串口通信电路设计
串口通信电路设计
2、PCF8563:
case 2: hou = (read_byte_8563() ) & 0x3F;break;//获取小时 case 3: day = (read_byte_8563() ) & 0x3F;break;//获取日 case 4: week = (read_byte_8563() ) & 0x07; if(week==0)week=7;break;//获取星期 case 5: mon = (read_byte_8563() ) & 0x9F;break;//获取月 case 6: year = (read_byte_8563() ) & 0xFF;break;//获取年 default:break;
somenop;
} sda_8563 = 1; 字节后释放总线 scl_8563 = 0; 个脉冲,接收应答位 return (a); } //读完一个 //加上第九
其他相关程序编写模块:
1、键盘扫描应用程序 2、数码管或者液晶应用程序 3、STC89C52单片机定时器中断应用 程序
4、系统模块间的整合与测试
具体制作过程,同学们自行落实,可以是 创新基地、可以是机房、可以是宿舍等。
硬件调试部分:——主要熟悉和掌握各模块的原理图 软件调试部分:
基于FPGA的串口通信设计与实现
置和输人数据计算出响应
的奇偶校验位,它是通过
纯组合逻辑来实现的。
2.6总线选择模块
总线选择模块用于
选择奇偶校验器的输入是
数据发送总线还是数据接
收总线。
2.7计数器模块
计数器模块的功能
是记录串行数据发送或者
接收的数日,在计数到某
数值时通知UART内核模
块。 3 UART程序设计 UART完整的工作流程可以分为接收过程
关键词:FPGA:UART:RS232
引言 串行接口的应用非常广泛,为实现串口通 信功能一般使用专用串行接口芯片,但是这种 接口芯片存在体积较大、接口复杂以及成本较 高的缺点,使得硬件设计更加复杂,并且结构与 功能相对固定,无法根据设计的需要对其逻辑 控制进行灵活的修改。介绍了一种采用FPGA 实现串口通信的方法。 1串口通信协议 对一个设备的处理器来说,要接收和发送 串行通信的数据,需要一个器件将串行的数据 转换为并行的数据以便于处理器进行处理,这 种器件就是UART(Universal Asynchronous Re— ceiver/Transmitter)通用异步收发器。作为接iSl的 一部分,UART提供以下功能: 1.1将由计算机内部传送过来的并行数据 转换为输出的串行数据流; 1.2将计算机外部来的串行数据转换为字 节,供计算机内部使用并行数据的器件使用; 1.3在输出的串行数据流中加入奇偶校验 位,并对从外部接收的数据流进行奇偶校验: 1.4在输出数据流中加入启停标记,并从 接收数据流中删除启停标记。 2 UART模块设计 UART主要由UART内核、信号检测器、移 位寄存器、波特率发生器、计数器、总线选择器 和奇偶校验器7个模块组成。(见图1) 2.1 UART内核模块 UART内核模块是整个设计的核心。在数 据接收时,UART内核模块负责控制波特率发 生器和移位寄存器同步的接收并且保存 RS一232接收端口上的串行数据。在数据发送 时,UART内核模块首先产生完整的发送序列, 之后控制移位寄存器将序列加载到移位寄存器 的内部寄存器里,最后再控制波特率发生器驱 动移位寄存器将数据串行输出。 2_2信号检测模块 信号检测器用于对RS一232的输入信号进 行实时检测,一旦发现新的数据则立即通知 UART内核。需要注意的是,这里所说的 RS一232输入输出信号都指经过电平转换后的 逻辑信号,而不是RS一232总线上的电平信号。 2_3移位寄存器模块 移位寄存器的作用是存储输入或者输出 的数据。 2.4波特率发生器模块 由于RS一232传输必定是工作在某种波特 率下,比如9600,为了便于和RS一232总线进行 同步,需要产生符合RS一232传输波特率的时 钟。 2.5奇偶校验器模块 奇偶校验器的功能是根据奇偶校验的设
uart串口通信电路设计 -回复
uart串口通信电路设计-回复UART(通用异步收发传输)是一种常用的串口通信协议,可以实现设备之间的数据传输和通信。
在本文中,将详细介绍UART串口通信电路的设计步骤。
一、什么是UART串口通信电路?UART串口通信电路是一种数字电路,用于将串行数据转换为并行数据,实现设备之间的数据传输和通信。
UART串口通信电路通常由发送电路和接收电路两部分组成。
发送电路:发送电路将并行数据转换为串行数据,并对数据进行格式化。
它通常由一个发送缓冲器、一个发送时钟和控制逻辑组成。
接收电路:接收电路将串行数据转换为并行数据,并对数据进行解码和处理。
它通常由一个接收缓冲器、一个接收时钟和控制逻辑组成。
二、UART串口通信电路的设计步骤1. 确定通信参数在设计UART串口通信电路之前,首先需要确定通信参数,包括波特率、数据位数、校验位数和停止位数等。
这些参数将决定串口通信的速率和精度。
2. 设计发送电路发送电路的主要任务是将并行数据转换为串行数据,并将数据发送到接收设备。
设计发送电路时,需要考虑以下几点:(1)发送缓冲器:发送缓冲器用于存储待发送的数据。
它通常由一个FIFO (先进先出)缓冲器实现,可以提高通信的效率。
(2)时钟和控制逻辑:发送电路需要一个时钟信号来同步数据传输,并且需要控制逻辑来控制数据的发送和处理。
(3)格式化:发送电路需要对数据进行格式化,包括数据位、校验位和停止位的配置。
格式化的目的是提高数据的准确性和可靠性。
3. 设计接收电路接收电路的主要任务是将串行数据转换为并行数据,并将数据传输到接收设备。
设计接收电路时,需要考虑以下几点:(1)接收缓冲器:接收缓冲器用于存储接收到的数据。
它通常由一个FIFO 缓冲器实现,可以提高数据的接收效率。
(2)时钟和控制逻辑:接收电路需要一个时钟信号来同步数据传输,并且需要控制逻辑来控制数据的接收和处理。
(3)解码和处理:接收电路需要对接收到的数据进行解码和处理,包括校验数据的正确性和提取有效数据。
单片机串口通信设计方案
单片机串口通信设计方案1.绪论1.1课题背景及意义目前,单片机的发展速度大约每两、三年要更新一代,集成度增加一倍,功能翻一番。
其发展速度之快、应用范围之广已达到了惊人的地步,它已渗透到生产和生活的各个领域,应用非常广泛。
在汽车、通信、智能仪表、家用电器和军事设备的智能化以及实时过程控制等方面,单片机都扮演着非常重要的角色[1]。
因此单片机的设计开发具有广阔的前景。
所以,对于电气类学生而言,学习一种单片机的开发是十分必要的。
而51系列的单片机,随着半导体技术的发展,其处理速度更快,性能更优越,在工业控制领域上占据十分重要的地位,通过对51系列单片机的学习而掌握单片机开发的过程是一种不错的选择。
然而单片机是一门综合性、实践性都很强的学科,其学习涉及的实验环节比较多,硬件设备投入比较大,对于大多数人而言很难投入大笔资金去购买实验器件。
而且要进行硬件电路测试和调试,必须在电路板制作完成、元器件焊接完毕之后进行,但这些工作费时费力。
因此引入EDA软件仿真系统建立虚拟实验平台,不仅可以大大提高单片机的学习效率,而且大大减少硬件设备的资金投入,同时降低对硬件设备的维护工作。
EDA设计思路是:从元器件的选取到连接、直至电路的调试、分析和软件的编译,都是在计算机中完成,所用的工作都是虚拟的。
虽然现在的电路设计软件已经很多,诸如PROTEL、ORCAD、EWB 、Multisim等,不过这些软件之间的差别都不大:都有原理图和PCB制作功能,都能进行诸如频率响应,噪音分析等电路分析,主要用于模拟电路、数字电路、模数混合电路的性能仿真与分析,但对于单片机设计及软件编程,最重要的是两者的联调,这些软件都无法实现,所以造成了单片机系统设计周期长、设计费用高等缺点[2]。
新款的EDA软件Proteus解决了上述软件的不足,成为目前最好的一款单片机学习仿真软件。
Proteus 软件是由英国Lab Center Electronics 公司开发的EDA 工具软件。
双机间的串口双向通信设计
单片机应用课程设计任务书单片机应用课程设计任务书学院名称:计算机与信息工程学院班级名称:学生姓名:学号:题目:双机间的串口双向通信设计指导教师:起止日期:目录一、绪论 (5)1.1设计背景 (5)二、相关知识 (5)2.1 双机通信简介 (5)2.2 单片机A T89C51介绍 (5)2.3串口通信 (6)三、总体设计 (7)3.1 设计要求 (7)四、硬件设计 (8)4.1.整体电路 (8)4.2复位电路 (8)4.3.控制电路 (9)五、软件设计 (9)5.1甲机软件设计 (10)5.2乙机软件设计 (11)六、测试及运行 (13)心得与感受 (15)参考文献 (16)指导教师评语 (17)附录:源程序 (18)一、绪论1.1设计背景随着电子技术的飞速发展,单片机也步如一个新的时代,越来越多的功能各异的单片机为我们的设计提供了许多新的方法与思路。
对于一些场合,比如:复杂的后台运算及通信与高实时性前台控制系统、软件资源消耗大的系统、功能强大的低消耗系统、加密系统等等。
如果合理使用多种不同类型的单片机组合设计,可以得到极高灵活性与性能价格比,因此,多种异型单片机系统设计渐渐成为一种新的思路,单片机技术作为计算机技术的一个重要分支,由于单片机体积小,系统运行可靠, 数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。
但在一些相对复杂的单片机应用系统中,仅仅一个单片机资源是不够的,往往需要两个或多个单片机系统协同工作。
这就对单片机通信提出了更高要求。
单片机之间的通信可以分为两大类:并行通信和串行通信。
串行通信传输线少,长距离传输时成本低,且可以利用数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。
所以本系统采用串行通信来实现单片机之间可靠的,有效的数据交换。
二、相关知识2.1 双机通信简介两台机器的通信方式可分为单工通信、半双工通信、双工通信,他们的通信原理及通信方式为:1.单工通信:是指消息只能单方向传输的工作方式。
7Zigbee实验报告《串口通讯-发送字符串》
签字: 年 月 日
相关寄存器:
,相关寄存器UxCSR, UxCSR, UxGCR. UxBUF, UxBAUD, CLKCONCMD,CLKCONSTA如
第二页
实验内容与步骤
实验步骤
第三页
实验内容与步骤
CC2530配置串口的一般步骤:1、配置10,使用外部设备功能。此处配置PO-2和Po3用作串口UARTO2、配置相应串口的控制和状态寄存器。3、配置串口工作的波特率。
2019——2020学年第二学期
专业
班级
讯-发送字符串
实验目的
1)、通过实验掌握CC2530芯片串口配置与使用
2)、观察D2串口发送指示灯的变化,每发送一串字符闪一次
注:嵌入式开发中,当程序能跑起来后,串口是第一个要跑起来的设备,所有的工作状态,交互信息都会从串口输出
实验总结
该实验完成串口的基本通讯。在串口通讯中一般有两种方式来接受数据种是查询法、一种是中断法。查询法就是要串口一致处于等待状态,看串口上是不是有数据,一旦数据接收完毕,就开始对接收的数据进行相应的操作。这个方法需要让程序一致等待串口,所以这种方法效率还是比较低的。中断法师运用串口的中断服务子程序来完成的,如果串口上有数据的话,那么会调用中断向量,中断向量把程序指针指到相应的中断服务服务程序上。在中断服务程序完成之后程序只能还会跳转到中断之前的地址。这个方法的效率比较高,但是从稳定性上面讲,这种方法不如查询法。本实验用的是中断法。
实验内容与步骤
实验内容:
相关电路图:
注:图中OR的电阻是空贴的哦
PO 2,PO 3配置为外设功能时: PO2为Rx, PO3为TX. USARTO和USART1是串行通信接口,它们能够分别运行于异步UART模式或者同步SPI模式。两个USART具有同样的功能,可以设置在单独的1/0引脚。此种串口设计是没有流控功能的
甲乙两机串口通信双向控制系统软件设计与系统仿真课案
case 0: transfer('D');
led1=1; led2=1;
break;
case 1: transfer('A');
led1=0; led2=1;
break;
case 2: transfer('B');
led1=1; led2=0;
break;
case 3: transfer('C');
1.
题目设计要求:
甲乙两机串口双向通信设计
要求:利用51单片机,RS232芯片,LED灯,数码管进行双机通信设计。甲机可按键控制乙机的LED显示;乙机可按键控制甲机的数码管显示。完成以下设计环节:
1)使用Altium Desinger开发工具,设计电路原理图。
2)使用Uvision2开发平台,采用C语言或汇编语言设计软件程序。
TMOD=0x20;//定时器T1工作在方式2
PCON=0x00;
TH1=(256-253)/32;
TL1=(256-253)%32;
RI=0;
TI=0;
TR1=1;
IE=0x90;//串行口中断打开
while(1)
{
if(key==0)
{
while(key==0);
num=(num+1)%4;
}
switch(num)
图2.1总体框图
双机通信系统通过甲乙单片机的串行口来实现数据的收发。
甲单片机通过开关电路来启动发送程序,甲机当开关按下时向乙机发送一个数据,乙机上蜂咛器发出声音提示有数据发送过来,乙机通过接收中断来接收和开关判断是否接收甲机发送过来的数据,并通过编写好的数据代码在8个发光二极管上显示主机发送过来的数据。
基于ARM的串口通信
基于ARM的串口通信1 串口通信技术的研究背景与前景1.1 计算机RS-232串行通信接口计算机一般提供了2个25针或者9针的RS-232标准串行口,简称COM1和COM2。
我们还可以通过插通信卡来获得额外的RS-232标准串行口。
利用这些串口可以与其他数字设备进行一般的数据通信,计算机串行接口主要应用于远程通信和低速输出设备。
由于串行数据通信传输线条数最少。
而且有许多较便宜的专用芯片来实现它,发送和接受器也简单。
因而对数据传输速度不高的计算机和数字设备间的进程通信,多采用串行通信实现。
随着计算机的迅速普及和计算机控制技术的发展,计算机被广泛应用于控制领域之中。
在控制系统中,下位机主要完成对现场数据采集和对设备一级的监控,上位机则要完成对整个系统的采集、分析、处理和控制以及数据、图形显示、打印、人机对话等工作。
上位机与下位机大多是通过PC机的RS-232串行接口实现通信。
文中的ARM开发板与PC机之间也是通过RS-232串行接口实现通信。
1.2 其他串行通信协议CAN总线的概念:CAN是控制器局域网络(Controller Area Network, CAN)的简称,是ISO国际标准化的串行通信协议。
CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。
CAN总线的特点有以下几个方面。
1. 完成对通信数据的成帧处理CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。
2. 使网络内的节点个数在理论上不受限制CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。
采用这种方法的优点可使网络内的节点个数在理论上不受限制,这可使不同的节点同时接收到相同的数据。
3. 可在各节点之间实现自由通信CAN总线采用了多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点。
单片机串行通信
1.单片机串行通信的概述在通信领域内,有两种数据通信方式:并行通信和串行通信。
随着计算机网络化和微机分级分布式应用系统的发展,通信的功能越来越重要。
通信是指计算机与外界的信息传输,既包括计算机与计算机之间的传输,也包括计算机与外部设备,如终端、打印机和磁盘等设备之间的传输。
串行通信是指使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。
其只需要少数几条线就可以在系统间交换信息,特别使用于计算机与计算机、计算机与外设之间的远距离通信。
使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
在串行通信中,把通信接口只能发送或接收的单向传送办法叫单工传送;而把数据在甲乙两机之间的双向传递,称之为双工传送。
在双工传送方式中又分为半双工传送和全双工传送。
半双工传送是两机之间不能同时进行发送和接收,任一时该,只能发或者只能收信息。
51系列单片机有一个可编程的全双工串行通信接口,它可作异步接收发送器用,也可做同步移位寄存器用,其帧格式可有8位、10位或11位,并能设置各种波特率,给使用带来很大的灵活性。
51系列单片机有两个物理上独立的接收、发送缓冲器SBUF,它们只占用同一地址99H,可同时发送、接送数据。
发送缓冲器只能写入,不能读出,接收缓冲器只能读出、不能写入。
串行发送接收的速率与波特率发生器产生的移位脉冲同频。
51系列单片机用定时器T1或直接用CPU时钟作为通信波特率发生器的输入,在串行接口的不同工作方式中,波特率发生器从两个输入信号中选择一个分频,产生移位脉冲来同步串口的接收和发送,移位脉冲的速率即是波特率。
接收器是双缓冲结构,在前一个字节被从接收缓冲器SBUF读出之前,第二字节即开始被接收。
但是,若在第二个字节接收完毕后,前一个字节还未被CPU 读取的话,第二个字就会覆盖第一个字节,造成第一个字节的丢失。
接收器是双缓冲结构,串行口的发送和接收都是以特殊功能寄存器SBUF的名义进行读或写的。
基于FPGA的串口通信电路设计
基于FPGA的串口通信电路设计[摘要]串行通信接口是一种应用广泛的通信接口。
目前,大部分处理器都集成了支持rs-232接口的通用异步收发器,本文基于fpga开发板设计了一个串口数据采集和处理程序,介绍了用verilog hdl硬件描述语言来开发波特率发生器、接收模块和发送模块这三个模块,以及系统各个模块的具体设计方法和原理,用quartus ii软件进行仿真并给出结果,分别验证各个模块的正确性及用fpga实现串行通信的可行性。
[关键词]串行通信 rs-232 verilog hdl fpga中图分类号:tn 文献标识码:a 文章编号:1009-914x(2013)08-320-011.fpga概述fpga现场可编程逻辑门阵列是数字系统设计的主要硬件平台,其主要特点是完全由用户通过软件进行配置和编程,从而完成某种特定的功能,且可以反复擦写。
fpga具有运算速度快、根据需求在内部嵌入硬/软ip核,以及反复编程,擦写,使用的特点,被广泛应用于通信,数字信号处理,工业控制等领域。
2.rs232串口通信接口串口即串行数据接口主要用于网管控制或主业务数据的传输,支持数据的双向传输,速率9600-115200bps,即可以完成和pc的通信,也可以完成与带有标准串口的外设相连。
其中串口接口分为带插孔和带插针的两种,其中插针端称为dce,插孔端称为dte。
3.串口通信的verilog hdl实现本设计要求在fpga开发板上实现波特率为115200bps,停止位为1比特、1比特校验位的串口通信,并要求和pc机通过串口调试助手完成双向通信。
3.1波特率发生器模块的verilog hdl实现波特率发生器实际上是一个分频器,从给定的系统时钟频率得到要求的波特率。
一般来讲,为了提高系统的容错性处理,要求波特率发生器的输出时钟为实际串口数据波特率的n倍,n可以取值为8、16、32、64等。
在本设计中,系统的时钟为50mhz,取n为16,则分频系数为50000000/(16*115200)=27.127,取整为27。
usb转ttl电路图大全(RS232串口CH340TPL2303)
usb转ttl电路图大全(RS232串口CH340TPL2303)TXD:发送端,一般表示为自己的发送端,正常通信必须接另一个设备的RXD。
RXD:接收端,一般表示为自己的接收端,正常通信必须接另一个设备的TXD。
正常通信时候本身的TXD永远接设备的RXD!自收自发:正常通信时RXD接其他设备的TXD,因此如果要接收自己发送的数据顾名思义,也就是自己接收自己发送的数据,即自身的TXD直接连接到RXD,用来测试本身的发送和接收是否正常,是最快最简单的测试方法,当出现问题时首先做该测试确定是否产品故障。
也称回环测试。
电平逻辑:TTL电平:通常数据表示采用二进制,规定+5V等价于逻辑“1”,0V等价于逻辑“0”,称作TTL信号系统,是正逻辑RS232电平:采用-12V到-3V,等价于逻辑“0”,+3V到+12V 的逻辑电平,等价于逻辑“1”,是负逻辑的。
产品说明:1、主芯片为CP2102,安装驱动后生成虚拟串口2、USB取电,引出接口包括3.3V(《40mA),5V,GND,TX,RX,信号脚电平为3.3V,正逻辑3、板载状态指示灯、收发指示灯,正确安装驱动后状态指示灯会常亮,收发指示灯在通信的时候会闪烁,波特率越高亮度越低4、支持从300bps~1Mbps间的波特率5、通信格式支持:1)5,6,7,8位数据位;2)支持1,1.5,2停止位;3)odd,even,mark,space,none校验6、支持操作系统:windowsvista/xp/server2003/200,MacOS-X/OS-9,Linux7、USB头为公头,可直接连接电脑USB口8、贴片元件为SMT工艺生产,质量稳定9、不含USB头体积为:33*15(mm)模块与单片机请遵循以下连接:usb转ttl电路图(一):USB转3线制RS232串口图中也是USB转3线制RS232串口,只是输出RS232信号的电平幅度略低。
CH340的R232引脚为高电平,启用了辅助RS232功能,只需外加二极管、三极管、电阻和电容就可代替7.2.节中专用的电平转换电路U5,所以硬件成本更低。
DSP串口通信
摘要:基于嵌入式系统发展的需要,提出TMS320VC5402 DSP与AT89C51单片机通信的三种设计方案。
利用TMS320VC5402的多通道缓冲串口MCBSP分别实现TM S320VC5402与AT89C51的SCI和SPI串行通信,以及通过TMS320VC5402的8位增强主机接口HPI一8实现TMS320VC5402与AT89C5l并行通信。
就硬件接口电路和软件编程进行详细的阐述。
关键词:单片机 DSP MCBSP HPI将DSP和单片机构成双CPU处理器平台,可以充分利用DSP对大容量数据和复杂算法的处理能力,以及单片机接口的控制能力。
而DSP与单片机之间快速正确的通信是构建双CPU处理器的关键问题。
下面就此问题分别设计串行SCI、SPI和并行HPI三种连接方式。
1 串行通信设计与实现1 1 SCI串行通信设计1.1.1 多通道缓冲串行口McBSP原理TMS320VC5402(简称VC5402)提供了2个支持高速、全双工、带缓冲、多种数据格式等优点的多通道缓冲串行口McBSP。
MCESP分为数据通路和控制通路。
①数据通路负责完成数据的收发。
CPU或DMAC能够向数据发送寄存器DXR写入数据,DXR中的数据通过发送移位寄存器XSR输出到DX引脚。
DR引脚接收数据到接收移位寄存器RSR,再复制到接收缓冲寄存器RBR,最后复制到数据接收寄存器DR R。
这两种数据多级缓冲方式使得数据搬移和片外数据通信能够同时进行。
②控制通路负责内部时钟产生,帧同步信号产生,信号控制和多通道选择。
另外.还具有向CPU发送中断信号和向DMAC发送同步事件的功能。
MCBSP时钟和帧同步信号通过CLKR、CLKX、FXR、FSX引脚进行控制,接收器和发送器可以相互独立地选择外部时钟和帧同步信号,也可以选择由内部采样率发生器产生时钟和帧同步信号。
帧同步脉冲有效表示传输的开始。
1.1.2 SC I串行接口设计设置VC5402的McRSP输出时钟和帧同步信号由内部采样率发生器产生,内部数据时钟CLKG和帧同步信号FSG驱动发送时钟CLKX和帧同步FSX(CLKXM=l,FSXM=l,FSGM=1),输入时钟也由内部采样率发生器产生,内部数据时钟CLKG 驱动接收时钟CLKR(CLKRM=1),同时由CPU时钟驱动采样率发生器(CLKSM=1)。
51单片机和PC机串行通信系统设计
3 通信软件的设计 PC机和单片机在进行通信时 ,首先分别对各自
的串行口进行初始化 、确定串行口工作方式 、设定波 特率 、传输数据长度等 ,然后才开始数据传输 ,这些 工作是由软件来完成的 ,因此对 PC 机和单片机均 需设计相应的通信软件 。
收稿日期 : 2005202221
图 2 MC1488引脚示意图
图 3 MC1489引脚示意图
图 4 单片机与 RS2232标准接口电路
开始通信前 ,首先要初始化串口 ,包括选串口 、 设置串口掩码 、设置缓冲区 、设置波特率 、创建同步 事件 、创建线程并让辅助线程处于发信号状态等 。 用户通过调用 AP I提供的函数来完成 。W in 32 对 I/O 口 ,如串口 、并口等进行操作需通过“文件 ”方式 实现 ,串口的打开 、关闭 、读取和写入所用的函数和 操作文件的方式相似 。常用的函数调用有 :
·41·
( 3)设置缓冲区大小 。如果程序需要重新分配 发送和接收缓冲区 ,则使用 SetupComm ( )函数 。
( 4)清除缓冲区 。可使用 PurgeComm ( )函数 。 ( 5)从串口接收数据 。可使用 Read2File ( ) 函 数。 ( 6)从串口发送数据 。可使用 W rite2File ( ) 函 数。 ( 7)关闭串口 。可使用 CloseHandle ( )函数 。 有了 W in32 AP I串行通信函数 ,就可以实现串 口的打开和关闭 ,设置串口状态 ,并进行串行数据的 发送和接收 ,完成串行通信任务 。编写 W in32 串行 通信程序的基本步骤是 : ①使用 CreateFile ( )函数获得串口句柄 ; ②使用 BuildCommDCB ( )和 SetCommState ( )函 数设置串口工作状态 ; ③可根据需要选择相应的结构和函数进行其它 设置 。如重新设置发送接收缓冲区可使用 Setup2 Comm ( )函数 ;设置超时则可修改 COMMTIMEOUTS 结构并使用 SetCommTimeouts( )函数等 ; ④使用 ReadFile ( ) 和 W riteFile ( ) 函数读写串 口; ⑤串行通信结束时 ,使用 CloseHandle ( )函数关 闭串口以释放控制权 ,使串口可以被其它的程序使 用。 3. 2 单片机收发软件设计 设计单片机的通信软件 ,实际上是对单片机的 串行口的设计 ,通常采用汇编语言来设计 。首先必 须设置串行通 信 方式 ( SCON ) 和 波特 率 ( PCON ) 。 汇编程序如下所示 : ( 1)发送程序的设计 。 TRT: MOV SCON , #50H; 初始化方式 1,波特率
实验七、UART串行数据通信实验
实验七、UART串行数据通信实验1(查询与中断方式)一、实验目的通过实验,掌握UART查询与中断方式的程序的设计。
二、实验设备●硬件:PC 机一台●LPC2131教学实验开发平台一套●软件:Windows98/XP/2000 系统,ADS 1.2 集成开发环境。
●EasyARM工具软件。
三、实验原理EasyARM2131 开发板上,UART0 的电路图如图8.1 所示,当跳线JP6 分别选择TxD0和RxD0 端时方可进行UART0 通讯实验。
图8.1 UART0 电路原理图四、实验内容实验内容1使用查询方式,通过串口0 接收上位机发送的字符串如“Hello EasyARM2131!”,然后送回上位机显示,主程序以及各子程序流程如图8.2 所示。
(改写发送内容,字符个数不同)。
说明:需要上位机(PC机)串口终端如EasyARM.exe 软件。
使用串口延长线把LPC2131教学实验开发平台的CZ2(UART0)与PC机的COM1 连接。
PC 机运行EasyARM 软件,设置串口为COM1,波特率为115200,然后选择【设置】->【发送数据】,在弹出的发送数据窗口中点击“高级”即可打开接收窗口。
图8.2 串口实验相关程序流程图1.实验预习要求①研读LPC2000 UART工作原理与控制章节,注意FIFO 接收情况的特性。
②了解LPC2131教学实验开发平台的硬件结构,注意串口部分的电路。
2.实验步骤①启动ADS 1.2,使用ARM Executable Image for lpc2131工程模板建立一个工程DataRet_C。
②在user 组中的main.c 中编写主程序代码,在项目中的config.h 文件中加入#include <stdio.h>。
③选用DebugInFlash生成目标,然后编译连接工程。
④将EasyARM2131开发板上的JP6跳线分别选择TxD0和RxD0端时,方可进行UART0通信实验。
单片机与PC串口通信课程设计
单片机与PC串口通信课程设计单片机与PC机的串口通信摘要单片机由于性价比高、使用灵活等优点而广泛应用于各种电子系统、自动控制系统,但是其存储容量小,处理的数据量不大。
为了克服这一缺点,我们可以将单片机连接到PC机上,由单片机采集数据,然后将数据汇总到PC机,再进行各种数据处理。
单片机与PC机一般采用串行通信,由于51系列单片机中一般集成了全双工的串行端口,只要配以电平转换的驱动电路、隔离电路就可组成一个简单可行的通信接口。
PC机具有强大的监控和管理功能,而单片机则具有快速及灵活的控制特点,本设计将通过电平转换电路实现单片机与PC机中的RS-232标准总线之间的串行通信。
这也是许多测控系统中常用的一种通信解决方案。
关键词:单片机,PC机,串行通信,电平转换,总线目录课程设计(论文)用纸第一章:绪论1.1课题研究的目标和意义单片机与PC机串行通信端口在系统控制的范畴中一直占据着及其重要的地位,它不仅没有因为时代的进步而遭淘汰,反而在规格上越来越完善,应用也越来越广泛。
作为一种基本而又灵活方便的通信方式,串口通信被广泛应用于PC与PC 或者PC与单片机之间的数据交换以及其他工业控制与自动控制中。
如今,在很多场合中,要求单片机不仅能独立完成单机的控制任务,还要能与其他数据控制设备(单片机、PC机等)进行数据交换。
因此如何实现PC机与单片机之间的通信具有非常重要的现实意义。
1.2所属领域的现状及发展状况单片机,亦称单片微电脑或单片微型计算机。
它是把中心处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功用部件都集成在一块集成电路芯片上的微型计算机。
现在可以说单片机是百花齐放的期间,天下上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,不成胜数,应有尽有,它们各具特色,互成互补,为单片机的应用供应广漠的六合。
通用型单片机通过三总线结构扩展外围器件成为单片机应用的主流结构。
UART串口通信实验报告
实验四UART串口通信学院:研究生院学号:1400030034姓名:张秋明一、实验目得及要求设计一个UART串口通信协议,实现“串<-->并”转换功能得电路,也就就是“通用异步收发器”。
二、实验原理UART就是一种通用串行数据总线,用于异步通信。
该总线双向通信,可以实现全双工传输与接收。
在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间得通信,与PC机通信包括与监控调试器与其它器件,如EEPROM通信。
UART作为异步串口通信协议得一种,工作原理就是将传输数据得每个字符一位接一位地传输。
其中各位得意义如下:起始位:先发出一个逻辑”0”得信号,表示传输字符得开始。
资料位:紧接着起始位之后。
资料位得个数可以就是4.5.6.7、8等,构成一个字符。
通常采用ASCII码。
从最低位开始传送,靠时钟定位。
奇偶校验位:资料位加上这一位后,使得“1”得位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送得正确性。
停止位:它就是一个字符数据得结束标志。
可以就是1位、1.5位、2位得高电平。
由于数据就是在传输线上定时得,并且每一个设备有其自己得时钟,很可能在通信中两台设备间出现了小小得不同步。
因此停止位不仅仅就是表示传输得结束,并且提供计算机校正时钟同步得机会。
适用于停止位得位数越多,不同时钟同步得容忍程度越大,但就是数据传输率同时也越慢。
空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。
波特率:就是衡量资料传送速率得指标。
表示每秒钟传送得符号数(symbol)。
一个符号代表得信息量(比特数)与符号得阶数有关。
例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就就是120baud,比特率就是120*8=960bit/s。
这两者得概念很容易搞错。
三、实现程序library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_arith、all;use ieee、std_logic_unsigned、all;entity uart isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号;rs232_tx: out std_logic --RS232发送数据信号;); end uart;architecture behav of uart isponent uart_rx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送);end ponent;ponent speed_select port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps 得高电平为接收或者发送数据位得中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位);end ponent;ponent uart_tx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps 得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);end ponent;signal bps_start_1:std_logic;signal bps_start_2:std_logic;signal clk_bps_1:std_logic;signal clk_bps_2:std_logic;signal rx_data:std_logic_vector(7 downto 0);signal rx_int:std_logic;beginRX_TOP: uart_rx port map(clk=>clk,rst_n=>rst_n,rs232_rx=>rs232_rx,clk_bps=>clk_bps_1,bps_start=>bps_start_1,rx_data=>rx_data,rx_int=>rx_int);SPEED_TOP_RX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_1,bps_start=>bps_start_1);TX_TOP:uart_tx port map(clk=>clk, --系统时钟rst_n=>rst_n, --复位信号rs232_tx=>rs232_tx, --RS232发送数据信号clk_bps=>clk_bps_2, --此时clk_bps 得高电平为发送数据得采样点bps_start=>bps_start_2, --接收到数据后,波特率时钟启动置位rx_data=>rx_data, --接收数据寄存器,保存直至下一个数据来到rx_int=>rx_int --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);SPEED_TOP_TX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_2,bps_start=>bps_start_2);end behav;-----------------------------------------------------------------------------------------------------------------------3个子模块------------------------------------------------------------------------------异步接收模块-------------------------------------------library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_unsigned、all;entity uart_rx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);end uart_rx;architecture behav of uart_rx issignal rs232_rx0: std_logic;signal rs232_rx1: std_logic;signal rs232_rx2: std_logic;signal rs232_rx3: std_logic;signal neg_rs232_rx:std_logic;signal bps_start_r:std_logic;signal num:integer;signal rx_data_r:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrs232_rx0<='0';rs232_rx1<='0';rs232_rx2<='0';rs232_rx3<='0';elseif (rising_edge(clk)) thenrs232_rx0<=rs232_rx;rs232_rx1<=rs232_rx0;rs232_rx2<=rs232_rx1;rs232_rx3<=rs232_rx2;end if;end if;neg_rs232_rx <=rs232_rx3 and rs232_rx2 and not(rs232_rx1)and not(rs232_rx0);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';rx_int<='0';elseif (rising_edge(clk)) thenif(neg_rs232_rx='1') then --接收到串口数据线rs232_rx 得下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收rx_int<='1'; --接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号rx_int<='0'; --接收数据中断信号关闭end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrx_data_r<="00000000";rx_data<="00000000";num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rx_data_r(0)<=rs232_rx;--锁存第0bitwhen 2=>rx_data_r(1)<=rs232_rx;--锁存第0bitwhen 3=>rx_data_r(2)<=rs232_rx;--锁存第0bitwhen 4=>rx_data_r(3)<=rs232_rx;--锁存第0bitwhen 5=>rx_data_r(4)<=rs232_rx;--锁存第0bitwhen 6=>rx_data_r(5)<=rs232_rx;--锁存第0bitwhen 7=>rx_data_r(6)<=rs232_rx;--锁存第0bitwhen 8=>rx_data_r(7)<=rs232_rx;--锁存第0bitwhen 10=>rx_data<=rx_data_r;when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;---------------------------------波特率控制模块-----------------------------------------library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_arith、all;use ieee、std_logic_unsigned、all;entity speed_select isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps得高电平为接收或者发送数据位得中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位或者开始发送数据时,波特率时钟启动信号置位);end speed_select;architecture behav of speed_select issignal cnt:std_logic_vector(12 downto 0);signal clk_bps_r:std_logic;constant BPS_PARA:integer:=5207;constant BPS_PARA_2:integer:=2603;beginprocess(clk,rst_n)beginif (rst_n='0')thencnt<="00";elseif (rising_edge(clk)) thenif((cnt=BPS_PARA)or(bps_start='0')) thencnt<="00"; --波特率计数器清零elsecnt<=cnt+'1'; --波特率时钟计数启动end if;end if;end if;end process;process(clk,rst_n)beginif (rst_n='0')thenclk_bps_r<='0';elseif (rising_edge(clk)) thenif(cnt=BPS_PARA_2) thenclk_bps_r<='1'; --clk_bps_r高电平为接收数据位得中间采样点,同时也作为发送数据得数据改变点elseclk_bps_r<='0'; --波特率计数器清零end if;end if;end if;clk_bps<=clk_bps_r;end process;end behav;---------------------------------异步发送模块------------------------------------------- library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_unsigned、all;entity uart_tx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);end uart_tx;architecture behav of uart_tx issignal rx_int0: std_logic;signal rx_int1: std_logic;signal rx_int2: std_logic;signal neg_rx_int:std_logic;signal bps_start_r:std_logic;signal num:integer;signal tx_data:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrx_int0<='0';rx_int1<='0';rx_int2<='0';elseif (rising_edge(clk)) thenrx_int0<=rx_int;rx_int1<=rx_int0;rx_int2<=rx_int1;end if;end if;neg_rx_int <=not(rx_int1)and (rx_int2);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';tx_data<="00000000";elseif (rising_edge(clk)) thenif(neg_rx_int='1') then --接收到串口数据线rs232_rx得下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收tx_data<=rx_data; --接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrs232_tx<='1';num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rs232_tx<='0';when 2=>rs232_tx<=tx_data(0);--发送第1bitwhen 3=>rs232_tx<=tx_data(1);--发送第2bitwhen 4=>rs232_tx<=tx_data(2);--发送第3bitwhen 5=>rs232_tx<=tx_data(3);--发送第4bitwhen 6=>rs232_tx<=tx_data(4);--发送第5bitwhen 7=>rs232_tx<=tx_data(5);--发送第6bitwhen 8=>rs232_tx<=tx_data(6);--发送第7bitwhen 9=>rs232_tx<=tx_data(7);--发送第8bitwhen 10=>rs232_tx<='1';when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;四、实验步骤1.建立新工程UART,选择芯片,型号为cyclone ii EP2C35F484C8。
两个mcu串口通信电路设计
两个mcu串口通信电路设计在电子技术领域,MCU(微控制器)串口通信是一种非常重要的通信方式。
它不仅可以实现设备之间的数据传输,还可以实现设备与计算机之间的通信。
下面我将详细介绍如何设计一个两个MCU串口通信的电路。
首先,我们需要了解MCU串口通信的基本原理。
MCU串口通信是指通过MCU的串行接口进行数据传输的一种通信方式。
它通常包括发送和接收两部分,其中发送部分负责将MCU内部的数据转换为串行信号并发送出去,而接收部分则负责接收外部的串行信号并将其转换为MCU可以识别的数据。
接下来,我们开始设计电路。
首先,我们需要准备两个MCU,一个作为发送端,另一个作为接收端。
然后,我们需要为每个MCU配备一个串行接口,以便它们可以通过串口进行通信。
在硬件连接方面,我们将发送端MCU的TX引脚(发送数据)连接到接收端MCU的RX引脚(接收数据),并将接收端MCU的TX引脚连接到发送端MCU 的RX引脚。
这样,就可以实现两个MCU之间的串口通信了。
在软件编程方面,我们需要为每个MCU编写相应的程序。
对于发送端MCU,我们需要编写一个程序,用于将需要发送的数据转换为串行信号,并通过TX引脚发送出去。
对于接收端MCU,我们需要编写一个程序,用于接收通过RX引脚传来的串行信号,并将其转换为可以被MCU识别的数据。
在实际应用中,我们还需要考虑一些其他因素,如波特率、数据位数、停止位数等。
这些参数都需要根据具体的应用需求来设定。
总的来说,设计一个两个MCU串口通信的电路并不复杂,只需要准备好必要的硬件设备,正确连接好电路,并编写好相关的程序即可。
但需要注意的是,由于串口通信的速度较慢,所以在某些高速数据传输的应用中可能不太适用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串口通信接口电路通常是以MAX3232作为核心,把MAX3232跟MAX232作对比看以发现它们的区别只是在于供电电压的不同。
MAX3232是 3.3V,而MAX232的供电电压是5V,而且RS-232C的所有技术指标MAX3232都符合。
而MAX3232的优点在于仅需要单一的+5V电源对其供电,其本身片载电荷泵使其具备了升压和电压极性转变的性能。
max3232具有二路接收器和二路驱动器,提供1uA关断模式,有效降低功效并延迟便携式产品的电池使用寿命。
可以发出+10V和-10V的电压V+、V-,功耗低。
由于它集成度高所以它的外部最低只要接4个电容就可以工作,其电路如图3-10所示。
轴承振动测试仪的电机控制部分的通讯就是通过串口进行的,这里使用了STM32F103VET6的串口1进行通信,此串口的通信只需要使用3根接线就可以完成,即U1_TX、U1_RX、及GND5V接口,USART1的输入及输出端都要接上拉电阻,以便防止外界对其的干扰同时也增加了系统的稳定性。
图3-10 串口通信电路
Fig. 3-10 Serial communication circuit。