不锈钢在高温高浓度醋酸中腐蚀情况

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不锈钢和镍基合金在高温高压醋酸溶液中的腐蚀行为

摘要: 采用特制高压釜设备,研究304L 不锈钢、316L 不锈钢、317L 不锈钢和镍基合金( Incoloy 800) 在高温高压醋

酸溶液中的腐蚀,初步探讨了不锈钢和镍基合金在醋酸溶液中的腐蚀机理及Ni 和Mo 元素对提高不锈钢耐蚀性能的影响. 结果表明,温度对不锈钢和镍基合金耐蚀性有显著影响,随着温度的升高,腐蚀速率逐渐增大,当温度升高到一定值,不锈钢的耐蚀性会急剧下降. 在低温醋酸溶液中,Ni 对于提高不锈钢耐蚀性是有益的;在高温醋酸溶液中,Ni 对于提高不锈钢耐蚀性没有显著影响. 在低温醋酸溶液中,Mo 对于提高不锈钢耐蚀性没有显著影响;在高温醋酸溶液中,Mo 对于提高不锈钢耐蚀性是有益的.

1 前言

醋酸是一种腐蚀性很强的有机酸,是石油化工、化纤生产及许多基本有机合成的重要原料[1 ,2 ] . 化工生产设备中不锈钢由于其良好的钝化性能常作为优先选择的材料. 但在接触高浓度醋酸的化工生产严酷工况(如高温高压等) 下,不锈钢也发生不同程度的腐蚀,给设备选材和防护、设备管理和维修等带来了一系列问题[3 ,4 ] . 人们已经对不锈钢在醋酸溶液中的腐蚀进行了许多研究[5~7 ] ,但由于醋酸强挥发性和较强的腐蚀性,使大部分研究限制在醋酸沸点(118 ℃,常压) 以下开展的,这与实际生产中醋酸常以高温高压形式存在不符. 本文采用特制高压釜设备,研究不锈钢在高温高压醋酸溶液中的腐蚀行为,为高温高压醋酸设备选材提供理论依据,同时为安全评定提供了基础数据.

2 实验方法

实验选用材料304L 不锈钢、316L 不锈钢、317L 不锈钢和镍基合金( Incoloy 800 , 以下简写In800) 的化学成分见表1 ,在特制高压釜中进行浸泡实验, 该高压釜内胆材料是钛材. 试样加工成215mm ×

10mm ×10mm 的长方体,用酚醛塑料高温加压封边,试样表面用金相砂纸打磨、抛光,并用丙酮擦洗除油. 高压釜由专用控温设备控温,实验溶液用浓度为90 %的醋酸水溶液. 将试样浸泡在装有醋酸水溶液的高压釜中,密封高压釜,并设置实验温度分别为60 ℃、100 ℃、130 ℃、160 ℃和190 ℃. 72h 后取出试样,用SEM 观察试样表面腐蚀形貌,用EDS检测试样表面膜的成分,分析腐蚀机理. 清除试样表面腐蚀产物,用失重法计算材料腐蚀速率.

3 结果与讨论

311 不同温度下浸泡试验后表面形貌的变化和EDS分析由4 种材料在100 ℃、90 %醋酸溶液中经

72h腐蚀试验后的微观组织照片(图1) 可知,宏观试样表面没有发现点蚀坑,试验前试样表面的划痕,在试验后仍然清晰可见,微观放大后没有发现其它类型

的局部腐蚀. 对4 种材料表面进行电子衍射能谱分析,表面主要合金元素和氧含量分别为:

304L 表面Cr 1812 % , Ni 8121 %;

316L 表面Cr 1619 % , Ni1212 % , Mo 2106 %;

317L 表面Cr 1816 % , Ni1413 % , Mo 3111 %;

In800 表面Cr 1916 % , Ni3113 %.

4 种材料的表面元素含量和基底成分基本一致. 表明4 种材料在100 ℃、90 %醋酸溶液中有很好的耐蚀性.

4 种材料在130 ℃、90 %醋酸溶液中,经72h 的腐蚀试验,304L 和316L 不锈钢表面宏观观察即可发现表面有少量点蚀坑,表面失去试验前的金属光泽(图2a ,2b) ,表明有均匀腐蚀发生,微观放大后没有发现其它类型局部腐蚀;317L 不锈钢表面宏观和微观均没有发现点蚀坑,且试样表面仍然保持试验前的金属光泽(图2c) ; In800 宏观观察表面点蚀坑连成片,微观放大可见表面大量溃疡状腐蚀(图2d) .

Table 1 Compositions of samples(mass %)

sample Si Mn P Mo Cr Ni C S Ti others

304L 0150 1106 01024 - 18170 8131 01050 010080 - Cu/ 0128

316L 0160 0180 01013 2128 17114 12158 01014 010073 - -

317L 0142 1165 01014 3131 18175 14160 01030 010086 - -

In800 0 40 - - - 20 00 31 00 < 0 1 - 0 5 Al/ 0 5

对4 种材料表面电子衍射能谱分析显示,主要合金

元素和氧含量分别为:

304L 表面Cr 1816 % , Ni8102 % , O 2112 %;

316L 表面Cr 17103 % , Ni11124 % , Mo 1126 % , O 1126 %;

317L 表面Cr1817 % , Ni 1412 % , Mo 3102 %;

In800 表面Cr1916 % ,Ni 3113 % ,O 10109 %.

可见,304L 、316L 和In800 的表面有氧元素,表明这3 种材料的表面确实存在一定量的腐蚀产物;317L 表面成分和基底成分基本一致,表明其仍然具有较好的耐蚀性.

4 种材料在160 ℃、90 %醋酸溶液中,经72h 的腐蚀试验后,304L 不锈钢和In800 均发生严重均匀腐蚀,试样表面均匀附着黑色腐蚀产物(图3a ,3d) .316L 和317L 不锈钢试样表面均失去试验前的光泽,微观放大, 试样表面有明显腐蚀特征(图3b ,3c) . 对4 种材料表面电子衍射能谱分析指出,主要合金元素和

氧含量分别为:

304L 表面Cr 14101 % ,Ni 3108 % ,O 16112 %;

316L 表面Cr 16143 % , Ni10163 % , Mo 0126 % , O 3126 %;

317L 表面Cr1717 % ,Ni 1315 % ,Mo 2114 % ,O 2197 %;

In800 表面Cr 816 % , Ni 2116 % , O 22118 %.

可以看出,304L 、316L 和In800 的表面氧元素含量较130 ℃条件下结果有明显增大,317L 表面也发现了一定量氧元素,表明这4 种材料的表面确实存在一定量的腐蚀产物.

312 腐蚀速率的变化

在各试验条件下,对4 种材料进行浸泡腐蚀试验,用失重法计算腐蚀速率,结果如图4. 可知,随着温度的升高,4 种材料的腐蚀速率均逐渐增大. 当温度在100 ℃以下时,304L 不锈钢和In800 的腐蚀速率增长缓慢,超过100 ℃以后,腐蚀速率急剧增大.130 ℃时,304L 不锈钢腐蚀速率比其在100 ℃时增大了67 倍;相应In800 增大了532 倍. 而316L 不锈钢和317L 不锈钢在130 ℃以下保持较低的腐蚀速率,超过130 ℃以后,腐蚀速率急剧增大,160 ℃时,316L 不锈钢腐蚀速率比其在130 ℃时增大了312倍; 相应317L 不锈钢增大了417 倍, 但即使到190 ℃时,两者腐蚀速率仍保持在较低数值.

313 讨论

31311 温度对不锈钢和In800 在高温醋酸溶液中耐蚀性的影响 金属在醋酸中的腐蚀速度可由下式[8 ]来计算:

Effects of temperature on corrosion

I = ( E0c - E0a) / ( Pc + Pa + R) (1)

其中: I 是腐蚀电流,与腐蚀速度成正比, E0c 是阴极反应的平衡电位,受H+ 还原、氧的离子化影响, E0a 是金属平衡电位, Pc 、Pa 是阴极极化率和阳极极化率, R 是腐蚀体系的电阻.金属在醋酸溶液中发生腐蚀的主要反应[5 ]为:

阳极反应:Me →Men + + n e

阴极反应:2H+ + 2 e →H2

或O2 + 4H+ + 4 e →2H2O

金属发生腐蚀时的主要阴极反应是溶液中的H+ 或溶解氧的还原. 醋酸溶液中的氧化剂主要是醋酸电离的H+ 和溶解在溶液中的氧气. 在低温时,由于醋酸是弱电解质,且醋酸溶液中氧的溶解量大,阴极反

应主要是溶解氧的还原,即醋酸溶液具有一定的氧化性;阳极反应是受钝化控制的活化溶解过程,金属处于钝化区,其平衡电位E0a增大,从而导致腐蚀电流I 减小. 宏观表现为在金属表面生成致密的钝化膜,钝化膜的形成阻止了腐蚀的继续发展. 因此,不锈钢和In800 在低温醋酸溶液中具有优良的耐蚀能力,

相关文档
最新文档