报告

实验名称:单片机直流有刷电机系统控制实验报告实验目的:1. 了解有刷电机的工作原理和基本结构2. 掌握单片机对有刷电机进行控制的方法和技巧3. 探究单片机直流有刷电机系统的稳定性和精确控制性能实验设备:1. 单片机开发板2. 直流有刷电机3. 桥式整流器4. 电源供应器5. 逻辑分析仪6. 示波器实验过程:1. 连接单片机开发板和直流有刷电机,并通过桥式整流器和电源供应器为系统供电。

2. 编写单片机控制程序,包括PWM波输出、速度控制算法等内容。

3. 将程序下载到单片机开发板上,并通过逻辑分析仪和示波器对系统进行调试和监测。

4. 在不同工作条件下,比如负载变化、电压波动等情况下,观察系统的稳定性和控制性能。

实验结果与数据分析:1. 经过一系列实验操作,我们获得了系统在不同工况下的运行数据,包括电流、转速、PWM波形等。

2. 通过对数据的分析,我们发现系统在稳态和动态工作条件下表现出了良好的稳定性和精准性能,能够满足实际工程控制要求。

3. 我们也发现了系统在特定工况下的一些问题和不足之处,比如在低速和负载较大时的起动过程中的震动和噪音等。

结论与讨论:1. 通过本次实验,我们对单片机直流有刷电机系统的控制原理和方法有了更深入的了解,同时也掌握了一定的实际操作技能。

2. 在工程应用中,我们应该综合考虑系统的稳定性、动态性能和控制精度,进行更加系统和全面的设计和调试。

3. 我们还需要进一步研究和改进系统中存在的问题,以提高系统的整体性能和工程应用价值。

附录:实验中使用到的控制程序代码和调试数据记录表格。

在控制系统稳定性方面,我们发现在不同的负载条件下,系统的稳定性表现出了一定的差异。

在轻载条件下,系统的动态响应较快,控制精度较高;而在重载条件下,系统的动态响应速度降低,控制精度也有所下降。

这表明在实际工程应用中,需要根据具体的负载情况对于控制系统进行相应的调节和优化,以获得更好的稳定性和控制性能。

在实验过程中,我们也发现了一些值得注意的问题。

直流电机转速测控实验

直流电机转速测控实验

直流电机转速测控实验一、实验目的1. 掌握电机转速的测量原理;学会根据被测环境、对象不同选择合适的传感器测量转速;2. 掌握电机转速控制的原理;学会用计算机和传感器组成转速测控系统。

二、实验原理图1所示为计算机直流电机转速测控系统原理图。

图1 计算机测控直流电机转速原理框图根据被测环境和对象选择不同转速传感器(光电、霍尔、磁电)实现直流电机转速的测量及控制。

三. 实验仪器和设备1. CSY-5000型传感器测控技术实训公共平台;2. 环形带综合测控实验台;3. 数据采集模板及测控软件(LabVIEW试用版);4. 12V直流电机调节驱动挂箱;5. 光电式、霍尔式、磁电式转速传感器各一件;6. PC机及RS232通讯接口。

四.实验预习要求1.查阅资料,了解旋转轴转速测量的常用方法;2.掌握采用光电式、霍尔式、磁电式传感器测量转速的原理及特点;3.理解计算机测控直流电机转速的系统工作原理;4.熟悉CSY-5000型传感器测控技术实训平台的硬件配置。

五. 实验步骤及内容第一部分:转速测量1、在关闭公共平台主机箱电源开关的前提下,连接数据采集模板电源线、RS232通讯线;2、根据你选用的转速传感器,按转速传感器附录图1、图2、图3示意图安装接线;(注意光电、霍尔传感器为+5V供电,磁电传感器为+15V供电)3、主机箱上0~12V可调电源与电压表(电压表量程选择20V档)及环形带综合测控实验台电机(环形带综合测控实验台背面)接口并接(注意接口的相应极性);4、检查接线无误后,首先将主机箱上0~12V可调旋钮逆时针方向缓慢调节到底(起始输出电压最小);然后桌面“环形带综合测试软件”(或者启动计算机中的测试软件目录“SensorTest.vi”),双击打开,显示图2环形带综合测试程序软件界面;再打开主机箱电源开关给测量系统供电。

图2 环形带综合测试软件界面5、在计算机的环形带综合测试程序软件界面采单栏下方栏点击运行按钮,串口通讯正常后选择测试软件中“手动转速控制与测量”选项,软件界面显示为图3转速测量选择传感器类型界面;在界面下方选择“传感器类型”为现在做测量转速实验相对应的转速传感器。

电气传动实验报告

电气传动实验报告

电气传动实验报告一、实验目的本实验旨在通过搭建电气传动实验装置,实现电机的转速控制,并了解电动机的控制策略和参数调节方法。

二、实验原理1.电动机控制器原理电动机控制器是一个用于控制电机转速、转矩的设备,通常由电机驱动器和控制电路组成。

其中,电机驱动器负责将电能转变为机械能,通过控制电路实现对电机的控制。

2.闭环控制与开环控制闭环控制是通过测量电机转速或负载来实现对电机转速的控制。

开环控制则是根据实验设定的转速值直接给定电机的控制信号,不对转速进行反馈调节。

3.PID控制策略PID控制策略是一种常用的控制方法,通过调节比例、积分和微分三个参数来实现对电机转速的控制。

其中,比例项用于调节系统的动态响应速度,积分项用于消除系统静态误差,微分项用于增强系统的稳定性。

三、实验装置及步骤1.实验装置本次实验采用电机驱动器、电机、转速传感器以及控制电路等设备搭建电气传动实验装置。

具体连接方式如下:-电机驱动器通过电源与电机相连接,实现电能转化为机械能。

-转速传感器与电机相连,用于测量电机的实际转速。

-控制电路通过控制器与电机驱动器连接,在接收到转速传感器的反馈信号后,根据PID控制策略调整控制信号以实现对电机转速的控制。

2.实验步骤-打开电源,通过电控板将控制信号传输至电机驱动器。

-设置目标转速值并启动控制器。

-观察电机的实际转速与目标转速是否一致。

-若转速不一致,则通过调整PID控制策略的参数,改变控制信号,使得电机的转速逐渐达到目标转速。

-记录实际转速和目标转速的变化情况,并根据实际转速与目标转速的差异调整PID控制策略的参数。

四、实验结果与分析通过实验装置的搭建和实施实验步骤,得到了电机转速的实际结果。

将实际转速与目标转速进行对比分析,可以发现实际转速在一定时间内逐渐达到了目标转速。

通过调整PID控制策略的参数,可以进一步提高实际转速的控制精度。

五、实验总结本次电气传动实验通过搭建实验装置,实现了对电机转速的控制,并了解了电动机的控制策略和参数调节方法。

控制步进电机实验报告(3篇)

控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。

2. 掌握单片机与步进电机驱动模块的接口连接方法。

3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。

4. 通过实验,加深对单片机控制系统的理解。

二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。

步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。

2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。

3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。

三、实验设备1. 单片机开发板:例如STC89C52、STM32等。

2. 步进电机驱动模块:例如ULN2003、A4988等。

3. 双相四线步进电机。

4. 按键。

5. 数码管。

6. 电阻、电容等元件。

7. 电源。

四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。

(2)将按键的输入端连接到单片机的P3.0口。

(3)将数码管的段选端连接到单片机的P2口。

(4)将步进电机驱动模块的电源端连接到电源。

(5)将步进电机连接到驱动模块的输出端。

2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。

(2)编写按键扫描函数,用于读取按键状态。

(3)编写步进电机控制函数,实现正反转、转速和定位控制。

(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。

3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。

直流电机转速控制实验报告

直流电机转速控制实验报告

计算机控制技术综合性设计实验实验课程:直流电机转速控制实验设计报告学生姓名:学生姓名:学生姓名:学生姓名:指导教师:牛国臣实验时间:年月日直流电机转速控制实验设计报告一、实验目的:1.掌握电机的工作原理。

2.掌握直流电机驱动控制技术。

3.掌握增量式编码器位置反馈原理。

4.熟悉单片机硬件电路设计及编程。

5.实现直流电机的转速控制。

二、实验内容:已知某一直流永磁有刷伺服电机参数如下:设计直流电机转速控制系统。

要求:表1 直流伺服电机参数1.分析并建立电机的数学模型,分别得出在连续控制系统和离散控制系统中对应的传递函数;2.基于MATLAB软件对直流电机进行仿真,并通过PID控制器的参数整定对直流电机进行闭环控制,3.设计直流电机控制硬件电路,主要包括主控模块、电机驱动模块、编码器反馈模块、通信模块、电源模块、显示模块等。

4.对各模块进行单元调试,设计数字PID控制器,并基于A VR单片机编制程序,进行系统联调。

5.最终完成直流电机控制硬件平台的设计、搭建及软件调试,要求有速度设置、显示功能,速度控制误差在1%以内,具有与上位机通讯的接口,能通过上位机方便进行参数设置、速度控制等操作。

三、 实验步骤:1、建立电机的数学模型,得出控制统的传递函数;由直流电机得来的三个方程:n k dt di Li R s u E m m ++=)( i k T M m =f L m T dtdw J T T ++= 、 进行拉式变换得:)()()()(s n k s LSI s I R s U E m m ++=)(s I k T M m =f L m T s JS T T +Ω+=)(带入数据在进行z 变换得: 521039.19252.01394.0459.1)(-⨯+-+=z z z z G 2、.基于MATLAB 软件对直流电机进行仿真(1)连续系统阶跃响应程序为:>> num=[1]num =1>> den=[0.0000000542,0.00061,0.0468]den =0.0000 0.0006 0.0468>> G=tf(num,den)Transfer function:1----------------------------------5.42e-008 s^2 + 0.00061 s + 0.0468>> step(G)>> Gz=c2d(G,0.01,'zoh')Transfer function:11.43 z + 0.06868-----------------z^2 - 0.4618 zSampling time: 0.01>> step(Gz)阶跃响应曲线如图1所示:图1 阶跃响应曲线(2)离散系统的单位阶跃响应程序如下:>> num=[52.756.913];>> den=[1 -0.8009 0.0005123];>> sys=[num,den,0.001];>> dstep(num,den,100)离散系统的阶跃响应曲线如图2所示(T=1ms):图2 离散系统的阶跃响应曲线(3)PID参数整定1)设D(z)=错误!未找到引用源。

PLC实验报告电机控制与调速

PLC实验报告电机控制与调速

PLC实验报告电机控制与调速PLC实验报告:电机控制与调速一、实验目的本实验旨在通过使用PLC(可编程逻辑控制器)来实现电机的控制与调速,并掌握PLC在工业自动化领域中的应用。

二、实验器材与软件1. 实验器材:- 电机(选择适合的电机型号)- 电机驱动器(可与PLC通信的型号)- PLC设备(选择适合的型号)2. 实验软件:- PLC编程软件(根据所选PLC型号选择相应的软件)三、实验步骤与内容1. 硬件连接根据所选择的电机、电机驱动器和PLC设备的型号,按照产品手册或者相关说明书进行硬件连接。

确保连接正确、稳固。

2. PLC编程2.1 确认所使用的PLC编程软件已经正确安装并打开。

创建一个新的项目。

2.2 首先,通过PLC软件中的输入/输出配置功能,配置所使用的输入输出点位。

根据电机驱动器的要求,将PLC的输出点位与电机驱动器连接。

将电机驱动器的输出点位与电机连接。

2.3 接下来,编写PLC程序。

根据电机控制与调速的要求,编写相应的逻辑控制程序。

程序中应包括控制电机启动、停止、正转、反转的逻辑,并且可以通过改变设定值来实现电机的调速功能。

2.4 在编写完成后,通过软件的仿真功能进行仿真测试,确保程序的正确性。

3. 实验验证3.1 将已编写好的PLC程序下载至PLC设备中。

3.2 按照电机启动、停止、正转、反转的要求进行实验验证。

记录下所使用的设定值和实际调速效果,并进行比较分析。

3.3 根据实验结果,对PLC程序进行优化调整,并再次进行实验验证。

四、实验结果与分析1. 实验结果记录下各个设定值对应的电机实际转速,形成一张表格。

可以通过表格的对比,分析电机控制与调速的性能。

2. 实验分析通过实验结果的分析可以得出电机控制与调速的性能评估。

对于不满足要求的部分,可以进一步优化PLC程序,改进电机控制系统的性能。

五、实验总结与心得体会通过本实验,我深刻理解了PLC在电机控制与调速中的重要性。

通过合理的硬件连接和PLC程序的编写,我们能够实现对电机的精确控制和调速。

典型电机控制实验报告

典型电机控制实验报告

一、实验目的1. 理解电机控制的基本原理和方法;2. 掌握电机控制电路的设计与搭建;3. 学习使用电机控制实验设备,进行实验操作;4. 分析实验数据,验证电机控制系统的性能。

二、实验原理电机控制实验主要涉及三相异步电动机的控制。

本实验采用接触器联锁正反转控制线路,通过改变电源相序来改变电动机的旋转方向。

实验过程中,将研究以下内容:1. 电机正反转控制原理;2. 接触器联锁正反转控制线路的设计;3. 电机控制电路的搭建与调试。

三、实验设备与器材1. 三相异步电动机(M3~)一台;2. 万能表一台;3. 联动空气开关(QS1)一台;4. 单向空气开关(QS2)一台;5. 交流接触器(KM1,KM2)两台;6. 组合按钮(SB1,SB2,SB3)三台;7. 端子排7副;8. 导线若干;9. 螺丝刀一把。

四、实验步骤1. 搭建电机控制电路(1)根据实验原理图,将电路元件按照要求连接好;(2)检查电路连接是否正确,确保无误。

2. 调试电路(1)合上QS1和QS2,接通电源;(2)分别按下SB1和SB2,观察电动机的正反转情况;(3)检查电路工作是否正常,若出现异常,检查电路连接是否存在问题。

3. 数据采集与分析(1)记录电动机在不同转速下的电压、电流、功率等参数;(2)分析实验数据,验证电机控制系统的性能。

五、实验结果与分析1. 电动机正反转控制实验通过实验验证,当按下SB1时,电动机正转;当按下SB2时,电动机反转。

实验结果表明,电机控制电路能够实现电动机的正反转控制。

2. 电动机转速控制实验通过调整电源电压,观察电动机转速的变化。

实验结果表明,电动机转速与电源电压成正比关系。

3. 电机控制性能分析(1)电机启动性能:在实验过程中,电动机能够迅速启动,启动时间较短;(2)电机运行稳定性:电动机在运行过程中,转速较为稳定,无明显波动;(3)电机控制精度:通过调整电源电压,能够实现对电动机转速的精确控制。

六、实验总结本次实验成功实现了电动机的正反转控制和转速控制。

最新实验三、电机控制实验报告

最新实验三、电机控制实验报告

最新实验三、电机控制实验报告实验目的:1. 理解并掌握电机控制系统的基本原理。

2. 学习电机启动、停止、正反转控制的方法。

3. 熟悉电机保护环节的设置和作用。

4. 掌握电机速度控制和位置控制的实验技能。

实验设备:1. 直流电机或交流电机。

2. 电机驱动器。

3. 控制电路板。

4. 电源。

5. 测量仪器(如电压表、电流表、转速表等)。

6. 连接导线和必要的保护元件。

实验原理:电机控制系统通常由控制单元、驱动单元和执行单元组成。

控制单元负责发出控制指令,驱动单元将控制信号转换为电机所需的电信号,执行单元即电机本身,根据电信号进行相应的动作。

本实验中,我们将通过改变控制信号来实现对电机的基本控制。

实验步骤:1. 准备工作:检查所有设备是否完好,确保电源电压符合要求。

2. 连接电路:按照实验指导书的电路图连接电机控制电路。

3. 启动电机:打开电源,逐步增加电机的供电电压,观察电机启动情况。

4. 正反转控制:切换控制信号,使电机实现正反转,并记录转速。

5. 速度控制:调整控制参数,改变电机转速,并记录不同速度下的电机表现。

6. 位置控制:设置电机转动角度,实现位置控制,并检查控制精度。

7. 保护环节测试:模拟电机过载、堵转等异常情况,验证保护环节的有效性。

8. 数据记录与分析:记录实验数据,分析电机控制效果,总结实验中的问题和改进措施。

实验结果:1. 电机启动和停止过程平稳,无异常噪声。

2. 正反转控制响应迅速,电机转动方向准确。

3. 速度控制实验中,电机转速能够在设定范围内精确调节。

4. 位置控制实验显示电机转动角度准确,误差在允许范围内。

5. 保护环节在模拟异常情况下能够及时动作,保护电机不受损害。

实验结论:通过本次实验,我们成功实现了对电机的基本控制操作,包括启动、停止、正反转、速度控制和位置控制。

实验结果表明,所设计的电机控制系统性能稳定,控制效果良好,满足实验要求。

同时,电机的保护环节能够有效地在异常情况下保护电机,确保系统的安全运行。

变频调速实验报告

变频调速实验报告

变频调速实验报告变频调速实验报告引言:变频调速作为一种先进的电机控制技术,已经在工业生产中得到广泛应用。

本实验旨在通过对变频调速系统的搭建和实际测试,深入了解其原理和性能,并对其在实际应用中的优势和限制进行分析。

一、实验目的本实验旨在通过搭建变频调速系统,实现对电机转速的精确控制,并对其调速性能进行测试和分析,以便更好地了解变频调速技术的优势和应用范围。

二、实验原理变频调速技术是通过改变电机供电频率来实现对电机转速的调节。

其基本原理是通过变频器将交流电转换为直流电,再通过逆变器将直流电转换为可调频率的交流电,从而控制电机的转速。

三、实验装置本实验所使用的装置包括电机、变频器、逆变器、控制器和测速仪等。

其中,电机作为被控对象,变频器用于将电源频率转换为可调频率的交流电,逆变器则用于将直流电转换为交流电,控制器则用于对变频器和逆变器进行控制,测速仪用于测量电机的转速。

四、实验步骤1. 搭建实验电路:将电机与变频器、逆变器、控制器和测速仪连接起来,确保电路连接正确无误。

2. 设置控制参数:根据实验要求,设置控制器的参数,包括电机额定转速、变频器输出频率等。

3. 运行实验:通过控制器对变频器和逆变器进行控制,调节电机的转速,并通过测速仪实时测量电机的转速。

4. 记录数据:在不同频率下,记录电机的转速和实际输出频率,并进行数据分析和对比。

5. 性能评估:根据实验数据,评估变频调速系统的性能,包括调速精度、响应时间等指标。

五、实验结果与分析通过实验数据的记录和分析,我们可以得出以下结论:1. 变频调速系统可以实现对电机转速的精确控制,调速精度高。

2. 变频调速系统响应时间快,能够在较短时间内实现对电机转速的调节。

3. 变频调速系统在不同频率下,电机的转速变化平稳,无明显抖动现象。

4. 变频调速系统的效率较高,能够有效降低能耗和噪音。

六、实验总结通过本次实验,我们深入了解了变频调速技术的原理和性能,并通过实际测试验证了其优势和应用范围。

电机控制实验报告分析(3篇)

电机控制实验报告分析(3篇)

第1篇一、实验背景电机控制技术在现代工业和日常生活中扮演着重要角色,其性能直接影响着设备的运行效率和稳定性。

为了更好地理解和掌握电机控制技术,我们进行了一系列电机控制实验。

本报告将对实验过程、结果及分析进行详细阐述。

二、实验目的1. 熟悉电机控制系统的基本组成和原理;2. 掌握电机控制实验的操作步骤和注意事项;3. 分析实验数据,验证电机控制理论;4. 提高实际操作能力和故障排除能力。

三、实验内容1. 电机控制实验平台搭建实验平台主要包括电机、控制器、传感器、电源等设备。

实验过程中,我们需要根据实验要求,正确连接各设备,确保实验顺利进行。

2. 电机调速实验通过调整PWM信号的占空比,实现对电机转速的调节。

实验中,我们测试了不同占空比下电机的转速,并记录实验数据。

3. 电机转向控制实验通过改变PWM信号的极性,实现对电机转向的控制。

实验中,我们测试了不同极性下电机的转向,并记录实验数据。

4. 电机制动实验通过调整PWM信号的占空比和极性,实现对电机制动的控制。

实验中,我们测试了不同制动条件下电机的制动效果,并记录实验数据。

四、实验结果与分析1. 电机调速实验结果分析实验结果显示,随着PWM占空比的增大,电机转速逐渐提高。

当占空比为100%时,电机达到最大转速。

实验数据与理论分析基本一致。

2. 电机转向控制实验结果分析实验结果显示,通过改变PWM信号的极性,可以实现对电机转向的控制。

当PWM信号极性为正时,电机正转;当PWM信号极性为负时,电机反转。

实验数据与理论分析相符。

3. 电机制动实验结果分析实验结果显示,通过调整PWM信号的占空比和极性,可以实现对电机制动的控制。

当PWM信号占空比为0时,电机完全制动;当占空比逐渐增大时,电机制动效果逐渐减弱。

实验数据与理论分析基本一致。

五、实验结论1. 电机控制实验平台搭建成功,能够满足实验要求;2. 电机调速、转向和制动实验均取得了良好的效果,验证了电机控制理论;3. 通过实验,提高了实际操作能力和故障排除能力。

(最新版)直流电动机转速自动控制系统实验报告

(最新版)直流电动机转速自动控制系统实验报告

设计报告正文第一章直流电动机转速自动控制系统的组成原理1.1 广义对象的组成原理1.1.1 被控对象直流电动机工作原理和被控制量1、被控对象:电动机被控量:电动机的转速2、直流电动机的原理:基于电磁感应定律,即:运动导体切割磁力线,在导体中产生切割电势;或者说匝线链线圈的磁通发生变化,在线全中产生感应电势。

N极下到导体中的电流流出纸面,用表示。

S极下到导体中的电流流出纸面,用表示载流导体在磁场中受到电磁力的作用。

如果导体在磁场中的长度为L,其中流过的电流为i,导体所在的磁通密度为B,那么导体受到的磁力的值为F=BLI 式中,F的单位为牛顿(N);B的单位为韦伯米2(Wbm2);L的单位为米(m);I的单位为安(A);力F 的方向用左手定则来确定。

1.1.2 功率放大器的组成原理功放的作用是通过对控制信号的功率放大以产生足够的功率来驱动执行机构。

功率放大器的工作原理就是利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率将电源转换为按照输入信号变化的电流。

因为声音是不同振幅和不同频率的波,即流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数。

应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原来的β倍的大信号,这种现象成了功率放大。

而场效应管则是栅极变化一毫伏,原极电流变化一安,就成称跨导为1,功率放大器就是利用这些作用来实现小信号来控制大信号,从而使多级放大器实现了大功率输出,并非真的将功率放大了。

1.1.3 测速元件工作原理因此电刷两端的感应电势与电机的转速成正比,即电势值能表征转速的大小,因此直流测速发电机可以把转速信号转换成电视信号,从而用来测速。

测速装置由电机,光栅盘,等组成。

1.2广义对象数学模型的建立1.2.1广义对象时间响应特性的测试1.2.1.1测试实验原理图G(s)= G(s)=Φ(s)= (可以消除干扰)1.2.1.2测试过程与方法时域法:通过测量对应特定输入信号的系统输出响应,来确定系统的传递函数。

电机系统实验报告

电机系统实验报告

一、实验目的1. 理解电机的基本工作原理和特性;2. 掌握电机实验的基本方法和步骤;3. 学习电机系统参数的测量和计算方法;4. 分析电机在不同工况下的性能表现。

二、实验原理电机系统实验主要研究电机的基本工作原理、特性以及在不同工况下的性能表现。

实验原理如下:1. 电机的基本工作原理:电机是一种将电能转换为机械能的装置,根据能量转换的方式不同,可分为直流电机、交流电机和感应电机等。

实验中主要研究直流电机和交流电机的特性。

2. 电机特性:电机特性是指电机在不同工况下的性能表现,包括空载特性、负载特性和调速特性等。

3. 电机参数测量:实验中需要测量电机的电流、电压、转速、功率等参数,以分析电机的性能。

三、实验设备1. 直流电机实验装置:包括直流电机、电源、电流表、电压表、转速表、示波器等;2. 交流电机实验装置:包括交流电机、电源、电流表、电压表、转速表、示波器等;3. 实验平台:计算机、数据采集卡、LabVIEW软件等。

四、实验内容1. 直流电机实验(1)空载实验:测量电机的空载电流、空载电压、空载转速等参数,绘制空载特性曲线。

(2)负载实验:测量电机的负载电流、负载电压、负载转速、输出功率等参数,绘制负载特性曲线。

(3)调速实验:调节电机的输入电压,测量不同转速下的电流、电压、转速、输出功率等参数,绘制调速特性曲线。

2. 交流电机实验(1)空载实验:测量电机的空载电流、空载电压、空载转速等参数,绘制空载特性曲线。

(2)负载实验:测量电机的负载电流、负载电压、负载转速、输出功率等参数,绘制负载特性曲线。

(3)调速实验:调节电机的输入频率,测量不同转速下的电流、电压、转速、输出功率等参数,绘制调速特性曲线。

五、实验步骤1. 准备实验装置,检查设备是否正常。

2. 根据实验要求,设置实验参数。

3. 进行空载实验,记录数据。

4. 进行负载实验,记录数据。

5. 进行调速实验,记录数据。

6. 对实验数据进行处理和分析。

电机 电控技术实验报告

电机 电控技术实验报告

电机电控技术实验报告实验目的本实验旨在探究电机电控技术在工业自动化中的应用,并通过实践操作加深对电机控制原理的理解,以及掌握电机控制系统的设计与调试方法。

实验原理电机是将电能转化为机械能的装置,广泛应用于工业生产中。

电机的运行受到电压、电流、转速等参数的控制,而电机的控制需要通过电控系统来实现。

电机控制系统一般由电源、电机、传感器、控制器等组成。

电源为电机供电,传感器用于感知电机的工作状态,控制器根据传感器反馈信号对电机进行控制。

常见的电机控制方法有直流电机的PWM调速、交流电机的变频调速、步进电机的脉冲控制等。

实验器材1. 直流电机2. 电机驱动器3. 控制器4. 电源5. 软件平台实验步骤1. 搭建电机控制系统,将电源、电机、驱动器和控制器连接。

2. 编写控制程序,实现电机的基本控制功能,如启动、停止、正转、反转等。

3. 根据实际需求设计电机的调速控制方法,比如使用PWM调速。

4. 连接传感器,并根据传感器的反馈信号对电机运行状态进行检测和控制。

5. 对电机进行调试和性能测试,观察电机在不同控制条件下的运行情况。

实验结果经过实验,我们成功搭建了电机电控系统,并编写了相应的控制程序。

通过对电机的控制程序的调整,我们实现了电机的启动、停止、正转和反转等基本功能,同时还成功实现了电机的调速控制。

在调试过程中,我们发现电机的转速可以根据PWM的占空比进行调节,占空比越大,电机转速越快。

同时,通过传感器的反馈信号,我们可以实时监测电机的运行状态,并根据需要进行调整。

实验结果验证了电机电控技术的可行性和有效性,具有一定的应用前景。

实验总结本次电机电控技术实验使我们更加深入了解了电机控制系统的原理和实际应用。

通过实践操作,我们掌握了电机的基本控制方法和调试技巧,提高了我们的实际操作能力和工程实践能力。

同时,在实际操作中也遇到了一些问题,如传感器的精度不够高、电机控制程序的调试困难等。

这提醒我们在实际应用中要更加注意传感器的选型和控制算法的优化,以提高系统的稳定性和可靠性。

电机控制实验报告

电机控制实验报告

电机控制实验报告电机控制实验报告引言电机控制是现代工业中不可或缺的一项技术。

通过对电机的控制,我们能够实现对机械系统的精确控制,提高生产效率和产品质量。

本实验旨在通过对电机控制的学习和实践,探索电机控制的原理和方法。

一、实验目的本实验的目的是研究电机的速度和位置控制方法,掌握闭环控制的基本原理和实现方式。

通过实验,我们将学习到如何设计和调节控制系统的参数,以实现对电机的稳定控制。

二、实验装置和原理我们使用的实验装置是一台直流电机,该电机通过电源供电,并通过电机驱动器控制电机的转速和方向。

电机驱动器是一个闭环控制系统,它接收来自速度传感器和位置传感器的反馈信号,并根据设定值和反馈信号之间的差异来调节电机的输出。

三、实验步骤1. 设定电机的转速和位置设定值。

2. 将电机驱动器的参数调整到合适的范围,以确保控制系统的稳定性。

3. 启动电机,并观察电机的运行情况。

4. 根据实际情况,调整控制系统的参数,使电机的运行更加稳定。

5. 记录实验数据,并进行分析和总结。

四、实验结果分析通过实验,我们得到了电机的转速和位置的实际值,并与设定值进行了比较。

根据实验数据,我们可以分析控制系统的性能和稳定性。

在实验过程中,我们发现控制系统的参数对电机的运行有重要影响。

如果控制系统的参数设置不当,可能会导致电机无法达到设定值,甚至出现振荡或失控的情况。

因此,调节控制系统的参数是实现稳定控制的关键。

另外,我们还观察到电机的负载对控制系统的影响。

当电机承受较大负载时,控制系统需要更快地响应,以保持电机的稳定运行。

因此,在实际应用中,我们需要根据电机的负载情况来调整控制系统的参数,以实现最佳的控制效果。

五、实验总结通过本次实验,我们深入了解了电机控制的原理和方法。

我们学习到了闭环控制的基本概念和实现方式,并通过实验验证了控制系统的性能和稳定性。

同时,我们还掌握了调节控制系统参数的方法,以实现对电机的精确控制。

电机控制技术在现代工业中具有广泛的应用前景。

电机控制的实验报告

电机控制的实验报告

电机控制的实验报告电机控制的实验报告引言电机是现代工业中广泛应用的一种设备,它能将电能转化为机械能,实现各种运动控制。

电机控制的研究和应用已经成为电气工程领域的重要课题。

本实验通过对电机控制的研究,旨在探索电机的特性和控制方法,为实际应用提供参考。

一、实验目的本实验的主要目的是研究电机的特性和控制方法,具体包括以下几个方面:1. 理解电机的基本原理和工作原理;2. 掌握电机的特性参数测量方法;3. 学习电机控制的基本方法和技术。

二、实验装置和方法1. 实验装置本实验采用直流电机作为被控对象,通过电机控制器对电机进行控制。

实验装置包括直流电源、电机、电机控制器和测量仪器等。

2. 实验方法首先,连接实验装置,将电机与电机控制器相连,通过电源为电机供电。

然后,使用测量仪器对电机的特性参数进行测量,如转速、转矩等。

最后,通过调节电机控制器的参数,实现对电机的控制,并记录相关数据。

三、实验结果与分析1. 电机特性参数测量结果通过实验测量,得到了电机的转速、转矩等特性参数。

根据实验数据,可以绘制出电机的特性曲线,进一步分析电机的工作特性和性能。

2. 电机控制方法与效果通过调节电机控制器的参数,我们可以实现对电机的速度、转矩等进行控制。

在实验中,我们尝试了不同的控制方法,如PID控制、模糊控制等。

通过对比实验结果,可以评估不同控制方法的优劣,并选择合适的方法进行应用。

四、实验总结与展望通过本次实验,我们对电机的特性和控制方法有了更深入的了解。

实验结果表明,电机的特性参数对于控制效果具有重要影响,合理选择控制方法可以提高电机的性能和效率。

然而,本实验只涉及了电机控制的基本方法和技术,还有许多高级控制方法有待进一步研究和应用。

未来,我们可以进一步探索电机控制的新方法和新技术,如神经网络控制、自适应控制等。

同时,结合实际应用需求,将电机控制技术应用于工业生产中,提高生产效率和质量。

结语通过本次实验,我们对电机控制的基本原理和方法有了更深入的了解。

电机控制的实验报告

电机控制的实验报告

一、实验目的1. 理解电机控制的基本原理和方法。

2. 掌握电机正反转、调速和定位控制的方法。

3. 熟悉电机控制电路的设计和调试。

4. 培养动手能力和分析问题的能力。

二、实验原理电机控制是指通过控制电机的输入信号,实现对电机运动状态的控制。

常见的电机控制方法有:1. 正反转控制:通过改变电机电源的相序,实现电机的正反转。

2. 调速控制:通过改变电机电源的电压或频率,实现电机的调速。

3. 定位控制:通过控制电机转动一定角度或到达特定位置,实现电机的定位。

三、实验设备1. 电机一台2. 电机控制器一台3. 电源一台4. 电压表一台5. 频率表一台6. 接线板一套四、实验步骤1. 正反转控制:a. 按照电路图连接好电机控制器和电机。

b. 打开电源,调节电机控制器输出电压,观察电机转动方向。

c. 改变电机控制器输出相序,观察电机转动方向是否改变。

2. 调速控制:a. 按照电路图连接好电机控制器和电机。

b. 打开电源,调节电机控制器输出电压,观察电机转速变化。

c. 改变电机控制器输出频率,观察电机转速变化。

3. 定位控制:a. 按照电路图连接好电机控制器和电机。

b. 打开电源,设置电机控制器目标位置。

c. 观察电机是否能够到达目标位置。

五、实验结果与分析1. 正反转控制:实验结果表明,通过改变电机控制器输出相序,可以实现电机的正反转。

2. 调速控制:实验结果表明,通过改变电机控制器输出电压或频率,可以实现电机的调速。

3. 定位控制:实验结果表明,通过设置电机控制器目标位置,可以实现电机的定位。

六、实验总结本次实验通过对电机控制原理的学习和实践,掌握了电机正反转、调速和定位控制的方法。

在实验过程中,学会了如何设计电机控制电路,并能够对实验结果进行分析。

同时,提高了自己的动手能力和分析问题的能力。

七、注意事项1. 在实验过程中,要注意安全,避免触电和短路等事故。

2. 调节电机控制器输出电压和频率时,要缓慢进行,避免对电机造成损害。

(完整word版)直流电机转速控制系统报告分解

(完整word版)直流电机转速控制系统报告分解

微机系统与应用课程设计实验报告直流电机转速测量与控制系统设计与实现评语:成绩教师:年月日班级:学号:姓名:实验地点:实验时间:直流电机转速测量与控制系统设计与实现一、应用系统设计方案设计目的:了解以微机为核心的闭环控制系统的组成原理。

掌握电机转速闭环控制系统的构成方法。

了解霍尔器件的工作原理:电机转速的测量与控制的基本原理。

掌握PWM调速原理和应用方法。

掌握控制系统的设计与调试方法,提高分析问题和解决问题能力。

二、课程设计的内容:设计一个对直流电机转速测量与转速控制的闭环控制系统。

微机控制中心在监控界面上设置电机转速。

电机转速测量利用霍尔传感器电路产生转速脉冲,定时/计数电路通过脉冲计数获得转速参量。

电机转速调整采用PWM(脉宽调节)方法,控制中心采样到电机转速参量,算得转速值同预定转速设置值进行比较,若不相同,则调整控制转速脉冲的占空比,来达到调速的目的。

(占空比=脉冲宽度/脉冲周期)三、系统功能要求与设计要求:1)系统监控界面设计:监控系统具有转速参数设置窗口、采样的电机转速数据显示窗口、转速动态曲线显示窗口及强行干预系统运行的按钮功能或相应功能选择菜单。

2)监控程序设计要求:监控程序用查询方式获取转速数据。

监控程序用中断方式获取转速数据。

3)硬件设计要求:充分利用现有实验系统资源设计一个性能较好的直流电机转速闭环控制系统。

利用带锁存的I/O接口电路(如8255,74LS273,D/A-DA0832)输出控制电机转速的脉冲。

采样转速用霍尔传感器件提供电机转速脉冲。

利用定时/计数电路对电机转速脉冲计数。

微机可从定时/计数电路中获得电机转速数值,并产生控制电机转速的PWM 脉冲。

四、设计详情:1)闭环控制系统原理图图一电机转速测量与控制闭环系统基本功能图2)电机控制及转速测量原理图图二电机控制及转速测量原理图3)硬件连线图图三硬件连线图4)操作步骤直流电机在控制脉冲作用下转动,电机转盘上的永久磁铁随之旋转,霍尔传感器件3101T受磁场的影响,从端口OUT输出脉冲信号,电机旋转一圈,霍尔传感器输出一个脉冲,脉冲频率于电机转速成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
386 1638 1610 28 0 1638
387 1638 1612 26 0 1638
388 1638 1612 26 0 1638
389 1638 1618 20 0 1638
390 1638 1618 20 0 1638
391 1638 1630 8 0 1638
392 1638 1626 12 0 1638
n= 400
Amplitude= 1638
IAE= 271.560
nr y e c u
0 1638 4 1634 0 3272
1 1638 14 1624 0 3262
2 1638 10 1628 0 3266
3 1638 6 1632 0 3270
4 1638 6 1632 0 3270
……
385 1638 1594 44 0 1638
/* calculatethe control output u */
u[i]=r[i];
ida=u[i];
DA(1,ida);
/* show the time */
itoa(i,string,10);
gotoxy(20,20);
cputs(string);
}
voidparameter(void)
{
/* calculatethe control output u */
u[i]=r[i];
ida=u[i];
DA(1,ida);
/* show the time */
itoa(i,string,10);
gotoxy(20,20);
cputs(string);
}
voidparameter(void)
{
getch();
delay(100);
closegraph();
return;
}”
原程序结果:
2.调试之后的程序:
“voidcontrol1(void)
{
floatg_e,g_c,ep;
floattempp;
intm,j,k;
yy[i]=AD(11);
y[i]=(yy[i]-2047)*2;
e[i]=r[i]-y[i];
实验中遇到的问题:
实验中遇到电机在预先写好的程序下可以运行但未能采集到输入信号的情况,在程序确定没有问题的前提下开始对硬件进行检查。先确定端子板与采集卡正确链接后,进入Test程序,对输出量用万用表进行测量,确定输出同道没有问题。再将输入同道连上函数信号发生器,依旧没有输入信号,而连上直流稳压电源时输入信号可以进入计算机。用示波器仔细排查后发现原因是函数信号发生器的输出接线接触不良,而端子板的信号输入同道并没有问题。再用示波器观察从电机送出的信号,发现信号整形前波形正常,而整形后的波形特别杂乱,推测是整形芯片出了问题。更换芯片后问题得到了解决。
DA(1,0);
delay(5000);
clrscr();
parameter();
for(i=0;i<n;i++)
{
if(i<=10)
{
control1();
delay(sample_time);
sample_time=5000;
}
else
{ control2();
delay(sample_time);
在运行初始程序时,纹波很多,波形显得杂乱,于是接入一个电容滤波,为了尽量减少误差,将电容直接接到变频器上,避免接入导线引起的纹波扰乱,同时将变频器盖子盖上,以减少干扰。
实验体会:
理论和实践之间总是有很多不同,把理论灵活运用到实践中不是想象的那么容易。实验中遇到各种各样的问题是很正常的,关键是要掌握解决问题的方法,科学地查处实验中的问题所在。
当电机转速超过额定值时报警电路发出警报。
信号测量调理电路:
实验主要仪器设备:
工控机
变频器
电动机
示波器
函数信号发生器
数字万用表
变频器的使用:
NO.
功能说明
设定值
备注
P00
频率来源设定
d 01
主频率信号由类比信号DC 0~+10V控制
P01
运转指令来源设定
d01
运转指令由外部端子控制,键盘STOP有效
P02
sample_time=5000;
}//程序分两段进行,前期加速。
}
DA(1,0);
create_datafile();
graph_r(r,r,y,e,c,u);
getch();
delay(100);
closegraph();
return;
}”
调整之后的结果:
DATA:
Sample_time= 5000
DA(1,0);
delay(1000);
clrscr();
parameter();
sample_time=10;
for(i=0;i<n;i++)
{
control();
delay(sample_time);
}
DA(1,0);
create_datafile();
graph_r(r,r,y,e,c,u);
3、实验结果
如图所示,当电机转动从静止到达程序设定频率时,即采用设定的V/F曲线达到所需频率。
程序设计:
1.原程序
“voidcontrol(void)
{
floatg_e,g_c,ep;
floattempp;
intm,j,k;
yy[i]=AD(11);
y[i]=(yy[i]-2047)*2;
e[i]=y[i]-r[i];
iae+=fabs(e[i])*10/4095;;//换算成电压的积分
/* calculatethe control output u */
u[i]=0.5*e[i]+1.5*r[i];//加速提速
ida=u[i];
DA(1,ida);
/* show the time */
itoa(i,string,10);
实验目的:
•了解VFD007M23A变频器的工作原理,会使用变频器改变电机的转速。
•编写程序对电机的转速实现控制。
实验原理:
变频器原理:变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。一般由整流、中间直流环节、逆变和控制4个部分组成。
电动机的PID控制原理:本实验是一个闭环控制系统,对象是变频器-电动机,系统引入了比较环节和偏差,转速测量系统把被控量转速n的信息以信号y的形式送到比较环节,在比较环节中的到被控量y与设定值r的差,称为偏差e,e=r-y。控制器根据偏差e生成控制信号u。
控制系统的品质有快速性、准确性和稳定性三个方面。快速性是希望被测量迅速达到设定或粉碎设定值变化;稳定性是指被控量不发生大幅度、长时间的振荡,即使有小幅震荡也应尽快衰减至零;如果系统被控量与设定值之间的偏差较小。就说系统的准确性好。为了便于比较不同控制策略下系统的品质,常采用综合性能指标表示控制系统的品质。绝对偏差积分(Integral of Absolute,IAE)是常用的综合指标之一。
电机转速控制系统方案设计
设计概述:
本实验要求对电机转速控制系统提出设计,系统分为控制部分(由工控机组成),数据通道,控制对象(由变频器,电动机组成),测量电路与报警电路。电机的启动,加速,减速,停止可以由两种方式控制,一种是通过变频器的面板参照说明书进行设置,使电机按照设定好的曲线运转;一种是在工控机上编写程序,使电机按照程序运转,并在屏幕上绘制出实际转速与预期转速的关系图像。系统还加入了报警电路,当电机转速超过额定值时,系统能够自动发出警报。
gotoxy(20,20);
cputs(string);
}
voidcontrol2(void)
{
floatg_e,g_c,ep;
floattempp;
intm,j,k;
yy[i]=AD(11);
y[i]=(yy[i]-2047)*2;
e[i]=r[i]-y[i];
iae+=fabs(e[i])*10/4095;//换算成电压的积分
IAE=
IAE包含了系统从t=0时刻起的全部偏差绝对值的积累。快速性、稳定性、准确性中任何一项性能不好,都会使IAE增大。IAE越小,控制系统的品质越好。系统设计和调试中,往往要选择控制策略或选取参数使指定的综合性能指标达到最有或者满意。
实验中的控制系统组成框图:
信号调理电路及报警电路设计:
信号调理电路及报警电路设计框图:
DA(1,0);
iae=0.;
n=400;
i=0;
iad=0;
e[0]=0;
amplitude=3; /*0---5v*/
amplitude=amplitude*4095/5.0;
for(i=0; i<n+1; i++)
r[i]= amplitude;
}
main()
{
intk,m,kkp;
FILE *fpp;
马达停止方式设定
d 00
马达一减速刹车方式停止
P03
最高操作频率选择
50.0Hz
P04
最大电压频率选择
50.0Hz
P05
最高输出电压选择
220.V
P06
中间频率选择
2.20Hz
P07
中间电压选择
23.0Hz
P08
最低输出频率选择
1.30Hz
P09
相关文档
最新文档