(完整版)高中数学知识结构图(理科)

合集下载

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

基本初等函数 指数函数、对数函数、幂函数、三角函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用 分段探究,整体考察 复合函数的单调性:同增异减 赋值法、典型的函数模型 零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换:������ = ������(������) → ������ = ������(������ ± ������),������ = ������(������) → ������ = ������(������) ± ������,������, ������ > 0 函数图象 及其变换 对称变换:������ = ������(������) → ������ = −������(������),������ = ������(������) → ������ = ������(−������),������ = ������(������) → ������ = −������(−������) 翻折变换:������ = ������(������) → ������ = |������(������)|,������ = ������(������) → ������ = ������(|������|) 伸缩变换:������ = ������(������) → ������ = ������������(������),������ = ������(������) → ������ = ������(������������)
������
第二部分
角的概念
三角函数与平面向量
弧长公式������ = ������������、扇形面积公式������ = ������������
2 1 π 2

高中数学知识框架思维导图

高中数学知识框架思维导图

i.
①(1 ± i)2 = ±2i;
②1+i = i;1−i = −i;
1−i
1+i
③������ + ������i = i(������ − ������i),
如3+4i = i(4−3i) = i;
4−3i 4−� = ������ + ������i、复平面内点 Z(������, ������)、向量���⃗⃗���⃗⃗���⃗��� = (������, ������)的一一对应关系; 复数模的几何意义:|������| = |������ + ������i| = √������2 + ������2 = |���⃗⃗���⃗⃗���⃗���|
2.对数的运算性质(������>0,且������ ≠1,������>0,������>0):①log������(������ ∙ ������) = log������������ + log������������;
简易逻辑
命题
关系
原命题:若 p 则 q
互否
否命题:若p 则q
互逆
互为逆否 等价关系
互逆
逆命题:若 q 则 p
互否
逆命题:若q 则p
充分条件、必要条件、充要条件 若������ ⇒ ������,则������是������的充分条件,������是������的必要条件
复合命题 量词
或:p q 且:p q 非: p 全称量词 存在量词
2
映射
函数
函数图象 及其变换
第二部分 函数、导数及微积分
������: ������ → ������:一对一,或多对一

高中数学(必修5)知识结构框图

高中数学(必修5)知识结构框图

高中数学(必修5) 知识结构框图第一章 解三角形1sin 21sin 2S ab bc == 第二章数列第三章不等式¤例题精讲:【例1】在四棱锥的四个侧面中,直角三角形最多可有( ).A. 1个B. 2个C. 3个D. 4个 选D. 【例2】已知球的外切圆台上、下底面的半径分别为,r R ,求球的半径.解:圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R +r ,梯形的高即球的直径为=.第4讲 §1.2.3 空间几何体的直观图¤知识要点:“直观图”最常用的画法是斜二测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法. 基本步骤如下:(1) 建系:在已知图形中取互相垂直的x 轴和y 轴,得到直角坐标系xoy ,直观图中画成斜坐标系'''x o y ,两轴夹角为45︒.(2)平行不变:已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ’或y ’轴的线段.(3)长度规则:已知图形中平行于x 轴的线段,在直观图中保持长度不变;平行于y 轴的线段,长度为原来的一半.第5讲 §1.3.1 柱体、锥体、台体的表面积¤学习目标:了解棱柱、棱锥、台的表面积的计算公式(不要求记忆公式);能运用柱、锥、台的表面积进c 直截面周长h 高S h 底高2. 当台体的上底面逐渐扩展到与下底面全等时,它就成了柱体. 因而体积会有以下的关系:13V S h =锥 '0S =←−−− 1(')3V S S h =台 'S S=−−−→ V S h =柱. 第7讲 §1.3.2球的体积和表面积¤知识要点:1. 表面积:24S R π=球面 (R :球的半径). 2. 体积:343V R π=球面. 第8讲 §2.1.1 平面¤知识要点:1. 点A 在直线上,记作A a ∈;点A 在平面α内,记作A α∈;直线a 在平面α内,记作a α⊂.ll β=∈推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面. 第9讲 §2.1.2 空间中直线与直线之间的位置关系¤知识要点:1.空间两条直线的位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2. 已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角). ,a b ''所成的角的大小与点O 的选择无关,为了简便,点O 通常取在异面直线的一条上;异面直线所成的角的范围为(0,90]︒,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作a b ⊥. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.第19讲 §3.1.2 两条直线平行与垂直的判定¤知识要点:1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….第20讲 §3.2.1 直线的点斜式方程¤知识要点:1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.第21讲 §3.2.2 直线的两点式方程¤知识要点:1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 第22讲 §3.2.3 直线的一般式方程¤知识要点:1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠. 如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. 第23讲 §3.3.1 两条直线的交点坐标¤知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.第24讲 §3.3.2 两点间的距离两点111(,)P x y ,222(,)P x y ,则两点间的距离为:.特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,PP 所在直线与y 轴平行时,1212||||PP y y =-;当12,PP 在直线y kx b =+上时,1212|||PP x x -. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.第25讲 §3.3.3 点到直线的距离及两平行线距离¤知识要点:1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d .2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020A x B y C ++=,即002A x B y C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==第26讲 第4章 §4.1.1 圆的标准方程¤知识要点:1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a 、b 、r 的方程组,然后解出a 、b 、r ,再代入标准方程.第27讲 §4.1.2 圆的一般方程¤知识要点:1. 圆的一般方程:方程220x y Dx Ey F ++++= (2240D E F +->)表示圆心是(,)22D E --的圆. 2. 轨迹方程是指点动点M 的坐标(,)x y 满足的关系式.第28讲 §4.2.1 直线与圆的位置关系¤知识要点:1. 直线与圆的位置关系及其判定: 方法一:方程组思想,由直线与圆的方程组成的方程组,消去x 或(y ),化为一元二次方程,由判别式符号进行判别;方法二:利用圆心(,a b )到直线0Ax By C ++=的距离d =,比较d 与r 的大小.(1)相交d r ⇔<⇔ 0∆>;(2)相切d r ⇔=⇔0∆=;(3)相离d r ⇔>⇔0∆<.2. 直线与圆的相切研究,是高考考查的重要内容. 同时,我们要熟记直线与圆的各种方程、几何性质,也要掌握一些常用公式,例如点线距离公式d =第29讲 §4.2.2 圆与圆的位置关系¤知识要点:两圆的位置关系及其判定: 设两圆圆心分别为12,O O ,半径分别为12,r r ,则: (1)两圆相交121212||||r r O O r r ⇔-<<+;(2)两圆外切1212||O O r r ⇔=+;(3)两圆内切1212||||O O r r ⇔=-;第30讲 §4.2.3 直线与圆的方程的应用¤知识要点:坐标法:建立适当的直角坐标系后,借助代数方法把要研究的几何问题,转化为坐标之间的运算,由此解决几何问题。

高中数学知识点分类网络结构图

高中数学知识点分类网络结构图

;;=⇔⊆=⇔⊆=⇔⊆A B B A B A B A A B A B I A Bn-个A中元素有n个,则A的子集共有2n个,真子集有21集合间的运算2n R a +∈则2n n a n a ++≥平均值不等式2nnn a a n++≥当且仅当2,,)n 时取等号1111221n j n j n n n a b a b a b a b a b a b ++≤++≤+++,n Z 是∀,,nx 是区间1122)()()()n n n n q x q f x q f x q f x ++≤+++,,,1n i q R q +∈=∑)。

上凸函数不等号转向.1}n ma+仍是等比数列,其公比为)lim n n a ++=sin sin αtan tan 1tan tan α±2(AB x =,则a ⊥b2PP 所成比112222221cos ||||a b a b a ba b a b a ++⋅⋅==⋅+212()(x x y y =-+-空间向量的直角坐标运算律若123(,,a a a a =,12(,,b b b b =则①113(a b a b +=+,11(a b a b -=-123(,)()a a a R λλλλλ=∈,11a b a b ⋅=+②13//a ba b λλ⇔=,110a b a b ⊥⇔+若111(,,)A x y z 则2(AB x =-模长公式若12(,,a a a a =21||a a a a a =⋅=+空间向量的运算,,(OB OA AB a b BA OA OB a b OP a λλ=+=+=-=-=空间向量的加减与数乘OB OA AB =+=a +b ,AB OB OA =-,,(OP λ=a a b + c ⑶数乘分配律:λ(a + ) =λa +λb .平行六面体向量的数乘积||||cos ,a b a b a b ⋅=⋅⋅<>空间向量数乘积的性质①||cos ,a e a a e ⋅=<>.②0a b a b ⊥⇔⋅=.③2||a a a =⋅.空间向量数量积运算律①()()()a b a b a b λλλ⋅=⋅=⋅②a b b a ⋅=⋅(交换律) ③()a b c a b a c ⋅+=⋅+⋅(分配律)④e a = a e =|a |cos ,a e⑤ab a b = 0⑥当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |.特别的a a = |a |2或||a a a =⋅⑦cos ,||||a ba b a b ⋅=Bα∈,则l αβ=且l,则A、B、C 。

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)

值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正

切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1

高中数学必修1-5知识网络结构图

高中数学必修1-5知识网络结构图

单调性
函数
函数的基本性质
f ( x ) 的定义域为 I ,如果存在实数 M 满足:( 1)对于任意的 x I ,都有 f ( x ) M ; ( 2)存在 x0 I ,使得 f ( x0 ) M 。则称 M 是函数 y f ( x )的最大值 最值 最 小值:设函数 y f ( x ) 的定义域为 I ,如果存在实数 N 满足:( 1)对于任意的 x I ,都有 f ( x ) N; ( 2)存在 x0 I ,使得 f ( x0 ) N。则称 N 是函数 y f ( x ) 的最小值 (1) f ( x ) f ( x ), x 定义域 D,则 f ( x ) 叫做奇函数,其图象关于原点对称。 奇偶性 ( 2) f ( x ) f ( x ), x 定义域 D,则 f ( x ) 叫做偶函数,其图 象关于 y轴对称。 奇偶函数的定义域关于原点对称 周期性:在函数 f ( x ) 的定义域上恒有 f ( x T ) f ( x )( T 0 的常数 ) 则 f ( x ) 叫做周期函数, T 为周期; T的最小正值叫做 f ( x ) 的最小正周期,简称周期 ( 1)描点连线法:列表、描点、连线 向左平移 个单位: y1 y , x1 a x y f ( x a ) 平移变换 向右平移 a个 单位: y1 y , x1 a x y f ( x a ) 向上平移 b个单位: x1 x , y1 b y y b f ( x ) 向下平移 b个单位: x1 x , y1 b y y b f ( x ) 横坐标变换:把各点的横坐标 x1缩短(当 w 1时)或伸长(当 0 w 1时) 到原来的 1/ w倍(纵坐标不变),即 x1 wx y f ( wx ) 伸缩变换 纵坐标变换:把各点的纵坐标 y1伸长( A 1) 或缩短( 0 A 1) 到 原来的 A倍 (横坐标不变), 即 y1 y / A y f ( x ) ( 2)变换法 x1 2 x0 x 关于点 ( x0 , y0 ) 对称: x x1 2 x0 2 y0 y f ( 2 x 0 x ) y y1 2 y0 y1 2 y 0 y x1 2 x0 x 关于直线 x x0对称: x x1 2 x0 y f ( 2 x0 x ) y y y1 y 1 对称变换 x1 x 关于直线 y y0对称: x x1 2 y0 y f ( x ) y1 y 2 y 0 y1 2 y0 y 关于直线 y x对称: x x1 y f 1 ( x ) y y1

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn

新课标高中数学知识结构图

新课标高中数学知识结构图

新课标高中数学知识结构图(人教A版_理科)必修1第一章集合与函数的概念
必修1 第二章基本初等函数(Ⅰ)
第三章函数的应用
必修4 第一章三角函数
第三章三角恒等变换第二章平面向量
必修5第一章解三角形
必修5 第二章数列
第三章不等式
必修2第一章空间几何体
必修2第二章点、直线、平面之间的位置关系
第三章直线和方程
必修2第四章圆与方程
必修3 第一章算法初步
第二章统计
第三章概率
第三章统计案例
选修2-1第一章常用逻辑用语
选修1-1 第二章圆锥曲线与方程
选修2-2第一章导数及其应用
选修1-2第二章推理与证明
第三章数系的扩充与复数的引入
选修4-1几何证明选讲
第一讲
第二讲
选修4-4 参数方程与极坐标。

(完整word版)高一数学思维导图

(完整word版)高一数学思维导图

(完整word版)高一数学思维导图必修一集合与函数集合映射概念元素、集合之间的关系运算:交、并、补数轴、Venn图、函数图象性质确定性、互异性、无序性定义表示解析法列表法三要素图象法定义域对应关系值域性质奇偶性周期性对称性单调性定义域关于原点对称,在x=0处有定义的奇函数→f (0)=01、函数在某个区间递增(或减)与单调区间是某个区间的含义不同;2、证明单调性:作差(商);3、复合函数的单调性最值二次函数、基本不等式、双钩(耐克)函数、三角函数有界性、数形结合、导数.幂函数对数函数三角函数基本初等函数抽象函数复合函数赋值法、典型的函数函数与方程二分法、图象法、二次及三次方程根的分布零点函数的应用建立函数模型使解析式有意义函数表示方法换元法求解析式分段函数注意应用函数的单调性求值域周期为T的奇函数→f (T)=f (T2)=f (0)=0复合函数的单调性:同增异减一次、二次函数、反比例函数指数函数图象、性质和应用平移变换对称变换翻折变换伸缩变换图象及其变换点与线空间点、线、面的位置关系点在直线上点在直线外点与面点在面内点在面外线与线共面直线异面直线相交平行没有公共点只有一个公共点线与面平行相交有公共点没有公共点直线在平面外直线在平面内面与面平行相交平行关系的相互转化垂直关系的相互转化线线平行线面平行面面平行线线垂直线面垂直面面垂直空间的角异面直线所成的角直线与平面所成的角二面角范围:(0?,90?] 范围:[0?,90?] 范围:[0?,180?]点到面的距离直线与平面的距离平行平面之间的距离相互之间的转化空间的距离空间几何体柱体棱柱圆柱正棱柱、长方体、正方体台体棱台圆台锥体棱锥圆锥球三棱锥、四面体、正四面体直观图侧面积、表面积三视图体积长对正高平齐宽相等倾斜角和斜率直线的方程位置关系直线方程的形式倾斜角的变化与斜率的变化重合平行相交垂直A1B2-A2B1=0A1B2-A2B1≠0A1A2+B1B2=0点斜式:y-y0=k(x-x0)斜截式:y=kx+b两点式:y-y1y2-y1=x-x1x2-x1截距式:xa+yb=1一般式:Ax+By+C=0注意各种形式的转化和运用范围.两直线的交点距离点到线的距离:d=| Ax0+By0+C | A2+B2,平行线间距离:d=| C1-C2 |A2+B2圆的方程圆的标准方程圆的一般方程直线与圆的位置关系两圆的位置关系相离相切相交<0,或d>r=0,或d=r>0,或d<r 截距注意:截距可正、可负,也可为0.必修三统计、概率、算法统计随机抽样抽签法随机数表法简单随机抽样系统抽样分层抽样共同特点:抽样过程中每个个体被抽到的可能性(概率)相等用样本估计总体样本频率分布估计总体总体密度曲线频率分布表和频率分布直方图茎叶图样本数字特征估计总体众数、中位数、平均数方差、标准差变量间的相关关系两个变量的线性相关散点图回归直线概率概率的基本性质互斥事件对立事件古典概型几何概型P(A+B)=P(A)+P(B)P( A)=1-P(A)概括性、逻辑性、有穷性、不唯一性、普遍性顺序结构条件结构循环结构算法语言算法的特征程序框图基本算法语言算法案例辗转相除法、更相减损术、秦九韶算法、进位制必修四三角函数与平面向量角的概念任意角的三角函数的定义三角函数弧度制弧长公式、扇形面积公式三角函数线同角三角函数的关系诱导公式和角、差角公式二倍角公式公式的变形、逆用、“1”的替换化简、求值、证明(恒等变形)三角函数的图象定义域奇偶性单调性周期性最值对称轴(正切函数除外)经过函数图象的最高(或低)点且垂直x 轴的直线,对称中心是正余弦函数图象的零点,正切函数的对称中心为(k π2,0)(k ∈Z ).正弦函数y =sin x= 余弦函数y =cos x 正切函数y =tan x y =A sin(ωx +?)+b①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;②图象也可以用五点作图法;③用整体代换求单调区间(注意ω的符号);④最小正周期T =2π| ω |;⑤对称轴x =(2k +1)π-2?2ω,对称中心为(k π-?ω,b )(k ∈Z ). 平面向量概念线性运算基本定理加、减、数乘几何意义坐标表示数量积几何意义模共线与垂直共线(平行)垂直值域图象a →∥b →?b →=λa → ? x 1y 2-x 2y 1=0a →⊥b →?b →·a →=0 ? x 1x 2+y 1y 2=0投影b →在a →方向上的投影为|b →|cos θ=a →·b→——|a →|设a →与b →夹角θ,则cos θ=a →·b →——|a →|·|b →|对称性|a →|=(x 2-x 1)2+(y 2-y 1)2夹角公式。

新标高中数学知识结构图

新标高中数学知识结构图

诱导公式 化简、求值、证明
单调性
正切函数
三角函数
和角公式
奇偶性
余弦函数
差角公式
周期性
余弦型函数
实际应用
倍角公式
5
第五章:平面向量
中点坐标 零向量 平移公式 单位向量 向量的概念 共线向量 几何运算 向量的减法 定比分点公式 重心坐标 向量的加法
平面向量
坐标运算 向量的数乘
垂直向量
正弦定理
解三角形
余弦定理
直线平面几何体
线线角
球面距离
线线垂直 线面垂直
10
面面垂直
第十~十二章:排列组合、二项式定理、概率统计
有序无序 分类分步 特殊要求 相邻问题 不邻问题 定序问题 正难则反 重复与否 统
随机事件
二项式定理

排列组合 概 率
二项、几何分布
随机事件 等可能事件 互斥事件 互斥事件 对立事件
分布列
相互独立事件 相互独立 独立重复试验
向量的内积
6
第六章:不等式
比较法 均值不等式 绝对值不等式 指数不等式
不等式的证明
不等式的解法
分析法
高次不等式 一二次不等式 分式不等式
不等式
综合法
放缩法
绝对值不等式
无理不等式
对数不等式
7
第七章:直线与圆的方程
曲线的方程 圆的一般方程 圆 的 方 程 方程的曲线 倾斜角 直线的方程 直线的方程 线性规划 两线位置关系 平 行 斜 率 一般式 斜截式 相 交 夹角到角 点线距离 两点式 点斜式 截距式 交 垂 点 直
函数定义域
函数
对数运算
复合函数 应用
对数函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识结构图
集合的概念与表示方法
集合集合的性质
集合之间的关系与运算
解析法
函数的概念与表示方法列表法
图像法
定义域
函数的三要素对应关系
值域
单调性
奇偶性
函数的性质周期性
极值
最值一次、二次函数
反比例函数
基本初等函数指数函数与对数函数图像、性质和应用函数函数的分类幂函数
复合函数三角函数
分段函数
函数图像及其变换平移、对称、翻折和伸缩变换
概念
反函数存在条件
与原函数的关系
函数与方程函数的零点对应方程的解
函数的应用建立函数模型
任意角弧度制与三角函数
同角三角函数关系
诱导公式
三角函数中的公式和角、差角公式
二倍角公式与半角公式
三角函数和差化积与积化和差公式
正弦函数三要素
三角函数余弦函数性质
正切函数图像及其变换
正弦定理
解三角形余弦定理
三角形面积
柱体结构
椎体
空间几何体台体三视图和直观图
球体
简单组合体表面积与体积
点、直线、平面的位置关系
点、直线、平面的关系直线、平面平行的性质和判定
直线、平面垂直的性质和判定立体几何点到点的距离
点到直线的距离
空间距离点到平面的距离
直线到平面的距离
平行平面间的距离
异面直线形成的角
空间的角直线与平面形成的角
二面角
倾斜角、斜率和截距
点斜式
斜截式
直线直线与方程两点式
截距式
一般式
直线之间的位置关系垂直与平行的条件
圆与方程一般方程与标准方程
几何圆点与圆的位置关系
位置关系直线与圆的位置关系
圆与圆的位置关系
解析几何曲线与方程
圆锥曲线椭圆定义及标准方程
双曲线性质
抛物线离心率
点到点的距离
点到直线的距离
平面距离点到圆的距离
两平行线的距离
直线到圆的距离
相离圆的距离
对称问题中心对称关于点对称
轴对称关于直线对称
平面向量概念
向量加减法
向量运算向量的数乘
向量的数量积
空间向量几何意义及应用
分类加法计数原理
基本计数原理
分布乘法计数原理
计数原理排列数公式
排列与组合
组合数公式
二项式定理通项公式与二项式系数
抽签法
简单随机抽样随机数表法
随机抽样系统抽样与分成抽样
频率分布表和直方图
用样本频率分布估计总体总体密度曲线统计
统计统计用样本估计总体茎叶图
与样本数字特征估计总体众数、中位数、平均数
概率方差、标准差
变量之间的相关关系线性相关散点图回归直线
列联表(2x2)独立性分析
概率的基本性质互斥事件与对立事件
古典概型及其概率
几何概型及其概率
随机模拟法求概率
概率条件概率
事件的独立性
离散型随机变量分布
两点分布
分布二项分布期望与方差
正态分布
超几何分布
数列的概念
等差数列的概念
等差数列等差数列的性质
等差数列的前n项和及其性质
数列等比数列的概念
等比数列等比数列的性质
等比数列的前n项和及其性质
常见的递推方法
常见的求和方法
不等式的概念及性质
一元二次不等式及其解法
不等式二元一次不等式组及其解法
简单的线性规划问题
基本不等式及其证明
极限与导数的概念
极限与导数的运算
基本初等函数的导数
导数导数与函数单调性的关系
定积分的概念
微积分基本定理
定积分的简单应用求面积
命题命题之间的关系
条件充分条件与必要条件

逻辑复合命题且真假性的判定

量词全称量词与特称量词全称命题与特称命题
算法的特征
顺序结构
算法程序框图条件结构
循环结构
算法案例
复数的概念
复数复数的运算
复数的几何意义
合情推理归纳与类比
推理
演绎推理三段论
推理与证明直接证明综合法与分析法
证明间接证明反证法
数学归纳法。

相关文档
最新文档