高中数学、讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

\

高中函数部分附高中必修一到四

直线,切线

直线与方程

标准圆,圆与圆

圆与方程,曲线与方程xy=+ k, - k 一次函数函数二次函数

对称轴

求根

不等式,方程组

三角函数,二倍角

曲线与方程

在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

(1)曲线上点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点。

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

求曲线的方程

必修一

一、集合

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,

大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队

员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

A⊆有两种可能(1)A是B的一部分,;(2)A与注意:B

B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:①任何一个集合是它本身的子集。A⊆A

②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子

集,记作A B(或B A)

③如果 A⊆B, B⊆C ,那么 A⊆C

④如果A⊆B 同时 B⊆A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集

二、函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略

3、恒成立问题的求解策略

4、反函数的几种题型及方法

5、二次函数根的问题——一题多解

&指数函数y=a^x

a^a*a^b=a^a+b(a>0,a 、b 属于Q)

(a^a)^b=a^ab(a>0,a 、b 属于Q)

(ab)^a=a^a*b^a(a>0,a 、b 属于Q)

指数函数对称规律:

1、函数y=a^x 与y=a^-x 关于y 轴对称

2、函数y=a^x 与y=-a^x 关于x 轴对称

3、函数y=a^x 与y=-a^-x 关于坐标原点对称

&对数函数y=loga^x

如果0>a ,且1≠a ,0>M ,0>N ,那么:

1 M a (log ·=)N M a log +N a log ; ○

2 =N

M a log M a log -N a log ; ○

3 n a M log n =M a log )(R n ∈. 注意:换底公式

a

b b

c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)

1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂

函数,其中α为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点

(1,1);

(2)0>α时,幂函数的图象通过原点,并且在区间)

,0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当

10<<α时,幂函数的图象上凸;

(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在

第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限

地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限

地逼近x 轴正半轴.

方程的根与函数的零点

1、函数零点的概念:对于函数))((D x x f y ∈=,把使

0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0

)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有

交点⇔函数)(x f y =有零点.

相关文档
最新文档