新课标人教A版高中数学必修2教案完整版

合集下载

高中数学 必修二 3.2.3 直线的一般式方程教案 新人教A版必修2

高中数学  必修二   3.2.3 直线的一般式方程教案 新人教A版必修2

3.2.3 直线的一般式方程(一)导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题.思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77y x +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式.(二)推进新课、新知探究、提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线? ③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化?④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化? ⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零.结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-BC ,这就是直线的斜截式方程,它表示斜率为-BA ,在y 轴上的截距为-BC 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-A C ,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式.注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下: 0轴上的截距 例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6).化成一般式,得4x+3y-12=0.变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线?(2)系数满足什么关系时,与坐标轴都相交?(3)系数满足什么条件时,只与x 轴相交?(4)系数满足什么条件时,是x 轴?(5)设P(x 0,y 0)为直线Ax+By+C=0上一点,证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0.答案:(1)C=0;(2)A≠0且B≠0;(3)B=0且C≠0;(4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上,∴Ax 0+By 0+C+0,C=-Ax 0-By 0.∴A(x -x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________.答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ①移项,去系数得斜截式y=2x +3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6.即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”.变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程.答案:x+3y-3=0或x+2y=0.(四)知能训练课本本节练习1、2、3.(五)拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系.解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点.(六)课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系;(2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式;(3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练.(七)作业习题3.2 A 组11.。

人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计

人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计

2.3.2平面和平面垂直的判定和性质一、教学目标(一)核心素养(1)通过本节教学,提高学生空间想象能力.(2)通过问题解决,提高等价转化思想渗透的意识.(3)进一步提高学生分析问题、解决问题的能力.(二)学习目标(1)两个平面互相垂直的判定.(2)两个平面互相垂直的性质.(三)学习重点两个平面垂直的判定、性质.(四)学习难点(1)两个平面垂直的判定定理、性质定理运用.(2)正确作出符合题意的空间图形.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第67页到第69页,填空:二面角的定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角;以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎬⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.直线a⊥直线b,a⊥平面β,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β【解题过程】由垂直和平行的有关性质可知b⊂β或b∥β,故选D.【答案】D2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题过程】若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.【答案】A3.设m、n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥α.B.若m∥β,β⊥α,则m⊥α.C.若m⊥β,n⊥β,n⊥α,则m⊥α.D.若m⊥n,n⊥β,β⊥α,则m⊥α.【解题过程】A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.【答案】C(二)课堂设计1.知识回顾(1)直线和平面垂直的判定定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α(2)直线和平面垂直的判定的另外一种判定方法文字语言图形语言符号语言判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.ba//,α⊥a.则α⊥b(3)直线和平面垂直的性质定理性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b2.问题探究探究一实例引领,认识平面和平面垂直的概念★●活动①简单类比,引出定义两个平面互相垂直是两个平面相交的特殊情形.教室的墙面与地面、一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念类似,也是用它们所成的角为直角来定义的.请同学思考两个平面互相垂直的定义.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.那么两个互相垂直的平面画其直观图时,应把直立平面的边画成和水平平面的横边垂直,如下图.平面α和β垂直,记作α⊥β.●活动②实例引领,思维激活实例:如图,检查工件的相邻两个平面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,这是为什么?曲尺的一边在一面内转动即为形成一个平面,而另一边与此平面垂直,且又紧靠在另一平面上,即垂线在另一平面内.所以我们得到面面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.)下面我们一起给出分析,证明:已知:AB⊥β,AB∩β=B,AB⊂α.【解题过程】要证α⊥β,需证α 和β 构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α知,AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD.则∠ABE是二面角α-CD-β的平面角.又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.现在同学们明确了面面垂直的判定定理,请思考:建筑工人在砌墙时,常用一段系有铅锤的线来检查所砌墙面是否和水平面垂直,依据是什么?[学生]依据是两个平面垂直的判定定理,一面经过另一面的一条垂线.[老师]从转化的角度来看,两个平面垂直的判定定理可简述为:线面垂直⇒面面垂直请同学们接着思考如下问题:在所给正方体中,下式是否正确:①平面ADD1A1⊥平面ABCD;②D1A⊥AB;③D1A⊥面ABCD.[学生]①∵AB⊥面ADD1A1,AB⊂面ABCD.∴平面ABCD⊥平面ADD1A1.②∵AB⊥面ADD1A1,D1A⊂面ADD1A1∴AB⊥D1A③∵AA1⊥面ABCD,∴AD1与平面ABCD不垂直.平面ADD1A1⊥面ABCD,平面ADD1A1∩平面ABCD=AD,A是平面ADD1A1内一点.过点A可以在平面ADD1A1内作无数条直线,而这些直线满足什么条件就可以使之与平面垂直?判定定理解决两个平面如何垂直,性质定理可以解决上述线面垂直.从转化的角度可表述为:面面垂直,则线面垂直.也给了我们以后证明问题的一种思想方法.下面我们一起来完成证明.证明过程如下:已知:α⊥β、α∩β=a,AB⊂α,AB⊥a于B.【解题过程】:在平面β内作BE⊥a垂足为B,则∠ABE就是二面角α-a-β的平面角.由α⊥β可知,AB⊥BE.又AB⊥a,BE与a是β内两条相交直线,∴AB⊥β.证明的难点在于“作BE⊥a”.为什么要做这一步?主要是由两面垂直的关系,去找其二面角的平面角来决定的.【设计意图】构造二面角的平面角过程可以体现学生的创新精神、转化能力.【答案】见解题过程.探究二层层深化,掌握平面和平面垂直的判定定理和性质定理.●活动①互动交流,初步实践例1 求证:(1)如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直;(2)如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直.【知识点】平面和平面垂直的判定.【数学思想】化归思想.【解题过程】(1)已知:l∥α,l⊥β,求证:α⊥β.证明:在平面α内任取一点P.∵l ∥α,∴P ∉l .P 、l 可确定一平面γ.设α∩γ=l ′则l ∥l ′.⎪⎭⎪⎬⎫⊂'⊥'⇒⎭⎬⎫'⊥αββl l l l l //⇒α⊥β[该题目难在构造既符合题,又能使问题得证的立体图形.] (2)已知:α⊥β,β∥γ.求证:α⊥γ证明:过β 内一点P 作直线l ,使l ⊥α则l ⊂β. l 与γ内任一点Q 确定平面δ,设δ∩γ=l ′,则l ∥l ′. l ′⊥α,因此γ⊥α.【思路点拨】题目较抽象,构造图形,创造条件,使问题转化为可利用已有定理来解决.由此我们又多了两个判断面面垂直的结论. 【答案】见解题过程. ●活动②巩固基础,检查反馈例2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .【知识点】平面和平面垂直的判定 【数学思想】化归思想【解题过程】证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有BC ⊥AC ①.因为P A ⊥平面ABC ,BC ⊂平面ABC ,则P A ⊥BC ②. 由①②及AC ∩PA =A ,得BC ⊥平面P AC .因为BC⊂平面PBC,有平面P AC⊥平面PBC.【思路点拨】低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.【答案】见解题过程.例3 如图,P是△ABC所在平面外的一点,且P A⊥平面ABC,平面P AC⊥平面PBC,求证:BC⊥AC.【知识点】平面和平面垂直的判断和性质.【数学思想】转化思想.【解题过程】证明:在平面P AC内作AD⊥PC,交PC于D.因为平面P AC⊥平面PBC于PC,AD⊂平面P AC,且AD⊥PC,所以AD⊥平面PBC.又因为BC⊂平面PBC,于是有AD⊥BC①.另外P A⊥平面ABC,BC⊂平面ABC,所以P A ⊥BC.由①②及AC∩PA=A,可知BC⊥平面P AC.因为AC⊂平面P AC,所以BC⊥AC.【思路点拨】在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.【答案】见解题过程.例4 P为120°角α-a-β内一点,P到α和β的距离均为10,求点P到棱a的距离.【知识点】二面角的概念,距离.【数学思想】化归思想.【解题过程】如图,过点P 作P A ⊥α于A ,PB ⊥β于B ,设相交直线P A 、PB 确定的平面为γ,a ∩γ=O ,则α∩γ=OA ,β∩γ=OB 连结PO ,则AP =BP =10∵P A ⊥α,PB ⊥β,∴a ⊥γ,而PO ⊂平面γ,∴a ⊥PO , ∴PO 的长即为点P 到直线a 的距离. 又∵a ⊥γ,γ⊂OA ,γ⊂OB∴∠AOB 是二面角α-a -β的平面角,即∠AOB =120°.而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径. ∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用△APB . 在△APB 中,AP =BP =10,∠APB =60°,∴AB =10. 由正弦定理:332060sin 2=︒==AB R PO . 【思路点拨】(1)该题寻找120°的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形P AOB 为一圆内接四边形,∵P A ⊥OA ,PB ⊥OB ,∵PO 即为其外接圆直径,然后借助于四边形的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.【答案】.3320活动③ 强化提升,灵活应用例5.过点S 引三条不共面的直线SA 、SB 、SC ,如图,∠BSC =90°,∠ASC =∠ASB =60°,若截取SA =SB =SC =a .(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.【知识点】面面垂直的证明,距离. 【数学思想】化归思想【解题过程】(1)证明:∵SA =SB =SC =a , 又∠ASC =∠ASB =60°,∴△ASB 和△ASC 都是等边三角形,∴AB =AC =a , 取BC 的中点H ,连结AH ,∴AH ⊥BC . 在Rt △BSC 中,BS =CS =a , ∴SH ⊥BC ,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在△SHA 中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴AH ⊥SH ,∴AH ⊥平面SBC .∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC . 或:∵SA =AC =AB ,∴顶点A 在平面BSC 内的射影H 为△BSC 的外心, 又△BSC 为Rt △,∴H 在斜边BC 上,又△BSC 为等腰直角三角形,∴H 为BC 的中点,∴AH ⊥平面BSC . ∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC .(2)由前所证:SH ⊥AH ,SH ⊥BC ,∴SH ⊥平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S到平面ABC的距离为a22.【思路点拨】(1)要证明平面ABC⊥平面BSC,根据面面垂直的判定定理,须在平面ABC或平面BSC内找到一条与另一个平面垂直的直线;(2)外心为三角形外接圆的圆心,即三条中垂线的交点.【答案】(1)见解题过程;(2)a22.同类训练如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥B C.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【知识点】线面平行的判定,面面垂直的证明.【解题过程】(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF 平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)线段BE上存在点G,且BG=13BE,使得平面DFG⊥平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,连接GD、GF,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.由CF⊥平面DEF⇒CF⊥DE.又CF ∩EF =F ,∴DE ⊥平面BEF ,∴DE ⊥GF .GF CE GF DE GF CDE CE DE E ⎫⎪⇒⎬⎪⎭⊥⊥⊥平面=.又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知12BG GE =,即13BG BE =. 【思路点拨】“探索性问题”的规律方法:一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【答案】(1)见解题过程;(2)线段BE 上存在点G ,且13BG BE =,使得平面DFG ⊥平面CDE .3. 课堂总结知识梳理(1)证明面面垂直的方法(2)重难点归纳空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.(三)课后作业基础型 自主突破一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【思路点拨】由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.【答案】D.2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是()A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b【知识点】线面平行的判定,面面垂直的证明.【解题过程】当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.【思路点拨】A.根据面面平行的定义和性质判断;B.利用面面垂直的性质和定义判断;C.根据线面垂直的性质判断;D.根据线面平行的性质判断.【答案】B.3.设直线l⊥平面α,直线m⊂平面β,()A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥β D.若α⊥β,则l∥m【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.【思路点拨】通过线面平行的性质定理和线面垂直的性质定理即可判断A;由一直线垂直于两个平行平面中的一个,也垂直于另一个,结合线面垂直的性质定理即可判断B;举反例,由线面垂直的性质定理即可判断C;举反例,结合线面垂直和面面垂直的性质定理即可判断D.【答案】B.4.设a、b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.【思路点拨】通过线面垂直的性质定理判断A;通过面面平行的性质和线面垂直的性质判断B;通过面面平行的性质和线面垂直的定义判断C;由线面平行的性质和面面垂直的性质判断D.【答案】C.5.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE【知识点】面面垂直的判定.【解题过程】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.【思路点拨】缺少【答案】C.6.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直”,则______.【解题过程】此题是突破以往高考命题模式的又一典范,丰富的想象和联想是增强创新意识的利器,本题如果能联想构造一长方体,用一平面去截长方体易得满足条件的棱锥A -BCD ,进而易证结论:“2222ABC ACD ADB BCD SS S S ++=.” 【答案】2222ABC ACD ADB BCD S S S S ++=.7.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).【知识点】线面平行的判定,面面垂直的证明.【解题过程】∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥P C.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD ⊥平面PC D.【答案】DM⊥PC(或BM⊥PC)8.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【知识点】线面平行的判定,面面垂直的证明。

高中数学2.3.2平面与平面垂直的判定教案新人教A版必修2

高中数学2.3.2平面与平面垂直的判定教案新人教A版必修2

2.3.2 平面与平面垂直的判定一、教材分析在空间平面与平面之间的位置关系中,垂直是一种超级重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的概念是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面彼此垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培育学生的创新精神.二、教学目标1.知识与技术(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面彼此垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.进程与方式(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的气宇方式及两个平面垂直的判定定理.3.情态、态度与价值观通过揭露概念的形成、发展和应有和进程,使学生理会教学存在于观实生活周围,从中激发学生踊跃思维,培育学生的观察、分析、解决问题能力.三、教学重点与难点教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.四、课时安排1课时五、教学设计(一)温习两平面的位置关系:(1)若是两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)若是两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1(二)导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝牢固耐用必需使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成必然的角度.为此,咱们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,如何描述这种转变呢?今天咱们一路来探讨两个平面所成角问题.(三)推动新课、新知探讨、提出问题①二面角的有关概念、画法及表示方式.②二面角的平面角的概念.③两个平面垂直的概念.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的概念:从一条直线动身的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常常利用直立式和平卧式两种画法:如图2(教师和学生一路动手).直立式:平卧式:(1) (2)图2二面角的表示方式:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱之外的半平脸部份)别离取点P、Q,将这个二面角记作二面角P-AB-Q.图3若是棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内别离作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内别离作l 的垂线O ′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB 及∠A′O′B′的两边别离平行且方向相同, 即∠AOB=∠A′O′B′.从上述结论说明了:依照上述方式作出的角的大小,与角的极点在棱上的位置无关. 由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内别离作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. 图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的概念.二面角的大小可以用它的平面角来气宇,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是彼此垂直的.两个平面彼此垂直的概念和平面几何里两条直线彼此垂直的概念相类似,也是用它们所成的角为直角来概念,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角. 两个平面彼此垂直的概念可表述为:若是两个相交平面所成的二面角为直二面角,那么这两个平面彼此垂直. 直二面角的画法:如图5.图5④两个平面垂直的判定定理.若是一个平面通过另一个平面的一条垂线,那么这两个平面彼此垂直. 两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB⊥β,AB∩β=B,AB ⊂α. 求证:α⊥β.分析:要证α⊥β,需证α和β组成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB ⊂α,知AB 、CD 共面. ∵AB⊥β,CD ⊂β,∴AB⊥CD,垂足为点B. 在平面β内过点B 作直线BE⊥CD, 则∠ABE 是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角, ∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.(四)应用示例思路1例1 如图7,⊙O 在平面α内,AB 是⊙O 的直径,PA⊥α,C 为圆周上不同于A 、B 的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O 所在平面为α,由已知条件,PA⊥α,BC ⊂α,∴PA⊥BC. ∵C 为圆周上不同于A 、B 的任意一点,AB 是⊙O 的直径, ∴BC⊥AC.又∵PA 与AC 是△PAC 所在平面内的两条相交直线, ∴BC⊥平面PAC.∵BC ⊂平面PBC,∴平面PAC⊥平面PBC. 变式训练如图8,把等腰Rt△ABC 沿斜边AB 旋转至△ABD 的位置,使CD=AC ,图8(1)求证:平面ABD⊥平面ABC ; (2)求二面角CBDA 的余弦值. (1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC ,O 为垂足,则OA=OB=OC. ∴O 是△ABC 的外心,即AB 的中点. ∴O∈AB ,即O ∈平面ABD. ∴OD ⊂平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD 的中点E ,连接CE 、OE 、OC, ∵△BCD 为正三角形,∴CE⊥BD.又△BOD 为等腰直角三角形,∴OE⊥BD. ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC⊥平面ABD.∴OC⊥OE.∴△COE 为直角三角形. 设BC=a ,则CE=a 23,OE=a 21,∴cos∠OEC=33=CE OE .点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精准到0.1 m )图9解:取CD 上一点E ,设C E=10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF⊥AB,垂足为F ,并连接FG,则FG⊥AB,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG=60°,由此,得EG=EFsin60°=CEsin30°sin60°=10×2352321=⨯≈(m ). 答:沿直道行走到10 m 时人升高约4.3 m.变式训练已知二面角αABβ等于45°,CD ⊂α,D ∈AB ,∠CDB=45°.求CD 与平面β所成的角.解:如图10,作CO⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE⊥AB 于E ,连接CE ,则CE⊥AB. ∴∠CEO 为二面角αABβ的平面角, 即∠CEO=45°. 设CD=a,则CE=a 22,∵CO⊥OE,OC=OE , ∴CO=a 21.∵CO⊥DO,∴sin∠CDO=21=CD CO . ∴∠CDO=30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常常利用的方式是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O,然后通过垂足O 作棱AB 的垂线,垂足为E,连接AE,则∠CEO 为二面角α-AB-β的平面角.这一进程要求学生熟记.思路2例1 如图11,ABCD 是菱形,PA⊥平面ABCD ,PA=AD=2,∠BAD=60°.图11(1)求证:平面PBD⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角APBD 的余弦值.(1)证明:设AC 与BD 交于点O ,连接PO, ∵底面ABCD 是菱形,∴BD⊥AC.∵PA⊥底面ABCD,BD ⊂平面ABCD,∴的PA⊥BD. 又PA∩AC=A,∴BD⊥平面PAC.又∵BD ⊂平面PBD,∴平面PBD⊥平面PAC.(2)解:作AE⊥PO 于点E,∵平面PBD⊥平面PAC,∴AE⊥平面PBD. ∴AE 为点A 到平面PBD 的距离.在△PAO 中,PA=2,AO=2·cos30°=3,∠PAO=90°, ∵PO=722=+AO PA ,∴AE=7212732==•PO AO PA .∴点A 到平面PBD 的距离为7212. 3)解:作AF⊥PB 于点F,连接EF, ∵AE⊥平面PBD,∴AE⊥PB. ∴PB⊥平面AEF,PB⊥EF.∴∠AFE 为二面角APBD 的平面角. 在Rt△AEF 中,AE=7212,AF=2, ∴sin∠AFE=742=AF AE ,cos∠AFE=77)742(12=-. ∴二面角APBD 的余弦值为77. 变式训练如图12,PA⊥矩形ABCD 所在平面,M 、N 别离是AB 、PC 的中点.(1)求证:MN∥平面PAD ; (2)求证:MN⊥CD;(3)若二面角PDCA=45°,求证:MN⊥平面PDC.图12 图13证明:如图13所示,(1)取PD 的中点Q ,连接AQ 、NQ,则QN21DC,AM 21DC, ∴QN AM.∴四边形AMNQ 是平行四边形.∴MN∥AQ.又∵MN ⊄平面PAD,AQ ⊂平面PAD,∴MN∥平面PAD. (2)∵PA⊥平面ABCD ,∴PA⊥CD. 又∵CD⊥AD,PA∩AD=A,∴CD⊥平面PAD. 又∵AQ ⊂平面PAD,∴CD⊥AQ. 又∵AQ∥MN,∴MN⊥CD.(3)由(2)知,CD⊥平面PAD, ∴CD⊥AD,CD⊥PD.∴∠PDA 是二面角PDCA 的平面角.∴∠PDA=45°. 又∵PA⊥平面ABCD,∴PA⊥AD.∴AQ⊥PD. 又∵MN∥AQ,∴MN⊥CD.又∵MN⊥PD,∴MN⊥平面PDC.例2 如图14,已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点.图14(1)求证:直线MF∥平面ABCD ; (2)求证:平面AFC 1⊥平面ACC 1A 1;(3)求平面AFC 1与平面ABCD 所成二面角的大小. (1)证明:延长C 1F 交CB 的延长线于点N ,连接AN. ∵F 是BB 1的中点,∴F 为C 1N 的中点,B 为CN 的中点. 又M 是线段AC 1的中点,故MF∥AN. 又∵MF ⊄平面ABCD,AN ⊂平面ABCD, ∴MF∥平面ABCD.(2)证明:连接BD ,由直四棱柱ABCD —A 1B 1C 1D 1,可知AA 1⊥平面ABCD, 又∵BD ⊂平面ABCD ,∴A 1A⊥BD. ∵四边形ABCD 为菱形,∴AC⊥BD. 又∵AC∩A 1A=A,AC 、A 1A ⊂平面ACC 1A 1,∴BD⊥平面ACC 1A 1.在四边形DANB 中,DA∥BN 且DA=BN , ∴四边形DANB 为平行四边形. 故NA∥BD,∴NA⊥平面ACC 1A 1. 又∵NA ⊂平面AFC 1,∴平面AFC 1⊥平面ACC 1A 1.(3)解:由(2),知BD⊥平面ACC 1A 1,又AC 1⊂平面ACC 1A 1,∴BD⊥AC 1. ∵BD∥NA,∴AC 1⊥NA.又由BD⊥AC,可知NA⊥AC,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角. 在Rt△C 1AC 中,tan∠C 1AC=311=CA C C ,故∠C 1AC =30°. ∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°.变式训练 如图15所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC⊥底面ABCD ,且AB=2,SC=SD=2.图15(1)求证:平面SAD⊥平面SBC ;(2)设BC=x ,BD 与平面SBC 所成的角为α,求sinα的取值范围. (1)证明:在△SDC 中,∵SC=SD=2,CD=AB=2,∴∠DSC=90°,即DS⊥SC.∵底面ABCD 是矩形,∴BC⊥CD.又∵平面SDC⊥平面ABCD,∴BC⊥面SDC. ∴DS⊥BC.∴DS⊥平面SBC.∵DS ⊂平面SAD,∴平面SAD⊥平面SBC.(2)解:由(1),知DS⊥平面SBC,∴SB 是DB 在平面SBC 上的射影. ∴∠DBS 就是BD 与平面SBC 所成的角,即∠DBS=α. 那么sinα=DBDS. ∵BC=x,CD=2⇒DB=24x +,∴sinα=242x+.由0<x <+∞,得0<sinα<22.(五)知能训练讲义本节练习.(六)拓展提升如图16,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图16(1)求证:EN∥平面PCD ;(2)求证:平面PBC⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值. (1)证明:∵AD∥BC,B C ⊂面PBC,AD ⊄面PBC, ∴AD∥面PBC.又面ADN∩面PBC=MN, ∴AD∥MN.∴MN∥BC. ∴点M 为PC 的中点.∴MN21BC. 又E 为AD 的中点,∴四边形DENM 为平行四边形. ∴EN∥DM.∴EN∥面PDC.(2)证明:连接PE 、BE,∵四边形ABCD 为边长为2的菱形,且∠BAD=60°, ∴BE⊥AD.又∵PE⊥AD,∴AD⊥面PBE.∴AD⊥PB. 又∵PA=AB 且N 为PB 的中点, ∴AN⊥PB.∴PB⊥面ADMN. ∴平面PBC⊥平面ADMN.(3)解:作EF⊥AB,连接PF ,∵PE⊥平面ABCD,∴AB⊥PF. ∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角. 又在Rt△AEB 中,BE=3,AE=1,AB=2,∴EF=23. 又∵PE=3,∴tan∠PFE=233=EFPE=2,即平面PAB 与平面ABCD 所成的二面角的正切值为2.(七)课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方式总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业讲义习题2.3 A组一、二、3.。

高中数学 必修二(3.2.2 直线的两点式方程)示范教案 新人教A版必修2

高中数学 必修二(3.2.2 直线的两点式方程)示范教案 新人教A版必修2

3.2.2 直线的两点式方程教学过程导入新课思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:(1)已知直线l 经过两点P 1(1,2),P 2(3,5),求直线l 的方程.(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程. 思路2.要学生求直线的方程,题目如下:①A(8,-1),B(-2,4);②A(6,-4),B(-1,2);③A(x 1,y 1),B(x 2,y 2)(x 1≠x 2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k 及求解过程)这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?推进新课新知探究提出问题①已知两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程. ②若点P 1(x 1,y 1),P 2(x 2,y 2)中有x 1=x 2或y 1=y 2,此时这两点的直线方程是什么? ③两点式公式运用时应注意什么?④已知直线l 与x 轴的交点为A(a,0),与y 轴的交点为B(0,b),其中a ≠0,b≠0,求直线l 的方程.⑤a、b 表示截距是不是直线与坐标轴的两个交点到原点的距离?⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k;b.利用点斜式写出直线的方程.∵x 1≠x 2,k=1212x x y y --, ∴直线的方程为y-y 1=1212x x y y --(x-x 1). ∴l 的方程为y-y 1=1212x x y y --(x-x 1).① 当y 1≠y 2时,方程①可以写成121121x x x x y y y y --=--.② 由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x 1≠x 2,它不能表示倾斜角为90°的直线的方程;②式中x 1≠x 2且y 1≠y 2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1),那么就可以用它来求过平面上任意两已知点的直线方程. ②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x 1=x 2时,直线与x 轴垂直,所以直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③引导学生注意分式的分母需满足的条件.④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l 的方程?哪种方法更为简捷?然后求出直线方程.因为直线l 经过(a ,0)和(0,b)两点,将这两点的坐标代入两点式,得a a xb y --=--000.① 就是by a x +=1.② 注意:②这个方程形式对称、美观,其中a 是直线与x 轴交点的横坐标,称a 为直线在x 轴上的截距,简称横截距;b 是直线与y 轴交点的纵坐标,称b 为直线在y 轴上的截距,简称纵截距.因为方程②是由直线在x 轴和y 轴上的截距确定的,所以方程②式叫做直线方程的截距式. ⑤注意到截距的定义,易知a 、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离.⑥考虑到分母的原因,截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:①若x 1≠x 2且y 1≠y 2,则直线l 方程为121121x x x x y y y y --=--. ②当x 1=x 2时,直线与x 轴垂直,直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③倾斜角是0°或90°的直线不能用两点式公式表示(因为x 1≠x 2,y 1≠y 2). ④by a x +=1. ⑤a、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离.⑥截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例思路1例1 求出下列直线的截距式方程:(1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0.变式训练已知Rt△ABC 的两直角边AC=3,BC=4,直角顶点C 在原点,直角边AC 在x 轴负方向上,BC 在y 轴正方向上,求斜边AB 所在的直线方程.答案:4x-3y+12=0.例2 如图1,已知三角形的顶点是A(-5,0)、B(3,-3)、C(0,2),求这个三角形三边所在直线的方程.图1活动:根据A 、B 、C 三点坐标的特征,求AB 所在的直线的方程应选用两点式;求BC 所在的直线的方程应选用斜截式;求AC 所在的直线的方程应选用截距式.解:AB 所在直线的方程,由两点式,得)5(3)5(030----=---x y ,即3x+8y+15=0. BC 所在直线的方程,由斜截式,得y=-35x+2,即5x+3y-6=0. AC 所在直线的方程,由截距式,得25y x +-=1,即2x-5y+10=0. 变式训练如图2,已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ ,MN ,x 轴,y 轴则不能用截距式,其中PQ ,MN 应选用斜截式;x 轴,y 轴的方程可以直接写出.解:因为|AB|=4,所以|OA|=|OB|=2224=.因此A 、B 、C 、D 的坐标分别为(22,0)、(0,22)、(-22,0)、(0,-22). 所以AB 所在直线的方程是2222yx+=1,即x+y-22=0.BC 所在直线的方程是2222y x+-=1,即x-y+22=0. CD 所在直线的方程是22722-+-x=1,即x+y+22=0. DA 所在直线的方程是22722-+x=1,即x-y-22=0.对称轴方程分别为x±y=0,x=0,y=0.思路2例1 已知△ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点.(1)求AB 边所在的直线方程;(2)求中线AM 的长;(3)求AB 边的高所在直线方程.解:(1)由两点式写方程,得121515+-+=---x y ,即6x-y+11=0. (2)设M 的坐标为(x 0,y 0),则由中点坐标公式,得x 0=242+-=1,y 0=231+-=1, 故M (1,1),AM=22)51()11(-++=25.(3)因为直线AB 的斜率为k AB =2315+-+=-6,设AB 边上的高所在直线的斜率为k, 则有k×k AB =k×(-6)=-1,∴k=61. 所以AB 边高所在直线方程为y-3=61(x-4),即x-6y+14=0. 变式训练求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程. 解:设直线方程为b y a x +=1,则由题意知,有21ab=3,∴ab=4. 解得a=4,b=1或a=1,b=4. 则直线方程是14y x +=1或41y x +=1,即x+4y-4=0或4x+y-4=0. 例2 经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.解:当截距为0时,设y=kx ,又过点A(1,2),则得k=2,即y=2x.当截距不为0时,设a y a x +=1或ay a x -+=1,过点A(1,2), 则得a=3,或a=-1,即x+y-3=0或x-y+1=0.这样的直线有3条:2x-y=0,x+y-3=0或x-y+1=0.变式训练过点A(-5,-4)作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5. 答案:2x-5y-10=0,8x-5y+20=0.知能训练课本本节练习1、2、3.拓展提升问题:把函数y=f(x)在x=a 及x=b 之间的一段图象近似地看作直线,设a≤c≤b,证明f(c)的近似值是f(a)+a b ac --[f(b)-f(a)].证明:∵A、B 、C 三点共线,∴k AC =k AB , 即a b a f b f a c c f c f --=--)()()()(.∴f(c)-f(a)= a b ac --[f(b)-f(a)],即f(c)=f(a)+a b ac --[f(b)-f(a)].∴f(c)的近似值是f(a)+a b ac --[f(b)-f(a)].。

人教a高中必修2数学教案

人教a高中必修2数学教案

人教a高中必修2数学教案
课题:函数的基本概念与性质
教学目标:
1. 了解函数的定义,掌握函数的基本概念;
2. 掌握函数的性质,包括奇偶性、周期性等;
3. 能够应用函数的知识解决实际问题。

教学重点:
1. 函数的定义;
2. 函数的基本性质;
3. 函数的应用。

教学难点:
1. 函数奇偶性的判断;
2. 函数的周期性的分析。

教具准备:
1. 教科书、课件;
2. 黑板、彩色粉笔;
3. 习题册。

教学步骤:
Step 1:导入
教师引导学生回顾上节课所学内容,提出今天要学习的函数的基本概念与性质。

Step 2:讲解
1. 讲解函数的定义及函数的符号表示;
2. 介绍函数的奇偶性及如何判断函数的奇偶性;
3. 分析函数的周期性及如何判断函数的周期性。

Step 3:练习
教师布置练习题,让学生独立完成并互相讨论解题思路。

Step 4:总结
教师总结本节课的内容,强调函数的基本概念与性质对于数学学习的重要性。

Step 5:作业布置
布置作业,巩固本节课所学知识。

教学反思:
通过本节课的教学,学生能够初步理解函数的定义及基本性质,并能够应用函数的知识解决实际问题。

在教学中,需要引导学生多思考,培养他们的逻辑思维能力,提高解决问题的能力。

《直线与平面平行的判定》教案-人教A版高中数学必修二

《直线与平面平行的判定》教案-人教A版高中数学必修二

《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

高中数学 (3.2.1 直线的点斜式方程)示范教案 新人教A版必修2

高中数学 (3.2.1 直线的点斜式方程)示范教案 新人教A版必修2

3.2 直线的方程3.2.1 直线的点斜式方程整体设计教学分析直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kx +b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.三维目标1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.重点难点教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.课时安排1课时教学过程导入新课思路1.方程y=kx +b 与直线l 之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l 上任意一点P(x 1,y 1)的坐标是方程y=kx +b 的解.(2)(x 1,y 1)是方程y=kx+b 的解⇒点P(x 1,y 1)在直线l 上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题——直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:一次函数y=kx+b 的图象是一条直线,它是以满足y=kx+b 的每一对x 、y 的值为坐标的点构成的.由于函数式y=kx+b 也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题). 推进新课新知探究提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l 的斜率k 且l 经过点P 1(x 1,y 1),如何求直线l 的方程?③方程导出的条件是什么?④若直线的斜率k 不存在,则直线方程怎样表示? ⑤k=11x x y y --与y-y 1=k(x-x 1)表示同一直线吗? ⑥已知直线l 的斜率k 且l 经过点(0,b),如何求直线l 的方程?讨论结果:①确定一条直线需要两个条件:a.确定一条直线只需知道k 、b 即可;b.确定一条直线只需知道直线l 上两个不同的已知点.②设P(x ,y)为l 上任意一点,由经过两点的直线的斜率公式,得k=11x x y y --,化简,得y -y 1=k(x -x 1).③方程导出的条件是直线l 的斜率k 存在.④a.x=0;b.x=x 1.⑤启发学生回答:方程k=11x x y y --表示的直线l 缺少一个点P 1(x 1,y 1),而方程y -y 1=k(x -x 1)表示的直线l 才是整条直线.⑥y=kx+b.应用示例思路1例1 一条直线经过点P 1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.图1解:这条直线经过点P 1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0,这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力. 变式训练求直线y=-3(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程.解:设直线y=-3(x-2)的倾斜角为α,则tanα=-3,又∵α∈[0°,180°),∴α=120°.∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2.例2 如果设两条直线l 1和l 2的方程分别是l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,试讨论:(1)当l 1∥l 2时,两条直线在y 轴上的截距明显不同,但哪些量是相等的?为什么?(2)l 1⊥l 2的条件是什么?活动:学生思考:如果α1=α2,则tanα1=tanα2一定成立吗?何时不成立?由此可知:如果l 1∥l 2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b 1≠b 2且k 1=k 2,则l 1与l 2的位置关系是怎样的?由学生回答,重点说明α1=α2得出tanα1=tanα2的依据.解:(1)当直线l 1与l 2有斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2时,直线l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)l 1⊥l 2⇔k 1k 2=-1.变式训练判断下列直线的位置关系: (1)l 1:y=21x+3,l 2:y=21x-2; (2)l 1:y=35x,l 2:y=-53x.答案:(1)平行;(2)垂直.思路2例1 已知直线l 1:y=4x 和点P(6,4),过点P 引一直线l 与l 1交于点Q ,与x 轴正半轴交于点R ,当△OQR 的面积最小时,求直线l 的方程.活动:因为直线l 过定点P(6,4),所以只要求出点Q 的坐标,就能由直线方程的两点式写出直线l 的方程.解:因为过点P(6,4)的直线方程为x=6和y -4=k(x -6),当l 的方程为x=6时,△OQR 的面积为S=72;当l 的方程为y -4=k(x -6)时,有R(k k 46-,0),Q (k k 46-,41624--k k ), 此时△OQR 的面积为S=21×k k 46-×41624--k k =)4()23(82--k k k . 变形为(S -72)k 2+(96-4S)k -32=0(S≠72).因为上述方程根的判别式Δ≥0,所以得S≥40.当且仅当k=-1时,S 有最小值40.因此,直线l 的方程为y -4=-(x -6),即x +y -10=0.点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导.变式训练如图2,要在土地ABCDE 上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1 m 2)(单位:m ).图2解:建立如图直角坐标系,在线段AB 上任取一点P 分别向CD 、DE 作垂线,划得一矩形土地. ∵AB 方程为2030x x +=1,则设P(x,20-32x )(0≤x≤30), 则S 矩形=(100-x)[80-(20-32x )] =-32(x-5)2+6 000+350(0≤x≤30), 当x=5时,y=350,即P (5,350)时,(S 矩形)max =6 017(m 2). 例2 设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为x -2y +1=0,y=1,求△AB C 中AB 、AC 各边所在直线的方程.活动:为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图3,设AC 的中点为F ,AC 边上的中线BF :y=1.图3AB 边的中点为E ,AB 边上中线CE :x -2y +1=0.设C 点坐标为(m ,n),则F(23,21++n m ). 又F 在AC 中线上,则23+n =1, ∴n=-1.又C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0.∴m=-3.∴C 点为(-3,-1).设B 点为(a,1),则AB 中点E(213,21++a ),即E(21a +,2). 又E 在AB 中线上,则21a +-4+1=0.∴a=5. ∴B 点为(5,1).由两点式,得到AB ,AC 所在直线的方程AC :x -y +2=0,AB :x +2y -7=0.点评:此题思路较为复杂,应使同学们做完后从中领悟到两点:(1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来.变式训练已知点M (1,0),N (-1,0),点P 为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?解:∵P 点在直线2x-y-1=0上,∴设P (x 0,2x 0-1).∴|PM|2+|PN|2=10(x 0-52)2+512≥512. ∴最小值为512. 知能训练课本本节练习1、2、3、4.拓展提升已知直线y=kx +k +2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k 的取值范围.图4活动:此题要首先画出图形4,帮助我们找寻思路,仔细研究直线y=kx +k +2,我们发现它可以变为y -2=k(x +1),这就可以看出,这是过(-1,2)点的一组直线.设这个定点为P(-1,2).解:我们设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,且α1<α<α2. 则k 1=tanα1<k <k 2=tanα2.又k 1=132-+=-5,k 2=312--=-21, 则实数k 的取值范围是-5<k <-21. 课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.作业习题3.2 A 组2、3、5.设计感想直线方程的点斜式给出了根据已知一个点和斜率求直线的方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从初中代数中的一次函数y=kx +b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.。

《复数的乘除运算》教学设计【高中数学人教A版必修2(新课标)】

《复数的乘除运算》教学设计【高中数学人教A版必修2(新课标)】

《复数的乘除运算》教学设计【高中数学人教A版必修2(新课标)】教学目标:1. 理解复数的乘法运算规则,并能够正确应用复数的乘法进行计算。

2. 理解复数的除法运算规则,并能够正确应用复数的除法进行计算。

3. 掌握复数的乘除运算在平面直角坐标系中的几何意义。

教学重点:1. 复数的乘法运算规则的理解和应用。

2. 复数的除法运算规则的理解和应用。

3. 复数乘除运算的几何意义的理解和应用。

教学难点:1. 复数的乘除运算规则的掌握和运用。

2. 复数乘除运算的几何意义的理解和应用。

教学准备:1. 教师准备:教材、课件、黑板、彩色笔。

2. 学生准备:教材、笔、纸。

教学过程:Step 1 热身导入(5分钟)通过回顾上节课所学的复数基本概念和运算规则,复习复数的基础知识。

Step 2 学习复数的乘法运算规则(20分钟)1. 教师以示例方式介绍复数的乘法运算规则,并解释规则的原理。

2. 教师讲解几种特殊情况的复数乘法运算规则,并通过示例进行演示。

3. 学生跟随教师进行课堂练习,巩固复数的乘法运算规则。

Step 3 学习复数的除法运算规则(20分钟)1. 教师以示例方式介绍复数的除法运算规则,并解释规则的原理。

2. 教师讲解几种特殊情况的复数除法运算规则,并通过示例进行演示。

3. 学生跟随教师进行课堂练习,巩固复数的除法运算规则。

Step 4 复数乘除运算的几何意义(15分钟)1. 教师引导学生思考复数乘法和除法运算在平面直角坐标系中的几何意义。

2. 教师演示并讲解复数乘法运算和除法运算的几何意义,并通过实例进行说明。

3. 学生完成几个与几何意义相关的练习题,巩固对复数乘除运算几何意义的理解。

Step 5 拓展应用(10分钟)1. 学生进行一些综合性的习题练习,巩固复数的乘除运算。

2. 学生通过解决实际问题,应用复数的乘除运算进行计算。

Step 6 总结反思(5分钟)教师对本节课的内容进行总结,并与学生一起回顾乘除运算的关键知识点。

《概率的基本性质》教学设计【高中数学人教A版必修2(新课标)】

《概率的基本性质》教学设计【高中数学人教A版必修2(新课标)】

《概率的基本性质》教学设计1.知识与技能(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P (A )≤1;2)当事件A 与B 互斥时,满足加法公式:P (A ∪B )= P (A )+ P (B );3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )= P (A )+ P (B )=1,于是有P (A )=1—P (B );(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系。

2.过程与方法通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。

3.情感态度与价值观通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

【教学重点】概率的加法公式及其应用,事件的关系与运算。

【教学难点】概率的加法公式及其应用,事件的关系与运算。

(一)新课导入全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是0.5和0.6,则该省夺取该项冠军的概率是0.5+0.6吗?为什么?为解决这个问题,我们来学习概率的基本性质。

(二)新课讲授问题:在抛掷骰子试验中,我们用集合形式定义如下事件:C 1={出现1点},C 2={出现2点},C 3={出现3点},C 4={出现4点},C 5={出现5点},C 6={出现6点},D 1={出现的点数不大于1},D 2={出现的点数大于4},D 3={出现的点数小于6},E ={出现的点数小于7},F ={出现的点数大于6},G ={出现的点数为偶数},H ={出现的点数为奇数},等等。

思考1:上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?答:E 是必然事件;F 是不可能事件;其余是随机事件。

思考2:如果事件C 1发生,则一定有哪些事件发生?反之,成立吗?在集合中,集合C 1与这些集合之间的关系怎样描述?答:如果事件C 1发生,则一定发生的事件有D 1,D 3,E ,H ,反之,如果事件D 1,D 3,E ,H 分别成立,能推出事件C 1发生的只有D 1.所以从集合的观点看,事件C 1是事件D 3,E ,H 的子集,集合C 1与集合D 1相等。

高中数学人教A版必修二教案:3.2.2直线的两点式方程

高中数学人教A版必修二教案:3.2.2直线的两点式方程
教师指出:a, b 的几何意义和截 点式的特殊
距方程的概念.
情形.
教师给出中点坐标公式,学生
根据自己的理解,选择适当方法求
出边 BC 所在的直线方程和该边上中
线所在直线方程.在此基础上,学生
交流各自的作法,并进行比较.
4、例 4
例 4 解析:
已知三角形的三个顶点
A(–5,0 ),B (3, –3),C (0,2),求
时,方程
使学生在已 有的知识基 础上获得新 结论,达到
求通过这两点的直线方程.
温故知新的
y y1 y2 y1
x x1 x2 x1
(x1 x2 , y1 y2 )
目的。
由于这个直线方程由两点确定,
所以我们把它叫直线的两点式方程,
简称两点式(two-point form).
使学生
教师引导学生通过画图、观察 懂得两点式
+ 3y = 0.
【评析】此题运用了直线方程的截距式,在用截距时,必须注意适用条件:a、b 存在
且都不为零,否则容易漏解.
例 2 如图,某地汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,
则需要购买行李票,行李票费 y(元)与行李重量 x (kg)的关系用直线 AB 的方程表示,试
求:
(1)直线 AB 的方程;
使学生
3、例 3 已知直线 l 与 x 轴的交点 为 A(a,0),与 y 轴的交点为 B (0,b),其中 a≠0,b≠0. 求直线 l 的方程.
的条件有什么特点?可以用多少方 学会用两点 法来求直线 l 的方程?那种方法更为 式求直线方 简捷?然后求出直线方程: x y 1 程;理解截
a b 距式源于两 点式,是两

高中数学:全套教案新课标人教A版必修2

高中数学:全套教案新课标人教A版必修2

高中数学:全套教案新课标人教A 版必修2讲义1: 空 间 几 何 体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:〔一〕、新课导入:1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.〔二〕、讲授新课:1. 教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例〔三棱镜、方砖、六角螺帽〕.结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A’B’C’D’E’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. →讨论:棱锥如何分类及表示? ⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2假设干图形,找出相应几何体;三、巩固练习:1. 圆锥的轴截面等腰三角形的腰长为5cm,,面积为12cm,求圆锥的底面半径.2.圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为462cm ,侧面等腰三角形面积为62cm ,求正四棱锥侧棱.〔四〕、教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?②定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱〔母线〕、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③讨论:棱台、圆台分别具有一些什么几何性质?★棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?〔以台体的上底面变化为线索〕2.教学球体的结构特征:①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→球的表示.②讨论:球有一些什么几何性质?③讨论:球与圆柱、圆锥、圆台有何关系?〔旋转体〕棱台与棱柱、棱锥有什么共性?〔多面体〕3. 教学简单组合体的结构特征:①讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?②定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4. 练习:圆锥底面半径为1cm cm,其中有一个内接正方体,求这个内接正方体的棱长. 〔补充平行线分线段成比例定理〕〔五〕、巩固练习:1. 长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 那么长、宽、高分别为多少?2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3. 假设棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

新课标人教A版高中数学必修2教学案(完整版)

新课标人教A版高中数学必修2教学案(完整版)

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

1.1.1平面)示范教案新人教A版必修2-1.1.1柱、锥、台、球的结构特征-高中数学必修二

1.1.1平面)示范教案新人教A版必修2-1.1.1柱、锥、台、球的结构特征-高中数学必修二
教学策略:借助实物模型、图形软件绘制和三维打印技术,让学生能够直观地观察和操作空间几何体,提高空间想象力。
(2)空间几何体的性质证明:在学习过程中,学生需要掌握空间几何体的性质证明,但可能会感到困难和复杂。
教学策略:通过引导学生运用已知知识和几何直觉,逐步证明几何体的性质,培养学生的逻辑推理能力。
(3)空间几何体的应用:学生需要将所学知识应用到实际问题中,解决实际问题。
-《空间几何体的可视化》:介绍如何利用计算机图形软件绘制和展示空间几何体,提高学生的空间想象力。
2.鼓励学生进行课后自主学习和探究:
-学生可以利用网络资源,查找更多关于空间几何体的知识,如空间几何体的历史发展、著名数学家的贡献等。
-学生可以尝试解决一些与空间几何体相关的实际问题,如建筑设计中的空间利用、物体体积的计算等。
3.信息化资源:
-数学软件和图形软件(如GeoGebra、Mathematica等)
-在线数学教育平台(如Khan Academy、Coursera等)
-教育视频资源(如YouTube教育频道、Netflix教育纪录片等)
4.教学手段:
-讲授法:教师对几何体的定义、性质和证明进行讲解,引导学生理解和掌握。
3.对于学生的作业,给予积极的评价和鼓励,以提高学生的学习兴趣和自信心。
4.对于作业中出现的共性问题,在课堂上进行讲解和讨论,帮助学生共同提高。
5.对于学生提出的问题,给予耐心的解答和指导,帮助学生解决学习中的困惑。
情感升华:
结合柱、锥、台、球的结构特征内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习柱、锥、台、球的结构特征的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)

《平面向量的坐标运算》教学设计【高中数学人教A版必修2(新课标)】

《平面向量的坐标运算》教学设计【高中数学人教A版必修2(新课标)】

《平面向量的坐标运算》教学设计 本节内容包括“平面向量的正交分解及坐标表示、坐标运算、平面向量共线的坐标表示”,这些内容是上一节所讨论问题的深入,为平面向量的坐标表示奠定理论基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算.(1)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示;会用坐标表示平面向量的线性运算;能用坐标表示向量共线的条件.(2)体会平面向量的正交分解是向量分解中常用且重要的一种分解;引入向量的坐标表示可使向量运算代数化;不仅向量的线性运算可以通过坐标来实现,向量的位置关系也可以通过坐标研究.(3)建立数与形的联系,利用几何图形描述问题,借助几何直观理解问题;理解运算对象,掌握运算法则,探究运算思路,求得运算结果.【问题1】如图,光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行 于斜面的力1F 的作用,沿斜面下滑;一是木块产生垂直于斜面的压力2F .问重力G 与力1F 和2F 有什么关系?【设计意图】通过学生熟悉的力的分解问题,引出本节的主题,由此可以使学生感受到向量的正交分解与现实的联系.任意一个向量可以分解为两个不共线的向量,实际上是平面向量基本定理的一个应用.【师生活动】(1)学生:12G F F =+.(2)老师:由平面向量基本定理,对平面上的任意向量a 均可以分解为不共线的两个向量11a λ和22a λ,使1122a a a λλ=+.(3)老师:在不共线的向量中,垂直是一种重要的特殊情形.把一个向量分解为两个互相垂◆ 教学过程◆ 教学目标◆ 教材分析 G F 1 F 2直的向量,叫做向量正交分解.正交分解是向量分解中常见的一种情形.【问题2】在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角 坐标平面内的每一个向量,如何表示呢?【设计意图】通过类比平面直角坐标系中点用有序数对表示,提示学生思考在直角坐标系中 表示一个平面向量的方法.【师生活动】(1)老师:结合平面向量基本定理,如何在平面直角坐标系中选两个向量作为基底?(2)学生:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.(3)教师:对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数,x y , 使得a xi y j =+.所以a 就由,x y 唯一确定.有序数对(,)x y 叫做向量的坐标,记作 (,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(,)a x y =叫做向量的坐标表示.【问题3】设OA xi y j =+,则向量OA 的坐标与点A 的坐标有什么关系?【设计意图】使学生知道向量的的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.【师生活动】(1)老师:O(2)学生:向量OA 的坐标(,)x y 就是终点A 的坐标;反过来,终点A 的坐标(,)x y 也就是向量OA 的坐标.(3)老师:在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示. 例1.如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.【设计意图】平面向量正交分解的应用,要充分运用图形之间的几何关系,求向量的坐标.【问题4】已知1122(,),(,)a x y b x y ==,你能得出,,a b a b a λ+-的坐标吗?【设计意图】运用向量线性运算的交换律、结合律、分配律,推导两个向量的和、差、以及 数乘运算的坐标运算.(1)学生1:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++1212(,)a b x x y y ∴+=++.(2)学生2:11221212()()()()a b x i y j x i y j x x i y y j -=+-+=-+-1212(,)a b x x y y ∴-=--.(3)学生3:1111()a x i y j x i y j λλλλ=+=+11(,)a x y λλλ∴=.(4)教师:以上推导过程体现了向量的坐标形式与向量形式的相互转化.练习1:已知1122(,),(,)A x y B x y ,求AB 的坐标.(5)学生:22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.(6)教师:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(7)教师:如何在平面直角坐标系中标出坐标为2121(,)x x y y --的点P ?有什么发现?(8)学生:向量AB 的坐标与以原点为起点、点P 为终点的向量的坐标是相同的.(9)教师:试求向量AB 的模长.(10)学生:222121()()AB OP x x y y ==-+-.例2. 如图,已知ABCD 的三个顶点,,A B C 的坐标分别是(2,1)(1,3)(3,4--、、),试求顶点D 的坐标.(1)学生:利用AB DC =,求出点D 的坐标.(2)学生:利用OD OB BD OB BA BC =+=++,求出点D 的坐标.(3)学生:利用11()()22OM OB OD OA OC =+=+,求出点D 的坐标. 【设计意图】让学生熟悉向量的坐标运算.解题过程中,关键是充分利用图形中各线段的位 置关系(主要是平行关系),数形结合,将顶点的坐标表示为已知点的坐标.【问题5】设1122(,),(,)a x y b x y ==,其中0b ≠.若a 与b 共线,这两个向量的坐标会有 什么关系?【设计意图】向量的线性运算可以通过坐标运算实现,引导学生思考向量的共线、垂直的坐 标表示.【师生活动】(1)学生:若a 与b 共线,则当且仅当存在实数λ,使得a b λ=,从而1122(,)(,)x y x y λ=,所以1212x x y y λλ=⎧⎨=⎩ 消去λ得到12210x y x y -=. 例3.已知(11)(13),(25A B C --,,,,),试判断A B C ,,三点的位置关系.【设计意图】引导学生三点共线的实质是从同一点出发的两个向量共线.(1)学生:口述解题思路,书写解题过程.(2)老师:引导学生总结思想方法.例4.设点P 是线段12P P 上的一点,12P P 、的坐标分别是1122(,)(,)x y x y 、. (1)当点P 是线段12P P 的中点时,求点P 的坐标;(2)当点P 是线段12P P 的一个三等分点时,求点P 的坐标.【设计意图】本例实际上是给出了线段的中点坐标公式,线段的三等分点坐标公式.引导学生推导线段的定比分点公式.利用向量共线的坐标表示求线段的定比分点坐标公式,只要通过简单的向量线性运算就可实现,这是向量的坐标运算带来的优越性.【师生活动】(1)学生:利用121()2OP OP OP =+,求得点P 的坐标. (2)学生:利用121233OP OP OP =+(或122133OP OP OP =+),求得点P 的坐标. (3)老师:三等分点有两种可能的位置,如果学生没有回答全面,要引导学生讨论补充.(4)老师:当12PP PP λ=时,点P 的坐标是什么? (5)学生:由学生类比求得中点坐标及三等分点坐标的过程,给出一般定比分点的坐标公式,进一步熟练向量的坐标运算,体会其中的数学思想方法.【问题6】你能够总结一下本节课我们学习的内容吗?【设计意图】课堂小结,由学生完成,概括本节课所学习的基本概念和运算法则,由教师提炼和总结本节课获得基本原理的数学研究方法.【习题检测】1.课中检测:(完成练习,拍照上传)练习1.已知点(0,0)O ,向量(2,3),(6,3),OA OB ==-点P 是线段AB 的三等分点,求点P 的坐标.练习2.已知(2,3),(4,3)A B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐 标.2.课后检测请完成课后练习,检测学习效果.。

人教版A版高中数学必修二全册课件【完整版】

人教版A版高中数学必修二全册课件【完整版】

人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。

计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。

2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。

计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。

3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。

斜截式:y = kx + b,其中k为直线斜率,b为直线截距。

一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。

4. 两条直线的位置关系平行:两条直线的斜率相等。

垂直:两条直线的斜率互为负倒数。

相交:两条直线的斜率不相等。

二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。

2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。

3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

4. 圆与直线的位置关系相离:直线与圆没有交点。

相切:直线与圆有且仅有一个交点。

相交:直线与圆有两个交点。

三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。

2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。

3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。

高中数学两直线平行与垂直的判定教案新课标人教A版必修2

高中数学两直线平行与垂直的判定教案新课标人教A版必修2

§两直线平行与垂直的判定教学设计一.学生分析:基于初中学生对两直线的位置关系的了解及上堂课学习的直线的倾斜角和斜率,来引进本堂新课。

虽然学生基础不太好,但学习积极性较高。

二.教材分析:1.两条直线平行和垂直的条件是解析几何中的一个重点,要求学生能熟练掌握,灵活运用。

2. 启发学生把研究两直线的平行与垂直问题转化为考查两直线的斜率的关系问题3. 对于两直线中有一条直线斜率不存在的情况课本上没有考虑,上课时要注意解决好。

三.教学目标:1.知识教学点:掌握两条直线平行与垂直的条件,会运用条件判断两直线是否平行或垂直。

2.能力训练点:通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.3.学科渗透点:通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.四.教学重点与难点:教学重点:两条直线平行和垂直的条件和应用。

教学难点:两条直线平行和垂直条件的探究过程。

↓六.教学情境设计:1.创设情景,揭示课题上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 并推导出了斜率的坐标计算公式。

现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直?2.探究两直线平行的条件及两直线平行条件的应用.探究1: 如果不重合两条直线互相平行,它们的倾斜角有什么关系?斜率呢?如果L1// L2 (如图),发现那么它们的倾斜角相等:即α1=α2.∴tanα1=tanα2.那么 k1=k2.反过来,如果两条直线的斜率相等,k1=k2,那么tanα1=tanα2由于0°≤α1<180°, 0°≤α2<180°,∴α1=α2.∵两直线不重合,∴L1// L2.要注意,上面的结论是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.因此加上两条直线斜率都不存在的这种特殊情况也平行,有以下结论1.假设直线L1与L2的斜率都存在,分别为k1、k2,那么L1 // L2 k1= k22.假设直线L1与L2的斜率都不存在,其倾斜角为900,那么L1// L2例1:A(2,3), B(-4,0), P(-3,1), Q(-1,2),试判断直线BA与PQ的位置关系, 并证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。

强调斜二测画法的步骤。

练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。

教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。

(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性。

二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。

2、教学用具:实物几何体,投影仪四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。

(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。

3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。

(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。

如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。

(s ’,s 分别我上下底面面积,h 为台柱高)4、例题分析讲解(课本)例1、 例2、 例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。

相关文档
最新文档