一次函数培优(完美版)
人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案
期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。
一次函数培优练习题(含答案)
稳固练习一、选择题:1.y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为〔〕〔A〕y=8x 〔B〕y=2x+6 〔C〕y=8x+6 〔D〕y=5x+32.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过〔〕〔A〕一象限〔B〕二象限〔C〕三象限〔D〕四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是〔〕〔A〕4 〔B〕6 〔C〕8 〔D〕164.假设甲、乙两弹簧的长度y〔cm〕与所挂物体质量x〔kg〕之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,那么y1与y2的大小关系为〔〕〔A〕y1>y2〔B〕y1=y2〔C〕y1<y2〔D〕不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•那么有一组a,b的取值,使得以下4个图中的一个为正确的选项是〔〕6.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过第〔〕象限.〔A〕一〔B〕二〔C〕三〔D〕四7.一次函数y=kx+2经过点〔1,1〕,那么这个一次函数〔〕〔A〕y随x的增大而增大〔B〕y随x的增大而减小〔C〕图像经过原点〔D〕图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在〔〕〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限9.要得到y=-32x-4的图像,可把直线y=-32x〔〕.〔A〕向左平移4个单位〔B〕向右平移4个单位〔C〕向上平移4个单位〔D〕向下平移4个单位10.假设函数y=〔m-5〕x+〔4m+1〕x2〔m为常数〕中的y与x成正比例,那么m的值为〔〕〔A〕m>-14〔B〕m>5 〔C〕m=-14〔D〕m=511.假设直线y=3x-1与y=x-k的交点在第四象限,那么k的取值范围是〔〕.〔A〕k<13〔B〕13<k<1 〔C〕k>1 〔D〕k>1或k<1312.过点P〔-1,3〕直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作〔〕〔A〕4条〔B〕3条〔C〕2条〔D〕1条13.abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过〔〕〔A〕第一、二象限〔B〕第二、三象限〔C〕第三、四象限〔D〕第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,那么常数a的取值范围是〔〕〔A〕-4<a<0 〔B〕0<a<2〔C〕-4<a<2且a≠0 〔D〕-4<a<215.在直角坐标系中,A〔1,1〕,在x轴上确定点P,使△AOP为等腰三角形,那么符合条件的点P共有〔〕〔A〕1个〔B〕2个〔C〕3个〔D〕4个16.一次函数y=ax+b〔a为整数〕的图象过点〔98,19〕,交x轴于〔p,0〕,交y轴于〔•0,q〕,假设p为质数,q为正整数,那么满足条件的一次函数的个数为〔〕〔A〕0 〔B〕1 〔C〕2 〔D〕无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个18.〔2005年全国初中数学联赛初赛试题〕在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个19.甲、乙二人在如下图的斜坡AB上作往返跑训练.:甲上山的速度是a米/分,下山的速度是b米/分,〔a<b〕;乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t〔分〕,离开点A的路程为S〔米〕,•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t〔分〕与离开点A的路程S〔米〕•之间的函数关系的是〔〕20.假设k、b是一元二次方程x2+px-│q│=0的两个实根〔kb≠0〕,在一次函数y=kx+b 中,y随x的增大而减小,那么一次函数的图像一定经过〔〕〔A〕第1、2、4象限〔B〕第1、2、3象限〔C〕第2、3、4象限〔D〕第1、3、4象限二、填空题1.一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.一次函数y=〔m-2〕x+m-3的图像经过第一,第三,第四象限,那么m的取值范围是________.3.某一次函数的图像经过点〔-1,2〕,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.直线y=-2x+m不经过第三象限,那么m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•那么点P•的坐标为__________.6.过点P〔8,2〕且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年〔b≠a〕,他的退休金比原来的多q元,那么他每年的退休金是〔以a、b、p、•q•〕表示______元.9.假设一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•那么一次函数的解析式为________.10.〔湖州市南浔区2005年初三数学竞赛试〕设直线kx+〔k+1〕y-1=0〔为正整数〕与两坐标所围成的图形的面积为S k 〔k=1,2,3,……,2021〕,那么S 1+S 2+…+S 2021=_______. 11.据有关资料统计,两个城市之间每天的 通话次数T•与这两个城市的人口数m 、n 〔单位:万人〕以及两个城市间的距离d 〔单位:km 〕有T=2kmnd 的关系〔k 为常数〕.•现测得A 、B 、C 三个城市的人口及它们之间的距离如下图,且A 、B 两个城市间每天的 通话次数为t ,那么B 、C 两个城市间每天的 次数为_______次〔用t 表示〕.三、解答题1.一次函数y=ax+b 的图象经过点A 〔2,0〕与B 〔0,4〕.〔1〕求一次函数的解析式,并在直角坐标系内画出这个函数的图象;〔2〕如果〔1〕中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.〔1〕写出y与x之间的函数关系式;〔2〕如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:〔1〕小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;〔不要求写出x的取值范围〕;〔2〕小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,以下图表示他离家的距离y〔千米〕与所用的时间x 〔小时〕之间关系的函数图象.〔1〕根据图象答复:小明到达离家最远的地方需几小时?此时离家多远?〔2〕求小明出发两个半小时离家多远?〔3〕•求小明出发多长时间距家12千米?5.一次函数的图象,交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A〔0,1〕出发,经过x轴上点C反射后经过点B〔3,3〕,求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=232的图象与x轴,y轴,分别交于A、B两点,•点C坐标为〔1,0〕,点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C〔4,0〕作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P〔•0,-1〕,Q〔0,k〕,其中0<k<4,再以Q点为圆心,PQ长为半径作圆,那么当k取何值时,⊙Q•与直线AB相切?11.〔2005年宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.写文章、出幅员书所获得稿费的纳税计算方法是f〔x〕=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f〔x〕表示稿费为x元应缴纳的税额.假设张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购置甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购置甲商品的个数比预定减少10个,总金额多用29元.•又假设甲商品每个只涨价1元,并且购置甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.〔1〕求x、y的关系式;〔2〕假设预计购置甲商品的个数的2倍与预计购置乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付根本费8元和定额损消耗c元(c≤5);假设用水量超过am3时,除了付同上的根本费和损消耗外,超过局部每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.〔1〕设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W〔元〕关于x〔台〕的函数关系式,并求W的最大值和最小值.〔2〕设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W〔元〕,并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为〔1,a+b〕,•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;应选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过〔1,1〕,∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=〔m-5〕x+〔4m+1〕x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①假设a+b+c≠0,那么p=()()()a b b c c aa b c+++++++=2;②假设a+b+c=0,那么p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.〔13,3〕或〔53,-3〕.提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为〔13,3〕或〔53,-3〕.提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P 〔8,2〕代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为〔98,34〕,在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的 通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.〔1〕由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4〔•函数图象略〕.〔2〕∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.〔1〕∵z与x成正比例,∴设z=kx〔k≠0〕为常数,那么y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;〔2〕∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.〔1〕设一次函数为y=kx+b,将表中的数据任取两取,不防取〔37.0,70.0〕和〔42.0,78.0〕代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.〔1〕由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.〔2〕设直线CD的解析式为y=k1x+b1,由C〔2,15〕、D〔3,30〕,代入得:y=15x-15,〔2≤x≤3〕.当x=2.5时,y=22.5〔千米〕答:出发两个半小时,小明离家.〔3〕设过E、F两点的直线解析式为y=k2x+b2,由E〔4,30〕,F〔6,0〕,代入得y=-15x+90,〔4≤x≤6〕过A、B两点的直线解析式为y=k3x,∵B〔1,15〕,∴y=15x.〔0≤x≤1〕,•分别令y=12,得x=265〔小时〕,x=45〔小时〕.答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B〔-2,y B〕,其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B〔-2,-2〕代入正比例函数y=kx,•得k=1.把点A〔-6,0〕、B〔-2,-2〕代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴=.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.2.8.∵点A、B分别是直线y=3x轴和y轴交点,∴A〔-3,0〕,B〔0,∵点C坐标〔1,0〕由勾股定理得,设点D的坐标为〔x,0〕.〔1〕当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为〔52,0〕.设图象过B、D两点的一次函数解析式为y=kx+b,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.〔2〕假设点D在点C左侧那么x<1,可证△ABC∽△ADB,∴AD BDAB CB=22113x+=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D 点坐标为〔-14,0〕,∴图象过B、D〔-14,0〕两点的一次函数解析式为22,综上所述,满足题意的一次函数为222或22.9.直线y=12x-3与x轴交于点A〔6,0〕,与y轴交于点B〔0,-3〕,∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OA OC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为〔0,8〕,设过CD的直线解析式为y=kx+8,将C〔4,0〕代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为〔225,-45〕. 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为〔-3,0〕,〔0,4〕•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′〔如图〕, 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt△BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切.11.〔1〕y=200x+74000,10≤x ≤30〔2〕三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f 〔x 〕=x-x 〔1-20%〕20%〔1-30%〕=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000〔元〕.答:这笔稿费是8000元. 13.〔1〕设预计购置甲、乙商品的单价分别为a 元和b 元,那么原方案是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:〔a+1.5〕〔x-10〕+〔b+1〕y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:〔a+1〕〔x-5〕+〔b+1〕y=1563.5, ③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.〔2〕依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.那么y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2〔9-a〕+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,那么一月份的付款方式应选①式,那么8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.〔1〕由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400〔18-2x〕+800〔10-x〕+700〔10-x〕+500〔2x-10〕=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200〔5≤x≤9,x是整数〕.由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.〔2〕由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800〔10-x〕+300y+700〔10-y〕+•400〔19-x-y〕+500〔x+y-10〕=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩〔x,y为整数〕.W=-200x-300〔x+y〕+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300〔x+y〕+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
一次函数能力测试卷(培优题)
一次函数能力测试卷(培优题)一、选择题(共10小题,每小题3分,共30分)1.一本数学错题笔记本的售价为6元,若小青买x本共付y元,则x和6分别是()A.常量,变量B.变量,常量C.常量,常量D.变量,变量2.函数y的自变量x的取值范围是()A.0x且2x≠D.2x>x≠B.0x≡C.23.下列曲线中不能表示y是x的函数的是()A.B.C.D.4.已知函数y kx b=+的图象如图所示,则函数y bx k=-+的图象大致是()A.B.C.D.5.已知点(1,)=-的图象上,则点A的坐标为()y xA a在一次函数25A.(1,3)B.(1,3)--D.(1,3)--C.(1,3)6.下表是研究弹簧长度与所挂物体质量关系的实验表格:则弹簧不挂物体时的长度为()A.4cm B.6cm C.8cm D.10cm7.下列关于一次函数22=-+的图象的说法中,错误的是()y xA.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当0y<x>时,2D.y的值随着x值的增大而减小8.已知将一次函数21=+,则下y x=-的图象向上平移2个单位长度后得到y kx b列关于一次函数y kx b=+的图象说法正确的是()A.经过第一、二、四象限B.与x轴交于点(1,0)C.与y轴交于点(0,1)D.y随着x的增大而减小9.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B .轿车行驶1.3小时时进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等10.如图,直线22y x =-+与x 轴y 轴分别交于A ,B 两点,射线AP AB ⊥于点A ,若点C 是射线AP 上一动点,点D 是x 轴上的一动点,且以C ,D ,A 为定点的三角形与AOB ∆全等,则OD 的长为( )A .1+ 3 B .3 C 1 D 1-或3二、填空题(共5小题,每小题3分,共15分)11.若函数2y kx k =+-为正比例函数,则k 的值为 .12.请写出一个图象经过(0,2)的一次函数解析式 .13.已知1(1,)A y -,2(2,)B y 是一次函数3y x b =-的图象上的两点,则1y 2y (填“>”、“<”或“=”).14.请选择一个你喜欢的数值m ,使关于x 的一次函数(21)2y m x =-+的y 值随着x 值的增大而增大,m 的值可以是 .15.如图1,在平行四边形ABCD 中,动点P 从点B 出发,沿B C D A →→→运动至点A 停止,设运动的路程为x ,ABP ∆的面积为y ,且y 与x 之间的关系如图2所示,则平行四边形ABCD 的周长为 .三、解答题(共8小题,共75分)16.(8分)已知2y -与x 成正比例,且当2x =-时,4y =-.(1)写出y 与x 之间的函数关系式;(2)当4x =时,求y 的值;(3)求函数图象与x 轴的交点坐标.17.(8分)已知函数(21)3y m x m =++-,(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.18.(8分)已知一次函数y kx b =+,当2x =时y 的值为1,当1x =-时y 的值为5-.(1)在所给的平面直角坐标系中画出一次函数y kx b =+的图象;(2)求k ,b 的值;(3)直接写出函数图象与x 轴,y 轴的交点坐标.19.(9分)在平面直角坐标系中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移2个单位长度得到.(1)求这个一次函数的解析式;(2)若一次函数与x 轴交于点A ,与y 轴交于点B ,求点A ,点B 的坐标;(3)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,请直接写出m的取值范围.20.(9分)为了积极助力脱贫攻坚工作,如期打赢脱贫攻坚战,某驻村干部带领村民种植草莓,在每年成熟期都会吸引很多人到果园去采摘.现有甲、乙两家果园可供采摘,这两家草莓的品质相同,售价均为每千克30元,这两家果园的采摘方案不同.甲果园:每人需购买20元的门票一张,采摘的草莓按6折优惠;乙果园:不需要购买门票,采摘的草莓按售价付款不优惠.设小明和爸爸妈妈三个人采摘的草莓数量为x千克,在甲、乙果园采摘所需总费用分别为y甲、y乙元,其函数图象如图所示.(1)请分别求出y甲、y乙与x之间的函数关系式;(2)请求出图中点A的坐标并说明点A表示的实际意义;(3)请根据函数图象,直接写出小明一家选择哪家果园采摘更合算.21.(9分)小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.①求w与x之间的函数关系式;②请你帮小美设计一种使费用最少的买花方案,并求出最少费用.22.(12分)在如图的平面直角坐标系中,直线n过点(0,2)A ,且与直线l交于点(3,2)B,直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若ABC∆的面积为9,求点C的坐标;(3)若ABC∆是等腰三角形,求直线l的函数表达式.23.(12分)如图,在平面直角坐标系内,(3,4)A-,(3,2)B,点C在x轴上,AD x⊥轴,垂足为D,BE x=,⊥轴,垂足为E,线段AB交y轴于点F.若AC BC ACD CBE∠=∠.(1)求点C的坐标;(2)如果经过点C的直线y kx b=+与线段BF相交,求k的取值范围;(3)若点P是y轴上的一个动点,当||-取得最大值时,求BP的长.PA PC。
(完整版)一次函数培优经典.docx
一次函数培优1、已知一个正比例函数与一个一次函数的图象交于点 A (3,4),且 OA=OB(1)求两个函数的解析式;(2)求△AOB 的面积;4A32101234B2、已知直线 m 经过两点( 1,6)、(-3, -2),它和 x 轴、 y 轴的交点式 B、 A ,直线 n 过点( 2, -2),且与 y 轴交点的纵坐标是 -3,它和 x 轴、 y 轴的交点是 D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形 ABCD 的面积;(3)若直线 AB 与 DC 交于点 E,求△BCE 的面积。
y4ABO D-26xC-3EF3、如图, A 、B 分别是 x 轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线 PA 交 y 轴于点 C( 0,2),直线 PB 交 y 轴于点D,△ AOP 的面积为 6;(1)求△COP 的面积;(2)求点 A 的坐标及 p 的值;(3)若△BOP 与△DOP 的面积相等,求直线 BD 的函数解析式。
yDE P (2,p)CA O FB x4、已知: l 1:y=2x+m; 经过点( -3,-2),它与 x 轴,y 轴分别交于点 B、A ,直线 l 2=kx+b 经过点( 2,-2),且与 y 轴交于点 C(0,-3),它与 x 轴交于点 D(1)求直线 l1,l2的解析式;(2)若直线与 l2交于点 P,求 S ACP:S ACD的值5、如图,已知点 A( 2, 4), B(-2, 2),C( 4, 0),求△ABC 的面积。
16、如图,在平面直角坐标系xOy 中,已知直线l 1:y= x 与直线 l 2: y=-x+6 相交于点 M ,直线 l2与 x 轴相交于点 N.(1)求 M ,N 的坐标.(2)矩形 ABCD 中,已知 AB=1 ,BC=2,边 AB 在 x 轴上,矩形自左向右以每秒 1 个单位长度的速度移动,设矩形ABCD 与△ OMN 的重叠部分的面积为间为 t(从点 B 与点 O 重合时开始计时,到点 A 与点 N 重合时计时开始结束).直接写出ABCD 沿 x 轴S,移动的时S 与自变量 t之间的函数关系式.(3)在( 2)的条件下,当t 为何值时, S 的值最大?并求出最大值.7、已知,如图,在平面直角坐标系内,点 A 的坐标为( 0,24),经过原点的直线 l1与经过点 A 的直线 l2相交于点 B,点 B 坐标为( 18,6).(1)求直线 l1, l2的表达式;(2)点 C 为线段 OB 上一动点(点 C 不与点 O, B 重合),作 CD∥y 轴交直线 l2于点 D,过点 C,D分别向 y 轴作垂线,垂足分别为 F,E,得到矩形 CDEF.①设点 C 的纵坐标为 a,求点 D 的坐标(用含a的代数式表示)②若矩形 CDEF 的面积为 60,请直接写出此时点 C 的坐标.8、如图,在平面直角坐标系中,直角梯形 OABC 的边 OC、OA 分别与 x 轴、y 轴重合,AB ∥ OC,∠AOC=90°,∠BCO=45°,BC=12 2,点 C 的坐标为( -18,0).(1)求点 B 的坐标;(2)若直线 DE 交梯形对角线 BO 于点 D,交 y 轴于点 E,且 OE=4, OD=2BD ,求直线 DE 的解析式;9、已知雅美服装厂现有A 种布料 70 米,B 种布料 52 米, ?现计划用这两种布料生产 M 、N 两种型号的时装共 80 套.已知做一套 M 型号的时装需用 A 种布料 1.1 米,B 种布料 0.4 米,可获利 50 元;做一套 N 型号的时装需用 A 种布料 0.6 米, B 种布料 0.9 米,可获利 45 元.设生产 M 型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为 y 元.①求 y(元)与 x(套)的函数关系式,并求出自变量的取值范围;②当 M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。
八年级数学 一次函数 培优练习卷(含答案)
16、无论 m 取什么实数,点 A(m+1,2m-2)都在直线 l 上,若点 B(a,b)是直线 l 上的动点, 则(2a-b-6)3 的值等于
17、设直线 nx+(n+1)y= S1+S2+…+S2016 的值为__.
(n 为自然数)与两坐标轴围成的三角形面积为 Sn,则
18、如图,在平面直角坐标系中,直线 l:y=
x+4 与 x 轴、y 轴分别交于点 A 和点 B,点 C、D 分别为线段 AB、OB 的中
点,点 P 为直线 OA 上一动点,PC+PD 值最小时点 P 的坐标为( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣
,0)
D.(﹣
,0)
5、P1(x1,y1),P2(x2,y2)是一次函数 y=﹣2x+5 图象上的两点,且 x1<x2,则 y1 与 y2 的大小 关系是( ) A.y1<y2 B.y1=y2 C.y1>y2 D.y1>y2>0 6、如图,一直线与两坐标轴的正半轴分别交于 A,B 两点,P 是线段 AB 上任意一点(不包括端 点),过 P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为 10,则该直线的函数表达式是 ( )
13、已知 m 为整数,且一次函数
的图像不经过第二象限,则 m=
.
14、直线 y=3x﹣m﹣4 经过点 A(m,0),则关于 x 的方程 3x﹣m﹣4=0 的解是 . 15、如图,将含 45°角的直角三角尺放置在平面直角坐标系中,其中 A(﹣2,0),B(0,1),则 直线 BC 的函数表达式为 .
;(2)D 的坐标为(-2,5)或(-5,3).
(3)(3)当 OC 是腰,O 是顶角的顶点时,OP=OC,则 P 的坐标为(5,0)或(-5,0); 当 OC 是腰,C 是顶角的顶点时,CP=CP,则 P 与 O 关于 x=3 对称,则 P 的坐标是(6,0); 当 OC 是底边时,设 P 的坐标为(a,0),则 ,解得
初中数学八年级上册一次函数提升培优(完美排版,可编辑)
过关卡——一次函数题型总结一、知识点背记记住这些公式,让你的效率成倍增加…1.直角坐标系中的基础公式:①A(x1,y1),B(x2,y2)两点的距离公式:|AB|=√(x1−x2)2+(y1−y2)2②A(x1,y1),B(x2,y2)两点的中点坐标为:(x1+x22,y1+y22)2.利用点坐标求直线解析式:①过A(x1,y1),B(x2,y2)的直线斜率:k=y1−y2x1−x2=y2−y1x2−x1②过A(x1,y1),B(x2,y2)的直线b为:b=x1y2−x2y1x1−x2 3.直线解析式与三角形面积:①直线y=kx+b与两坐标轴围成三角形面积:s=b 22|k|②平面内任意三角形面积:s=12×水平宽×铅锤高4.特殊直线与x轴正半轴所成角度关系:5.两条直线的特殊位置关系①直线y=k1x+b1,y=k2x+b2平行:k1=k2②直线y=k1x+b1,y=k2x+b2垂直:k1∙k2=−1二、例题讲解例1.求下列函数解析式:①经过点(1,3)和(0,2);②经过点(3,1)和(2,2);③与直线y=2x+1相交于(1,m),且经过点(3,1);④与直线y=2x+1平行,且经过点(3,1);例2.若直线经过点(1,3)和(0,2),①求该函数与坐标轴的交点坐标;②求该函数与y=−2x−3的交点坐标;③求该函数与坐标轴围成的三角形面积;例3.如图,直线53y kx=+经过点A(-2,m),B(1,3).①求k,m的值;②求△AOB的面积;③求O点到线段AB的距离;④在坐标轴上是否存在一点P,使得sΔBOP=sΔAOB,若存在求出P点坐标。
例4.在平面直角坐标系中,作出直线y =3x +1图象 ,并写出以下平移后的直线关系式:① 向上平移3个单位长度; ② 向下平移4个单位长度; ③ 向左平移2个单位长度; ④ 向右平移3个单位长度;⑤ 先向左平移2个单位长度,在向下平移4个单位长度;例5. 已知y =y 1+y 2,y 1与x 成正比例,y 2与x −2成正比例,且当x=1时,y=0;当x=-3时,y=4:① 求y 与x 的函数关系式;② 求该直线关于x 轴对称的直线解析式; ③ 求该直线关于y 轴对称的直线解析式;例6.如图,正方形ABCD 的边长为4,点E 是AB 的中点,点P 从点E 出发,沿E →A →D →C 移动至终点C ,速度为一个单位长度每秒,设P 的运动时间为t ,∆CPE 的面积为y :① 求出y 关于t 的函数关系;② 画出y 与t 的函数关系图象; ③ 当t 为何值时,∆CPE 的面积为6.ECDABP例7.对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,求该一次函数解析式。
一次函数培优-绝对经典
一次函数培优1、若y 是z 的正比例函数,而z 是x 的一次函数,则y 是x 的( ) A .正比例函数 B.一次函数 C.其他函数 D.构不成函数关系2、已知一次函数b kx y +=,当20≤≤x 时,对应的函数值y 的取值范围是42≤≤-y ,则kb 的值为( )A.12B.6- C .6-或12- D.6或12 3、当=m 时,函数54)3(12-++=+x xm y m (0≠x )是一个一次函数.4、直线x y -=,2+=x y 与x 轴围成的图形的周长是 (结果保留根号). 5、如图,直线834+-=x y 与x 轴、y 轴分别交于B A 、两点,M 是OB 上一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点C 处,则直线AM 的解析式为 .6、在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做一次函数的坐标三角形.例如,图中的一次函数的图象与x 轴、y 轴分别交于点B A 、两点,则OAB ∆为此函数的坐标三角形.(1)求函数343+-=x y 的坐标三角形的三条边长;(2)若函数b x y +-=43(b 为常数)的坐标三角形的周长为16,求此三角形的面积.7、如图,直线l :33+-=x y 与x 轴、y 轴分别交于点B A 、两点,AOB ∆与ACB ∆关于直线l 对称,求过点C B 、的直线的解析式.8、如图,直线6+=kx y 与x 轴、y 轴分别交于点F E 、,已知点E 的坐标为(8-,0),点A 的坐标为(6-,0). (1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出OPA ∆的面积S 关于x 的函数关系式,并写出自变量的取值范围; (3)探究:当点P 运动到什么位置时,OPA ∆的面积为827,并说明理由.9、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km; (2)请解释图中点B 的实际意义; 图象理解A BC D Oy /km900 12 x /h4(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?10、如图,直线OB 是一次函数x y 2=的图象,点A 的坐标为(0,2),在直线OB 上找一点C ,使得ACO ∆为等腰三角形,求点C 的坐标及直线AC 的解析式.11、如图,一次函数33+-=x y 的图象x 轴、y 轴分别交于点B A 、,以线段AB 为直角边在第一象限内作ABC Rt ∆,且使o30=∠ABC . (1)求ABC ∆的面积;(2)若在第二象限内有一点P (m ,23),使得ABP ∆和ABC ∆的面积相等,求m 的值; (3)是否存在使QAB ∆是等腰三角形并且在坐标轴上的点Q ?若存在,请写出所有点Q 的坐标;若不存在,请说明理由.12、如图,已知直线1l :2+-=x y 与直线2l :82+=x y 相交于点F ,1l 、2l 分别交x 轴于点G E 、,长方形ABCD 的顶点D C 、分别在直线1l 、2l 上,顶点B A 、都在x 轴上,且点B 与点G 重合.(1)求点F 的坐标和GEF ∠的度数; (2)求长方形ABCD 的边DC 和BC 的长;(3)若长方形ABCD 从原地出发,沿x 轴正方向以每秒1个单位长度的速度平移,设移动时间t (60≤≤t )秒,矩形ABCD 与GEF ∆的重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.。
一次函数(培优篇)专项练习5 含答案
一次函数(培优篇)专项练习5一、单选题1.函数y =中,自变量x 的取值范围()A .x >﹣4B .x >1C .x≥﹣4D .x≥12.直线y =kx +b 过点(2,2)且与直线y =-3x 相交于点(1,a ),则两直线与x 轴所围成的面积为()A .2B .2.4C .3D .4.83.如图,在R △ABC 中,∠ACB=90°,D 为斜边AB 的中点,动点P 从点B 出发,沿B→C→A 运动,如图(1)所示,设DPB S y =△,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则a 的值为A .3B .4C .5D .64.如图,已知△ABC 的三个顶点A (a ,0)、B (b ,0)、C (0,2a )(b >a >0),作△ABC 关于直线AC 的对称图形△AB 1C ,若点B 1恰好落在y 轴上,则ab的值为()A .13B .49C .12D .385.直线y =kx +b 过点(2,2)且与直线y =-3x 相交于点(1,a ),则两直线与x 轴所围成的面积为()A .2B .2.4C .3D .4.86.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .7.在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是()A .5B .4C .3D .28.已知k=a b c a b c a b cc b a+--+-++==+n 2+9=6n ,则关于自变量x 的一次函数y=kx+m+n 的图象一定经过第()象限.A .一、二B .二、三C .三、四D .一、四9.如图,在直角坐标系中,等腰直角△ABO 的O 点是坐标原点,A 的坐标是(﹣4,0),直角顶点B 在第二象限,等腰直角△BCD 的C 点在y 轴上移动,我们发现直角顶点D 点随之在一条直线上移动,这条直线的解析式是()A .y=﹣2x+1B .y=﹣12x+2C .y=﹣3x ﹣2D .y=﹣x+210.如图,正方形OABC 中,点B(4,4),点E ,F 分别在边BC ,BA 上,OE=EOF=45°,则OF 的解析式为()A .y=43x B .y=13xC .y=3x D .y=5x 二、填空题11.关于x 的一次函数y=kx+b (k≠0),我们称函数y [m]=()()kx b x m kx b x m +≤⎧⎨-->⎩,为它的m 分函数(其中m 为常数).例如,y=﹣x+1的4分函数为:当x≤4时,y [4]=﹣x+1;当x >4时,y [4]=x ﹣1,若y=﹣3x+2的2分函数为y [2]=5时,x=_____.12.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.13.矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置.点A 1,A 2,A 3,A 4…和点C 1,C 2,C 3,C 4…,分别在直线y kx b =+(k >0)和x 轴上,若点B 1(1,2),B 2(3,4),且满足2334n 1122334451n n n A A A A A A A A A A A A A A A A -+==== ,则直线y kx b =+的解析式为________________,点3B 的坐标为_______________,点n B 的坐标为_____________.14.对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为d 1,到y 轴的距离为d 2,若d 1≥d 2,则称d 1为点P 的最大距离;若d 1<d 2,则称d 2为点P 的最大距离.例如:点P (-3,4)到到x 轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4.若点C 在直线y=-x-2上,且点C 的最大距离为5,则点C 的坐标是______.15.新定义:[a ,b]为一次函数y ax b =+(a≠0,,a 、b 为实数)的“关联数”.若“关联数”为[3,m-2]的一次函数是正比例函数,则点(1-m ,1+m)在第_____象限.16.已知直线l 1:y=(k ﹣1)x+k+1和直线l 2:y=kx+k+2,其中k 为不小于2的自然数.(1)当k=2时,直线l 1、l 2与x 轴围成的三角形的面积S 2=______;(2)当k=2、3、4,……,2018时,设直线l 1、l 2与x 轴围成的三角形的面积分别为S 2,S 3,S 4,……,S 2018,则S 2+S 3+S 4+……+S 2018=______.17.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为________.18.已知k 为正整数,无论k 取何值,直线1:1l y kx k =++与直线2:(1)2l y k x k =+++都交于一个固定的点,这个点的坐标是_________;记直线1l 和2l 与x 轴围成的三角形面积为k S ,则1S =_____,123100S S S S ++++ 的值为______.19.如图,直线AB 的解析式为y=43x+4,与y 轴交于点A ,与x 轴交于点B ,点P 为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,则线段EF 的最小值为_____.20.如图,在平面直角坐标系中,直线l :y=3x+1交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴的正半轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 6B 7A 7的周长是______.21.如图,在平面直角坐标系中,点()A 12,0,点()B 0,4,点P 是直线y x 1=--上一点,且ABP 45∠= ,则点P 的坐标为______.22.如图,平面直角坐标系中,已知直线y x =上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转900至线段PD ,过点D 作直线AB ⊥x 轴.垂足为B ,直线AB 与直线y x =交于点A ,且BD=2AD ,连接CD ,直线CD 与直线y x =交于点Q ,则点Q 的坐标为_______.三、解答题23.如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式(2)△AOB 的面积24.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 在x 轴上,AB =AC ,∠BAC =90°,且A (2,0)、B (3,3),BC 交y 轴于M ,(1)求点C 的坐标;(2)连接AM ,求△AMB 的面积;(3)在x 轴上有一动点P ,当PB +PM 的值最小时,求此时P 的坐标.25.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.26.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为278,并说明理由.27.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.x+b 28.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.参考答案1.B【解析】根据二次根式有意义的条件和分式有意义的条件,即x+4≥0,x-1>0,即x >1.故选:B.2.B解:点(2,2)在直线y=-3x 上,∴a=-3,又y=kx+b 过点(2,2),(1,-3)∴22{3k b k b +=+=-,解得5{8k b ==-,所以,直线为y=5x-8,令y=0,则5x-8=0,解得x=85,所以,与x 轴的交点坐标为(805,),∵直线y=-3x 经过坐标原点,两直线与x 轴所围成的面积=1825⨯×3=2.4.故选B .3.A【分析】根据已知条件和图象可以得到BC 、AC 的长度,当x =4时,点P 与点C 重合,此时△DPC 的面积等于△ABC 面积的一半,从而可以求出y 的最大值,即为a 的值.解:根据题意可得,BC =4,AC =7−4=3,当x =4时,点P 与点C 重合,∵∠ACB =90°,点D 为AB 的中点,∴S △BDP =12S △ABC ,∴y =12×12×3×4=3,即a 的值为3,故选:A .【点拨】本题考查动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解决问题.4.D【分析】由B (b ,0)、C (0,2a ),可得,△ABC 关于直线AC 的对称图形△AB 1C ,且点B 1恰好落在y 轴上,即可确定B 1的坐标,进而确定BB 1的中点D 的坐标;△ABC 关于直线AC 的对称图形△AB 1C ,则段BB 1的中点D 在直线AC 上;再由A (a ,0)、C (0,2a )确定直线AC 的解析式,最后将D 点坐标代入求解即可.解:∵B (b ,0)、C (0,2a )∴∵△ABC 关于直线AC 的对称图形△AB 1C ,且点B 1恰好落在y 轴上∴B 1的坐标为(0,∴BB 1的中点D 的坐标为(2b ,22a)∵A (a ,0)、C (0,2a )∴直线AC 的解析式为:y=-2x+2a ∵△ABC 关于直线AC 的对称图形△AB 1C ,∴段BB 1的中点D 在直线AC 上∴22222a ba =-⨯+,即22323240a b ab +-=∴2322430a a b b ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭且a b >0解得:a b =38故答案为D .【点拨】本题考查了轴对称变换、勾股定理、线段的中点坐标、一次函数解析式等在知识点,考查知识点较多,灵活应用相关知识成为解答本题的关键.5.B【解析】解:点(2,2)在直线y=-3x 上,∴a=-3,又y=kx+b 过点(2,2),(1,-3)∴22{3k b k b +=+=-,解得5{8k b ==-,所以,直线为y=5x-8,令y=0,则5x-8=0,解得x=85,所以,与x 轴的交点坐标为(805,),∵直线y=-3x 经过坐标原点,两直线与x 轴所围成的面积=1825⨯×3=2.4.故选B .6.C【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选C.【点拨】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.7.C【分析】设直线l解析式为:y=kx+b,由l与x轴交于点A(-bk,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.【详解】设直线l解析式为:y=kx+b,则l与x轴交于点A(-bk,0),与y轴交于点B(0,b),∴2142AOBk bbS bk+=⎧⎪⎨=⨯-⨯=⎪⎩,∴(2-k)2=8|k|,∴k2-12k+4=0或(k+2)2=0,∴k=-2,∴满足条件的直线有3故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b 与x轴、y轴的交点坐标.8.A【解析】2+9=6n,(n-3)2=0,∴m=5,n=3,m+n=8,k=a b c a b c a b cc b a+--+-++==ck=a+b-c,bk=a-b+c,ak=-a+b+c,k(a+b+c)=a+b-c+a-b+c-a+b+c=a+b+c, a+b+c0≠,k=1,a+b+c=0,k=-2,y=x+8,y=-2x+8所以图象一定过1,2象限.选B.9.D【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b 的值,即可确定出所求直线解析式.解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=2,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+2.故选D.【点拨】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.10.B【解析】分析:作辅助线,构建全等三角形,证明△OCE≌△OAD和△EOF≌△DOF,得EF=FD,设AF=x,在直角△EFB中利用勾股定理列方程求出x=43,根据正方形的边长写出点F的坐标,并求直线OF的解析式.详解:延长BF至D,使AD=CE,连接OD.∵四边形OABC是正方形,∴OC=OA,∠OCB=∠OAD,∴△OCE≌△OAD,∴OE=OD,∠COE=∠AOD.∵∠EOF=45°,∴∠COE+∠FOA=90°﹣45°=45°,∴∠AOD+∠FOA=45°,∴∠EOF=∠FOD.∵OF=OF,∴△EOF≌△DOF,∴EF=FD,由题意得:OC=4,OE CE,∴BE=2,设AF=x,则BF=4﹣x,EF=FD=2+x,∴(2+x)2=22+(4﹣x)2,解得:x=43,∴F(4,43),设OF的解析式为:y=kx,4k=43,k=13,∴OF的解析式为:y=13x.故选B.点睛:本题是利用待定系数法求一次函数的解析式,考查了正方形的性质及全等三角形的性质与判定,作辅助线构建全等三角形是本题的关键,利用全等三角形的对应边相等设一未知数,找等量关系列方程,求出点F 的坐标,才能运用待定系数法求直线OF 的解析式.11.﹣1或73.【解析】分析:根据阅读材料,先由函数的2分函数,代入即可,注意,函数值时5时分两种情况代入.详解:依题意得:﹣3x+2=5或3x ﹣2=5.解得x=﹣1或x=73.故答案是:﹣1或73.点睛:此题是二次函数综合题,主要考查了新定义,函数图象的交点坐标的求法,点到直线的距离,解本题的关键是理解新定义的基础上借助已学知识解决问题.12.1.5或5或9在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.解:如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5.如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4.∵PE ()43=7-PE t t =--,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9.总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点拨】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.13.22y x =+;(7,8);(21, 2n n -).解:试题分析:∵B 1(1,2),B 2(3,4),∴A 1(0,2),A 2(1,4).∵A 1,A 2在直线y kx b =+(k >0)上,∴22{{42b k k b b ==⇒+==.∴直线y kx b =+的解析式为22y x =+.∵A 3的横坐标与B 2的横坐标相同,为3,且A 3在直线22y x =+上,∴A 3(3,8).∵21A B ∥32A B ,11221, 2A B A B ==,∴1211232212A A AB A A A B ==.∵23122334A A A A A A A A =,∴233412A A A A =.∴23323234431, 42A A AB A B A A A B ===,∴438A B =.∴3416C A =.∵A 4在直线22y x =+上,∴16227x x =+⇒=.∴B 3(7,8).同理,可得B 4(15,16),B 5(31,32),…可见:B n (n=1,2,…)的横坐标为1,3,7,15,31,…,21n -;B n (n=1,2,…)的纵坐标为2,4,8,16,32,…,2n .∴B n (21, 2n n -).考点:1.探索规律题(图形的变化类);2.一次函数图象上点的坐标特征;3.矩形的性质.14.(-5,3)或(3,-5)【分析】根据点C 的“最大距离”5,可得点C 的横坐标5x =±或点C 的纵坐标5y =±,代入求出结果即可.解:设点C 的坐标()x y ,∵点C 的“最大距离”为5∴5x =±或5y =±当5x =时,7y =-当5x =-时,3y =当5y =时,7x =-当5y =-时,3x =∴点()53C -,或()35-,故答案为:()53-,或()35-,.【点拨】本题是阅读材料题,考查了一次函数的应用,理解新定义的信息并结合所学知识解决问题是解题关键,将距离转化为点的坐标是重点.15.二.【分析】根据新定义列出一次函数解析式,再根据正比例函数的定义确定m 的值,进而确定坐标、确定象限.解:∵“关联数”为[3,m ﹣2]的一次函数是正比例函数,∴y =3x+m ﹣2是正比例函数,∴m ﹣2=0,解得:m =2,则1﹣m =﹣1,1+m =3,故点(1﹣m ,1+m )在第二象限.故答案为:二.【点拨】本题属于新定义和正比例函数的定义,解答的关键运用新定义和正比例函数的概念确定m 的值.16.120171009【解析】分析:利用一次函数图象上点的坐标特征可求出两直线与x 轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d 的值,利用三角形的面积公式可求出S 2的值;(2)分别代入k=2、3、4、…、2018求出S 2、S 3、S 4、…、S 2018值,将其相加即可得出结论.详解:当y=0时,有(k-1)x+k+1=0,解得:x=-1-21k -,∴直线l 1与x 轴的交点坐标为(-1-21k -,0),同理,可得出:直线l 2与x 轴的交点坐标为(-1-2k ,0),∴两直线与x 轴交点间的距离d=-1-2k-(-1-21k -)=21k --2k .联立直线l 1、l 2成方程组,得:()112y k x k y kx k ⎧-++⎨++⎩==,解得:12x y -⎧⎨-⎩==,∴直线l 1、l 2的交点坐标为(-1,-2).(1)当k=2时,d=21k --2k =1,∴S 2=12×|-2|d=1.故答案为:1.(2)当k=3时,S 3=2223-;当k=4时,S 4=2234-;…;S 2018=2220172018-,∴S 2+S 3+S 4+……+S 2018=2222222212233420172018-+-+-++- ,=2212018-,=2-11009,=20171009.故答案为:20171009.点睛:本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x 轴交点间的距离是解题的关键.17.4.【分析】把点A (2,0)的横坐标分别代入正比例函数y=x 和y=3x ,求得B 、C 点的坐标,进一步求得BC 的长度,利用三角形的面积求得答案即可.解:把2x =分别代入y x =和3y x =中,可得点B 的坐标是()2,2,点C 的坐标是()2,6,所以624BC =-=.因为点()2,0A ,所以2OA =,所以1142422OCB S BC OA =⋅=⨯⨯= .【点拨】此题考查两条直线的交点问题,三角形的面积,利用代入的方法求得B 、C 两点的坐标是解决问题的关键.18.()1,1-1450101【分析】联立直线1l 和2l 成方程组,通过解方程组,即可得到交点坐标;分别表示出直线1l 和2l 与x 轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线1l 和2l 与x 轴围成的三角形面积为k S 的表达式,从而可得到1S 和123100S S S S ++++ ,再依据分数的运算方法即可得解.解:联立直线1:1l y kx k =++与直线2:(1)2l y k x k =+++成方程组,1(1)2y kx k y k x k =++⎧⎨=+++⎩,解得11x y =-⎧⎨=⎩,∴这两条直线都交于一个固定的点,这个点的坐标是()1,1-;∵直线1:1l y kx k =++与x 轴的交点为1,0k k +⎛⎫- ⎪⎝⎭,直线2:(1)2l y k x k =+++与x 轴的交点为2,01k k +⎛⎫- ⎪+⎝⎭,∴12111112211k k k k k k S k ++--+⎛⎫=⨯⨯= ⎪⎝⎭+,∴114S =,12310011111111223341001011111111111223341001112222011110150,1011212S S S S -----+-⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪⎪ ⎪+-+++++++ ⎝⎭⎝-⎭⎝⎭⎝⎭⎛⎫= ⎪⎝⎭⎛⎫= ⎪⎝⎭=+- 故答案为:()1,1-;14;50101【点拨】本题考查了一次函数y kx b =+(k≠0,b 为常数)的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0;也考查了坐标与线段的关系、三角形的面积公式以及分数的特殊运算方法.解题的关键是熟练掌握一次函数y kx b =+(k≠0,b 为常数)的图象与性质,能灵活运用分数的特殊运算方法.19.125【分析】在一次函数y=43x+4中,分别令x=0,y=0,解相应方程,可求得A 、B 两点的坐标,由矩形的性质可知EF=OP ,可知当OP 最小时,则EF 有最小值,由垂线段最短可知当OP ⊥AB 时,满足条件,根据直角三角形面积的不同表示方法可求得OP 的长,即可求得EF 的最小值.解:∵一次函数y=43x+4中,令x=0,则y=4,令y=0,则x=-3,∴A (0,4),B (-3,0),∵PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,∴四边形PEOF 是矩形,且EF=OP ,∵O 为定点,P 在线段上AB 运动,∴当OP ⊥AB 时,OP 取得最小值,此时EF 最小,∵A (0,4),点B 坐标为(-3,0),∴OA=4,O B=3,由勾股定理得:,∵AB·OP=AO·BO=2S △OAB ,∴OP=·431255OA OB AB ⨯==,故答案为:125.【点拨】本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP 的最小值是解题的关键.20.【解析】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴,OB=1,∵tan ∠OAB=OB OA =∴∠OAB=30°,∵△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,∴∠A 1OB 1=∠A 2A 1B 2=∠A 3A 2B 3=60°,∴∠OB 1A=∠AB 2A 1=∠AB 3A 2=30°,∴OB 1=OA=,A 1B 2=AA 1,A 2B 3=AA 2,则OA 1=OB 1A 1B 2=AA 1,∴A 1A 2=A 1B 2=AA 1=2OA 1同理:A 2A 3=A 2B 3=2A 1A 2A3A 4=2A 2A 3A4A 5=2A 3A 4A5A 6=2A 4A 5∴A 6A 7=2A 5A 6∴△A 6B 7A 7的周长是:21.()5,6-【分析】由于题目中给出45ABP ∠= ,则可考虑构造等腰直角三角形进行解决,将AB 顺时针旋转90 得到线段BC ,求出点C 的坐标,连接AC ,则AC 与BP 的交点M 即为线段AC 的中点,可求出M 的坐标,则直线BP 的解析式亦可求的,再将直线1y x =--与直线BP 的解析式联立成方程组,即可求出点P 的坐标.解:如图所示,将线段AB 绕点B 顺时针旋转90 得到线段BC ,则点C 的坐标为()4,8--,由于旋转可知,ABC 为等腰直角三角形,令线段AC 和线段BP 交于点M ,则M 为线段AC 的中点,所以点M 的坐标为()4,4-,又B 为()0,4,设直线BP 为y kx b =+,将点B 和点M 代入可得{4k b 4b 4+=-=,解得k 2=-,b 4=,可得直线BP 为y 2x 4=-+,由于点P 为直线BP 和直线y x 1=--的交点,则由y 2x 4y x 1=-+⎧=--⎨⎩解得{x 5y 6==-,所以点P 的坐标为()5,6-,故答案为()5,6-.【点拨】本题考查函数图象的变换,并根据待定系数法求函数解析式及利用方程组求直线的交点坐标,把握函数的基本知识是解题的关键.22.9944⎛⎫⎪⎝⎭,解:如图,过点P 作EF ∥x 轴,交y 轴与点E ,交AB 于点F ,则易证△CEP ≌△PFD (ASA ),∴EP=DF ,∵P (1,1),∴BF=DF=1,BD=2,∵BD=2AD ,∴BA=3∵点A 在直线y x =上,∴点A 的坐标为(3,3),∴点D 的坐标为(3,2),∴点C 的坐标为(0,3),设直线CD 的解析式为y kx b =+,则3k b 2{b 3+==解得:1k {3b 3=-=∴直线CD 的解析式为1y x 33=-+,联立1y x 3{3y x =-+=可得9x 4{9y 4==∴点Q 的坐标为9944⎛⎫⎪⎝⎭ ,.23.(1)4533y x =+;(2)52【分析】(1)先把A 点和B 点坐标代入y =kx +b 得到关于k 、b 的方程组,解方程组得到k 、b 的值,从而得到一次函数的解析式;(2)令y =0,即可确定D 点坐标,根据三角形面积公式和△AOB 的面积=S △AOD +S △BOD 进行计算即可.解:(1)把A (-2,-1),B (1,3)代入y =kx +b 得213k b k b -+=-⎧⎨+=⎩,解得4k=35b=3⎧⎪⎪⎨⎪⎪⎩,所以一次函数解析式为4533y x =+;(2)把x =0代入4533y x =+得53y =,所以D 点坐标为(0,53),所以△AOB 的面积=S △AOD +S △BOD 1515=2+12323⨯⨯⨯⨯5=2.【点拨】本题考查了待定系数法求一次函数解析式:①先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ;②将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.24.(1)C 的坐标是(﹣1,1);(2)154;(3)点P 的坐标为(1,0).【分析】(1)作CD ⊥x 轴于D ,BE ⊥x 轴于E ,证明CDA ≌AEB △,根据全等三角形的性质得到CD =AE ,AD =BE ,求出点C 的坐标;(2)利用待定系数法求出直线BC 的解析式,得到OM 的长,根据梯形的面积公式、三角形的面积公式计算,得到答案;(3)根据轴对称的最短路径问题作出点P ,求出直线B M '的解析式,根据x 轴上点的坐标特征求出点P 的坐标.解:(1)如图,作CD ⊥x 轴于D ,BE ⊥x 轴于E,∴∠CAD +∠DCA =90°,∵∠BAC =90°,∴∠CAD +∠BAE =90°,∴∠BAE =∠ACD ,在CDA 和AEB △中,ACD BAE ADC BEA CA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CDA ≌AEB △(AAS ),∴CD =AE ,AD =BE ,∵A (2,0)、B (3,3),∴OA =2,OE =BE =3,∴CD =AE =1,OD =AD ﹣OA =1,∴C 的坐标是(﹣1,1);(2)如图,作BE ⊥x 轴于E ,设直线BC 的解析式为y =kx +b ,∵B 点的坐标为(3,3),C 点的坐标是(﹣1,1),∴331k b k b +=⎧⎨-+=⎩,解得,1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为y =12x +32,当x =0时,y =32,∴OM =32,∴AMB 的面积=梯形MOEB AOM 的面积﹣AEB △的面积=12×(32+3)×3﹣12×2×32﹣12×1×3=154;(3)如图,作M 关于x 轴的对称点M '(0,﹣32),连接B M ',交x 轴于点P ,此时PB +PM =PB +P M '=B M '的值最小,设直线B M '的解析式为y =mx +n ,则3332m n n +=⎧⎪⎨=-⎪⎩,解得,3232m n ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线B M '的解析式为y =32x ﹣32,点P 在x 轴上,当y =0时,x =1,∴点P 的坐标为(1,0).【点拨】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质、求一次函数解析式和求两线段和的最小值,掌握等腰直角三角形的性质、全等三角形的判定及性质、利用待定系数法求一次函数解析式和轴对称的最短路径问题是解决此题的关键.25.(1)y=x+1;(2)C (0,1);(3)1解:试题分析:(1)首先根据正比例函数解析式求得m 的值,再进一步运用待定系数法求得一次函数的解析式;(2)根据(1)中的解析式,令x=0求得点C 的坐标;(3)根据(1)中的解析式,令y=0求得点D 的坐标,从而求得三角形的面积.试题解析:(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2),∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩==解得:11k b ⎧⎨⎩==则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.26.(1)k=34;(2)△OPA 的面积S=94x+18(﹣8<x <0);(3)点P 坐标为(−132,98)或(−192,−98)时,三角形OPA 的面积为278.【分析】(1)将点E 坐标(﹣8,0)代入直线y=kx+6就可以求出k 值,从而求出直线的解析式;(2)由点A 的坐标为(﹣6,0)可以求出OA=6,求△OPA 的面积时,可看作以OA 为底边,高是P 点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA .从而求出其关系式;根据P 点的移动范围就可以求出x的取值范围.(3)分点P 在x 轴上方与下方两种情况分别求解即可得.解:(1)∵直线y=kx+6过点E (﹣8,0),∴0=﹣8k+6,k=34;(2)∵点A 的坐标为(﹣6,0),∴OA=6,∵点P (x ,y )是第二象限内的直线上的一个动点,∴△OPA 的面积S=12×6×(34x+6)=94x+18(﹣8<x <0);(3)设点P 的坐标为(m ,n ),则有S △AOP =12O·,即62=278,解得:n=±98,当n=98时,98=34x+6,解得x=−132,此时点P 在x 轴上方,其坐标为(−132,98);当n=-98时,-98=34x+6,解得x=−192,此时点P 在x 轴下方,其坐标为(−192,−98),综上,点P 坐标为:(−132,98)或(−192,−98).【点拨】本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.27.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【分析】(1)根据题意可知x 人参加采摘蓝莓,则(20-x )人参加加工,可分别求出直接销售和加工销售的量,然后乘以单价得到收入钱数,列出函数的解析式;(2)根据采摘量和加工量可求出x 的取值范围,然后根据一次函数的增减性可得到分配方案,并且求出其最值.解:(1)根据题意得:()()70203540203513035063000y x x x x ⎡⎤=--⨯⨯+-⨯⨯=-+⎣⎦(2)因为7035(20)x x ≥-,解得203x ≥,又因为为正整数,且20x ≤.所以720x ≤≤,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-⨯+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.28.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t+272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或或9﹣6时,△APQ 为等腰三角形.解:分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =P A 时,则()()()2222(71)032103,t -++-=++-当AQ =P A 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+得,()1312b =⨯-+,解得72b =;(2)∵72b =∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A .C 之间时,AQ =2+7−t =9−t ,∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-;当Q 在A 的右边时,AQ =t −9,∴11327(9)32222S AQ yP t t =⋅=⨯-⨯=-即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =-②∵S <3,∴273322t -<或327 3.22t -<解得7<t <9或9<t <11.③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去),当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6.故当t 的值为3或9+或9-或6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.。
一次函数培优练习题(含答案)
一次函数培优练习题(含答案)一、选择题:1.y与x+3成正比例,即y=k(x+3),代入x=1,y=8,解得k=2,因此函数关系式为y=2(x+3)=2x+6,选项(C)。
2.直线y=kx+b经过一、二、四象限,说明k和b异号,因此直线y=bx+k经过三象限,选项(C)。
3.直线y=-2x+4与两坐标轴围成的三角形的底边分别为4和2,因此面积为1/2*4*2=4,选项(A)。
4.由于两弹簧的函数解析式分别为y=k1x+a1和y=k2x+a2,因此y1=k1*2+a1,y2=k2*2+a2,无法确定它们的大小关系,选项(D)。
5.两个函数的图象分别为斜率为b和a的直线,当b>a时,y=bx+a的图象在y=ax+b的图象上方,因此选项(D)。
6.同第二题,直线y=bx+k经过三象限,因此不经过第二象限,选项(B)。
7.当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当k=0时,y=2,因此选项(B)。
8.直线y=x+2m与y=-x+4的交点为(-2m+2,2m+2),当m>0时在第一象限,当m<0时在第二象限,因此选项(B)。
9.直线y=-x/2平移下移4个单位得到y=-x/2-4,即y=-33x-4,因此选项(D)。
10.XXX与x成正比例,则k=m-5=0,解得m=5,选项(D)。
11.直线y=3x-1与y=x-k的交点为(1/2,3/2-k/2),当k>1时在第四象限,因此选项(C)。
12.直线可以作4条,分别为y=-5x-2,y=5x-8,x=3,x=-1,选项(A)。
13.由于a+b/c+b/a+c=p,将其化简得到(a+b+c)/bc=p,因此直线y=px+p经过点(1/a,1/b,1/c),选项(D)。
改写后的文章:一、选择题:1.已知y与x+3成正比例,且当x=1时,y=8,求y与x 之间的函数关系式。
答案:y=2x+6.2.若直线y=kx+b经过一、二、四象限,求直线y=bx+k不经过的象限。
(完整版)八年级一次函数培优训练题
一次函数培优训练一,填空题1.直线y=3x+b与y轴交点(0 ,–2),则这条直线不经过第____象限.2.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a、b的大小关系是a____b.3.若点A(2 , 4)在直线y=kx–2上,则k= .4.已知直线y=(k–2)x+k不经过第三象限,则k的取值范围是 .5.直线y=-2x向上平移3个单位,再向左平移2个单位后的解析式为________.6.函数y=kx+2,经过点(1 , 3),则y=0时,x=.7.一次函数y=2x-6的图象与x轴的交点坐标是____ __,与y轴的交点坐标是 __8.(2007山东淄博)从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是________.9.若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 .二.选择题1.如果在一次函数中,当自变量x的取值范围是-1<x<3时,函数y的取值范围是-2<y<6,那么此函数解析式为()A.y=2x B.y=-2x+4C.y=2x或y=-2x+4D.y=-2x或y=2x-42.无论m为何实数,直线y=x+2m与直线y=-x+4的交点不可能在()A.第三象限B.第四象限C.第一象限D.第二象限3.已知一次函数y=kx-k,若y随着x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4.已知一次函数y=(k+2)x+k2-4的图象经过原点,则()A、k=±2B、k=2C、k= -2D、无法确定5.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0B.x<0C.x>2D.x<26.(2007福建福州)已知一次函数y=(a-1)x+b的图象如图1所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<0y3Ox2第5题图yO图1x7.(2007上海市)如果一次函数y=kx+b的图象经过第一象限,且与y 轴负半轴相交,那么()A.k >0,b >0B.k >0,b <0C.k <0,b >0D.k <0,b <0y A B28.(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y =-x 的图象交于点B ,则该一次函数的表达式为()A .y =-x +2C .y =x -2B .y =x +2D .y =-x -2y =-x-1Ox9.(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是()A.y =2x +2B.y =2x -2C.y =2(x -2)D.y =2(x +2)10.(2007四川乐山)已知一次函数y =kx +b 的图象如下图(6)所示,当x <1时,y 的取值范围是()A.-2<y <0B.-4<y <0C.y <-2D.y <-411.(2007浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是()A .0B .1C .2D .33x +3与x 轴、y 轴分别4交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是()34A.(0,)B.(0,)C.(0,3)D.(0,4)4312.〔2011•日照市〕在平面直角坐标系中,已知直线y =-13.(2011•苏州市)如图,已知A 点坐标为(5,0),直线y =x +b (b >0)与y 轴交于点B ,连接AB ,∠a =75°,则b 的值为()A .3B .y y 2=x +a2x3Ox-4y 1=kx +b图(6)第11题14.y =mx +1与y =2x -1的图象交于x 轴上一点,则m 为()11A .2B .-2C .D .-225353C .4D .34y三.解答题1.已知一次函数图象经过点(3 , 5) , (–4,–9)两点.①求一次函数解析式.②求图象和两坐标轴交点坐标.③求图象和坐标轴围成的三角形面积.④若点(a , 2)在图象上,求a的值.2.已知函数y=(2m–2)x+m+1①m为何值时,图象过原点.②已知y随x增大而增大,求m的取值范围.③函数图象与y轴交点在x轴上方,求m取值范围.④图象过二、一、四象限,求m的取值范围.3.(2007福建晋江)东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1、y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系。
一次函数培优(完美版)
一次函数培优(完美版)1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,),则不等式ax大于b的解集为()解:根据题意,该函数经过x轴交点为(-2,0),即-2a+b=0,解得b=2a。
由于图像经过一,二,三象限,即函数值同时为正、负、正,因此a的符号为正。
代入不等式ax>b 中,得到ax>2a,即x>2.因此,答案为A。
2、若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是________解:不等式左侧为两个绝对值的和,可以通过分段讨论的方法求解。
当x<1时,2|x-1|=-2x+2,3|x-3|=-3x+9,因此不等式化为-5x+11≤a。
当1≤x<3时,2|x-1|=2x-2,3|x-3|=-3x+9,因此不等式化为-x+7≤a。
当x≥3时,2|x-1|=2x-2,3|x-3|=3x-9,因此不等式化为5x-15≤a。
为了使不等式有解,必须满足-5x+11≤a和5x-15≤a都成立,即a≥11/2且a≥15/2,取最大值a=15/2,因此答案为15/2.3、已知实数a,b,c满足a+b+c≠0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?解:将a/b+c=b/c+a=c/a+b=k代入,得到a=k(b+c),b=k(c+a),c=k(a+b)。
将b+c=a/k代入第一个式子,得到a=k(a/k),即a=c+b。
因此,a,b,c三个数相等,且都不为0.将a=b=c代入直线方程y=kx-3中,得到y=kx-3a。
因为a不为0,所以直线不经过原点,因此必定经过第二、第三、第四象限。
答案为第二、第三、第四象限。
4、已知一次函数y=ax+b的图象过(,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 解:由于图象过(,2)点,因此b=2.又因为图形是等腰直角三角形,所以另外两个交点的横坐标相等,即函数值为0时的横坐标相等。
八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版
可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。
专题02 一次函数(培优考点)(原卷版)
专题02 一次函数(培优考点)【考点导航】目录【典型例题】 (4)【考点一 一次函数的识别】............................................................................................................................4【考点二 根据一次函数的定义求参数的值】................................................................................................4【考点三 一次函数与坐标轴的交点坐标】....................................................................................................5【考点四 一次函数的图象和性质】................................................................................................................5【考点五 画一次函数的图象】........................................................................................................................6【考点六 求一次函数的表达式】.. (8)【聚焦考点】【知识点1 函数的概念】一般地,在某一变化过程中有两个变量x 与y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量.注意:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x 的值是否对应唯一确定的y 值.【知识点2 求函数的值】(1)当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.(2)函数表达式中只有两个变量,给定一个变量的值,将其代入函数表达式即可求另一个变量的值,即给自变量的值可求函数值,给函数值可求自变量的值.【知识点3 函数的图象】把一个函数的自变量x 的值与对应的函数y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做这个函数的图像,用图像表示的函数关系,更为直观和形象.【知识点4 一次函数和正比例函数的概念】一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当一次函数b kx y +=中的b =0时(即kx y =)(k 为常数,k ≠0),称y 是x 的正比例函数.【知识点5 正比例函数和一次函数解析式的确定】确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.【知识点6 一次函数与正比例函数的图象与性质】1、正比例函数的图象与性质2、一次函数的图象与性质3、截距直线y=kx+b与y轴相交于(0,b),b叫做直线y=kx+b定义在y轴上的截距,简称截距举例直线y=−2x−3的截距是−3【知识点7一次函数与一元一次方程、不等式的关系】1. 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.2.解一元一次不等式可以看作:当一次函数的函数值大(小)于0时,求自变量相应的取值范围.【典型例题】【考点一一次函数的识别】【考点二根据一次函数的定义求参数的值】【考点三 一次函数与坐标轴的交点坐标】【例题3】(2023春·北京通州·八年级潞河中学校考阶段练习)一次函数2y x =-与x 轴的交点坐标为___________,与y 轴的交点坐标是___________.【变式3-1】(2023春·江苏·八年级开学考试)一次函数23y x =+的图像与x 轴的交点坐标是__.【变式3-2】(2023春·上海·八年级专题练习)一次函数42y x =--的图象与x 轴的交点坐标是______.【变式3-3】(2023春·全国·八年级假期作业)直线y =2x -3与x 轴的交点坐标是______,与y 轴的交点坐标是______.【考点四 一次函数的图象和性质】D .该函数的图象经过第一、二、三象限【考点五 画一次函数的图象】(1)在直角坐标系中画出该函数的图象;(2)观察图象,当04x ££时,y 取值范围是(3)将直线24y x =-平移后经过点((3)将函数24y x =-+的图像向下平移【变式5-2】·(1)点A 的坐标为 ,点B 的坐标为(2)画出此函数图象;(3)写出一次函数112y x =-+图象向下平移【变式5-3】(2023·全国·八年级专题练习)在如图的直角坐标系中,画出函数23y x =-+的图象,并结合图象回答下列问题:(1)在如图的直角坐标系中,画出函数23y x =-+的图象;(2)若该函数图象与x 轴交于点A ,与y 轴交于点B ,求点A 、B 的坐标;(3)问点()51P -,和()27Q -,在这个图象上吗?请说明理由.【考点六 求一次函数的表达式】【例题6】(2023春·八年级单元测试)一次函数经过点()12,、点()16-,,(1)求这个一次函数的解析式;(2)求这个一次函数图象与两坐标轴围成的三角形的面积.【变式6-1】(2023·广东广州·统考一模)已知y 与2x +成正比例,当3x =-时,3y =.(1)求y 与x 的函数解析式;(2)若(1)中函数的图象与一次函数24y x =+的图象相交于点A ,求点A 的坐标.【变式6-2】(2023春·吉林长春·八年级长春外国语学校校考期中)已知直线()0y kx b k =+≠经过点()0,4A ,且平行于直线2y x =-.(1)求该直线的函数关系式;(2)如果这条直线经过点(),2P m ,求m 的值.【变式6-3】(2023春·北京东城·八年级北京一七一中校考期中)平面直角坐标系xOy 中,一次函数1(0)y kx k =+≠的图象经过点(1,3)A .(1)求k 的值;(2)求该一次函数图象与y 轴交点坐标;(3)将这个一次函数图象向上平移两个单位后得到的函数解析式是__________.。
《一次函数》培优题含答案解析
《一次函数》培优题含答案解析1.如图1,已知直线y=2某+2与y轴、某轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交某轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥某轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥某轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=某+2;(2)如图2,作CH⊥某轴于H,DF⊥某轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣某﹣,P(∴P(﹣,),由y=某+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN∴BN==某,,ON=,,k)是线段BC上一点,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线:y=k某+6与某轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(某,y)是直线在第二象限内一个动点,试写出△OPA的面积S与某的函数关系式,并写出自变量某的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
一次函数培优及答案
Oy (微克/毫升) x (时)314 8 4 一次函数培优题一、填空题2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-2 第6题 第7题7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1xy-2 y =k 2x +cy =k 1x +bxyO B A 2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?A .B .C .D .2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。
一次函数综合培优(含解答题答案)
一次函数综合培优(含解答题答案)-CAL-FENGHAI.-(YICAI)-Company One1A B C D 第6题 第7题 一、选择题(每题3分,共36分) 1、点1(5,)A y -和2(2,)B y -都在直线231--=x y 上,则1y 与2y 的关系是( )A .12y y ≤B .12y y =C .12y y < D. 12y y > 2、若实数a ,b ,c 满足a+b+c=0,且a <b <c ,则函数y=cx+a 的图象可能是( )3、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点在直线y=34x上一点,则点B 与其对应点B ′间的距离为( ) A .94B .3C .4D .54、若直线y=3x -1与y=x -k 的交点在第三象限,则k 的取值范围是( )A .k<13B .13<k<1 C .k>1 D .k>1或k<135、已知函数1225,23,y x y x =-=-+且12y y <,则x 的取值为( )A .0x >B .2x <C .x >2D .0x <6、如图,在平面直角坐标系中,▱OABC 的顶点A 在x 轴上,顶点B 的坐标为(6,4).若直线l 经过点(1,0),且将▱OABC 分割成面积相等的两部分,则直线l 的函数解析式是( )A .y=x+1B .y =13x+1 C .y=3x-3D .y=x-17、如图,直线L1:y=x+3与直线L2:y=ax+b 相交于点A (m ,4),则关于x 的不等式x+3≤ax+b 的解集是( ) A .x ≥4 B .x ≤4 C .x ≥m D .x ≤18、某校高一(1)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,假设(x ,y )是两个一次函数图象的交点,则这两个一次函数解析式分别是( )A .y=27-x 与y=23x+22B .y=27-x 与y=23x+1003C .y=27-x 与y=32x+33D .y=27-x 与y=23x+339、若直线y=-2x-4与直线y=4x+b 的交点在第三象限,则b 的取值范围是( ) A .-4<b <8 B .-4<b <0 C .b <-4或b >8 D .-4≤b ≤8第3题第10题 第11题5 2 0 xy(1) (2) 第16题 第15题10、如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-211、如图所示,在平面直角坐标系中,直线OM 是正比例函数y=-3x 的图象,点A 的坐标为(1,0),在直线OM 上找点N ,使△ONA 是等腰三角形,符合条件的点N 的个数是( ) A .2个 B .3个 C .4个 D .5个12、如图,在平面直角坐标系中,直线y=23x-23与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是( )A .6B .3C .12D .43二、填空题(每题4分,共16分)13、函数y=ax+b (a >0,b <0)和y=kx (k <0)的图象交于点P ,那么点P 应该位于第 象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数培优讲解1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,0),则不等式ax大于b的解集为()A. x>2.B. x<2. C。
x>-2. D. x<-22、若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是________3、已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?4、已知一次函数y=ax+b的图象过(0,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________5、(2010•上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为________6、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a-b+c的值。
7、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a²+b²+c²-ab-bc-ca的值。
8、在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直至隧道挖通.图是甲、乙两个工程队所挖隧道的长度y(米)与挖掘时(天)之间的函数图象.请根据图象所提供的信息解答下列问题:(1)求该隧道的长;(2)乙工程队工作多少天时,两队所挖隧道的长度相差18米?9、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q5吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机需10分钟.(2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由.10、一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是11、已知一次函数y=2x+m与y=(m-1)x+3的图像交点坐标的横坐标为2则m的值12、一次函数y=kx+b的图像经过点(m,1)和(1,m)两点,且m>1,则k=_____, b的取值范围是____13、已知两直线y=4x-2,y=3m-x,的交点在第三象限,则m的取值范围________14、如果ab>0,a/c<0,则直线y=-(a/b)x+c/b不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限15、已知关于X的一次函数Y=mx+2m-7在-1≤X≤5上的函数值总是正数,则m的取值范围是.16、在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是()A B C D17、已知一次函数y=2x+a与y=-x+b的图像都经过点A(-2,0)且与Y轴分别交与点B,C 则△ABC德面积为________18、某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟,下图表示快递车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时。
(1)请在图中画出货车距离A地的路程y(千米)与所用时间x(时)的函数图象;(2)求两车在途中相遇的次数(直接写出答案);(3)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?19、若直线y=-x+k不经过第一象限,则k的取值范围为 ________。
20、(2009•宜昌)由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是()A.干旱开始后,蓄水量每天减少20万米 3B.干旱开始后,蓄水量每天增加20万米 3C.干旱开始时,蓄水量为200万米 3D.干旱第50天时,蓄水量为1200万米 321、(2009•德州)如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为 ________22、(2009•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A B C D答案1.已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,0),则不等式ax大于b的解集为() A.x>2. B.x<2. Cx>-2. D.x<-2此题正确选项为A解析:∵一次函数的图像过一、二、三象限∴有a>0将(-2,0)代入一次函数解析式则b=2a∴ax>b可化为ax>2a又a>0∴原不等式的解集为x>22.若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是()绝对值的一元一次不等式.算题;分类讨论.类讨论:当x<1或1≤x≤3或x>3,分别去绝对值解x的不等式,然后根据x对应的取值范围得到a的不等式或不等式组,确定a的范围,最后确定a的最小值.≥<1,解得a>6当1≤x≤3,原不等式变为:2x-2+9-3x≤a,解得x≥7-a,∴1≤7-a≤3,解得4≤a≤6;当x>3,原不等式变为:2x-2+3x-9≤a,解得x<>3,解得a>4;综上所述,实数a最小值是4.3.已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?这个题目不需要证明,只需要判断即可。
首先,令x=0,则y=-3显然只要k>0 则,过1,3,4象限。
只要k<0 则,过2,3,4象限。
由a/b+c=b/c+a=c/a+b=k,显然a=b=c=1的时候,满足所有条件,而此时k》0所以过1,3,4象限。
再如a=b=c=-1的时候,也满足,此时k=0 , 那么y = -3 ,只过3、4象限。
4.已知一次函数y=ax+b的图象过(0,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为()把点(0,2)代入一次函数y=ax+b,得b=2;再令y=0,得x=-2a,即它与x轴的交点坐标为(-2a,0);由图象与坐标轴围成的图形是等腰直角三角形,所以有|-2a|=2,解此方程即可得到a的值.∵一次函数y=ax+b的图象经过点(0,2),即与y轴的交点坐标为(0,2),∴b=2;令y=0,则0=ax+2,得x=-2a,即它与x轴的交点坐标为(-2a,0);又∵图象与坐标轴围成的图形是等腰直角三角形,∴|-2a|=2,解得a=±1.所以a的值为±1.故选A.5.(2010•上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为.y=100x-40解:∵当时0≤x≤1,y关于x的函数解析式为y=60x,∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b得,k+b=102k+b=160解得k=100b=-40,由两点式可以得y关于x的函数解析式y=100x-40.由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.6.已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a-b+c的值解:题意得√3a+b=√3+2 -a+b=√3∴a=√3-1 b=2√3-1∵过C∴(√3-1)c+2√3-1=2-c∴c=√3-2∴a-b+c=-27.已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a²+b²+c²-ab-bc-ca的值.解:直接将A、B的坐标值代入解析式,得√3*a+b=√3+2-a+b=√3两式相减,得(√3+1)a=2a=2/(√3+1)=2(√3-1)/[(√3+1)(√3-1)]=2(√3-1)/(3-1)=√3-1将a=√3-1代入-a+b=√3得:b=2√3-1所以该函数的解析式为:y=(√3-1)x+2√3-1,再将C的坐标代入上式,得2-c=(√3-1)c+2√3-1整理,得√3*c=3-2√3·········注:3=(√3)^2,也就是3等于根号3的平方;两边同时除以√3,得c=√3-2所以a^2+b^2+c^2-ab-bc-ac=1/2[(a^2-2ab+b^2)+(a^2-2ca+c^2)+(b^2-2bc+c^2)]=1/2[(a-b)^2+(a-c)^2+(b-c)^2]=1/2[3+1+(根号3+1)^2]=1/2(4+4+2根号3)=4+根号38.在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直至隧道挖通.图是甲、乙两个工程队所挖隧道的长度y(米)与挖掘时间x(天)之间的函数图象.请根据图象所提供的信息解答下列问题:(1)求该隧道的长;(2)乙工程队工作多少天时,两队所挖隧道的长度相差18米?次函数的应用.程问题;数形结合;分类讨论.1)根据题目说明与上图可知,乙工程队所挖隧道OD满足正比例函数关系,故假设为y乙=kx(0≤x≤6);甲工程队由两段,一段OA满足正比例函数,另一段满足一次函数AC.且AC段经过A(2,180)、B两点,B为AC与OC 的交点坐标,因而可通过OD段的正比例函数关系式求出B点坐标.由于D(6,432)点在OD段上,可求出正比例函数OD段的解析式,问题得解.(2)首先解得甲工程队的OA段的正比例函数关系式,再根据(1)中的甲、乙工程队所挖隧道的函数解析式,以及天数x的取值.分以下三种情况讨论:①当0≤x≤2时;②当2<x≤4时;③当4<x≤6时.解:(1)设y乙=kx(0≤x≤6),y甲=mx+n(2≤x≤8),∵432=6k,∴k=72,∴y乙=72x(1分)当x=4,y乙=72×4=288.∵4m+n=2882m+n=180,解得m=54n=72,即y甲=54x+72(1分)当x=8时,y甲=504,∴432+504=936,∴该隧道的长为936米(1分);(2)设y甲=ax(0≤x≤2),∵180=2a,∴a=90,即y甲=90x(1分),①当0≤x≤2时,y甲-y乙=18,90x-72x=18,x=1,(1分)②当2<x≤4时,y甲-y乙=18,54x+72-72x=18,x=3,(1分)③当4<x≤6时,y乙-y甲=18,72x-(54x+72)=18,x=5,(1分)乙工程队工作1天或3天或5天时,两队所挖隧道的长度相差18米.(1分)题考查一次函数的应用.本题同学们尤其注意(1)中的y甲=54x+72函数解析式的推导过程,(2)中对自变量x的取值范围要考虑全面.9.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q5吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t 分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机需10分钟.(2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由.解:(1)由题意及图象得加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机中需10分钟;(2)∵运输飞机在10分钟时间内,加油29吨,但加油飞机消耗了30吨,所以说z0分钟内运输飞机耗油量为z吨,∴运输飞机每小时耗油量为(吨),∴飞行10个小时,则需油6×10=60吨油.∵69>60,∴所以油料够用.答:(1)33,13;(2)运输飞机加完油后,以原速继续飞行,需13小时到达目的地,油料是否够用.(1)通过观察线段Q2段图象,不难得到加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机中需10分钟(2)首先根据运输飞机在10分钟时间内,加油29吨,但加油飞机消耗了30吨,求出每小时耗油量.再计算10小时共耗油量,与69吨比较大小,判定油料是否够用.10.一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是解:∵一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P 和Q,∴由两函数解析式可得出:P(0,1-m),Q(0,m2-3),又∵P点和Q点关于x轴对称,∴可得:1-m=-(m2-3),解得:m=2或m=-1.∵y=(m2-4)x+(1-m)是一次函数,∴m2-4≠0,∴m≠±2,∴m=-1.故答案为:-1.根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m的值.11.已知一次函数y=2x+m与y=(m-1)x+3的图像交点坐标的横坐标为2则m的值y=2x+my=(m-1)x+3把x=2代入y=4+my=2m+14+m=2m+1m=312.一次函数y=kx+b的图像经过点(m,1)和(1,m)两点,且m>1,则k=_____, b的取值范围是____y=kx+b的图像经过点(m,1)和(1,m)两点,则1=mk+b ①m=k+b ②①-②,得1-m=(m-1)k所以k=-1代入②,得m=-1+b所以b=m+1因为m﹥1所以b﹥1+1所以b﹥213.已知两直线y=4x-2,y=3m-x,的交点在第三象限,则m的取值范围﹛y=4x-2,y=3m-x解得x=(3m+2)/5y=(12m-2)/5∵交点在第三象限∴x<0,y<0即﹛(3m+2)/5<0 m<-2/3(12m-2)/5<0 m<1/6∴m<-2/314.如果ab>0,a/c<0,则直线y=-(a/b)x+c/b不通过() A.第一象限 B.第二象限 C.第三象限 D.第四象限第一,如果a>0,b>0,则c<0,-(a/b)<0,c/b<0第二,如果a<0,b<0,则c>0,-(a/b)<0,c/b<0∴直线y=-(a/b)x+c/b 始终通过第二、三、四象限,∴选择A (不过第一象限)15.已知关于X的一次函数Y=mx+2m-7在-1≤X≤5上的函数值总是正数,则m的取值范围是_ _____.若m>0则y随x增大而增大则x=-1时y最小学习必备欢迎下载x=-1,y=-m+2m-7>0 m>7若 m<0 则 y 随 x 增大而减小 则 x=5 时 y 最小 x=5,y=5m+2m-7>0 m>1,和 m<0 矛盾所以 m>716.在同一平面直角坐标系中,直线 y=kx+b 与直线 y=bx+k(k、b 为常数,且 kb≠0)的图 象可能是( ).先看一个直线,得出 k 和 b 的符号,然后再判断另外一条直线是否正确,这样可得出答案. A、两条直线反映出 k 和 b 均是大于零的,一致,故本选项正确; B、一条直线反映 k 大于零,一条直线反映 k 小于零,故本选项错误; C、一条直线反映 k 大于零,一条直线反映 k 小于零,故本选项错误; D、一条直线反映 b 大于零,一条直线反映 b 小于零,故本选项错误. 故选 A.17.已知一次函数 y=2x+a 与 y=-x+b 的图像都经过点 A(-2,0)且与 Y 轴分别交与点 B,C 则 △ABC 德面积为( )有一次函数 y=2x+a 与 y=-x+b 的图像都经过点 A(-2,0) 可以解得 a=4 b=-2 y=2x+4 与 Y 轴交于(0,4)即为 B 点 y=-x-2 与 Y 轴交于(0,-2)即为 C 点 你再画个图看看 可以把它看成是△ABO 面积+△ACO 面积=2*4*1/2+2*2*1/2=6 所以 △ABC 面积为 6学习必备欢迎下载18.某物流公司的快递车和货车每天往返于 A、B 两地,快递车比货车多往返一趟,下图表 示快递车距离 A 地的路程 y(单位:千米)与所用时间 x(单位:时)的函数图象,已知货车比 快递车早 1 小时出发,到达 B 地后用 2 小时装卸货物,然后按原路、原速返回,结果比快 递车最后一次返回 A 地晚 1 小时。