数理统计的基本概念 经典复习资料汇总
根据数理统计知识点归纳总结(精华版)
根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。
2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。
通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。
以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。
如需深入了解各个知识点的具体内容,请参考相关教材或课程。
数理统计知识梳理
2、步骤
( 1) 提 出 原 假 设 H 0 ( 2) 选 择 检 验 的 统 计 量 并 找 出 在 假 设 H 0 成 立 的 条 件 下 , 该 统 计 量 所服从的概率分布 ( 3) 根 据 所 给 的 显 著 水 平 , 查 概 率 分 布 临 界 值 表 , 找 出 检 验 统 计 量 的 临 界 值 , 并 确 定 否 定 域 ( 4) 用 样 本 值 计 算 统 计 量 的 值 , 将 其 与 临 界 值 比 较 , 根 据 比 较 结 果 , 确 定 样 本 值 是 否 落 入 否 定 域 , 最 后 对 H 0作 出 结 论
( X 1 , X 2 ,… , X n )
是n次试验的结果,因此它们是
n个随机变量。但做了试验后,记录下来的是它们在试 验中所取得的数值,得到一串数据
( x1 , x 2 , … , x n )
这串数据称为样本的观察值。
样本的观察值就是指样本的一次实现, 是一个常数向量
有时样本观察值也称为样本,因此样本一词 具有二重性
服 从 自 由 度 为 ( k 1, k 2) 的 F 分 布 , 记 F ( k 1, k 2) 。
F分布一个重要特点
F1( k 1, k 2) =
1 F( k 2, k 1)
3、统计量
设 X 1 , X 2 , … , X n 是 来 自 总 体 X 的 一 个 样 本 , g( x1 , x 2 , … , x n ) 是 一 个 连 续 函 数 。 如 果 g中 不 包 涵 任 何 未 知 数 参 数 , 则 称 g(X 1 , X 2 , … , X n )为 统 计 量 。
2分 布 的 重 要 性 质
X 1 ~ ( m ) , X 2 ~ ( n ) ; n )
数理统计知识点总结
数理统计知识点总结一、概述数理统计是一门研究收集、整理、分析和解释数据的学科。
它在各个领域中发挥着重要作用,包括科学研究、经济学、社会学等。
二、基本概念1. 数据:指收集到的观察结果或实验结果,是进行统计分析的基础。
2. 总体和样本:总体指研究对象的全体,样本是从总体中选取的一部分。
3. 变量:指研究对象的性质或特征,分为定性变量和定量变量。
4. 频数和频率:频数是某一数值在样本中出现的次数,频率是某一数值在样本中出现的相对次数。
三、数据的整理与描述1. 数据的收集:可以通过实验、调查或观察等方式获取数据。
2. 数据的整理:包括数据的分类、排序和归纳等处理。
3. 数据的描述:使用统计指标如均值、方差、标准差等来描述数据分布的中心趋势和变异程度。
四、概率与概率分布1. 概率:指事件发生的可能性,可通过频率或理论推导计算得到。
2. 概率分布:描述随机变量取值与其概率之间的关系,包括离散概率分布和连续概率分布。
五、统计推断1. 参数估计:根据样本数据估计总体的参数,如均值、比例等。
2. 假设检验:根据样本数据判断总体参数是否符合某个假设。
3. 置信区间:给出总体参数的估计范围。
六、相关性与回归分析1. 相关性:描述两个变量之间的关联程度,可以通过相关系数来度量。
2. 简单线性回归:通过一条直线描述两个变量之间的函数关系。
3. 多元线性回归:通过多个变量来描述一个变量的线性关系。
七、抽样与实验设计1. 抽样方法:包括随机抽样、分层抽样等,确保样本具有代表性。
2. 实验设计:设计合理的实验方案,控制其他因素对结果的影响。
以上是数理统计的一些基本知识点总结,希望对您有所帮助。
第六章 数理统计基本概念
同一一分布:EX,DX,F均一一样
相互独立立:标准差cov(Xi,Xj)=0,cov(Xi,Xi)=DXi
2.样本的联合分布
1)联合分布函数(由于独立立)连乘
2)联合概率密度(由于独立立)连乘
3.统计量量与抽样分布
第六章数理理统计基本概念
引言言
概率论——偏理理论,主要是分布,数字特征(其是分布的量量化)
数理理统计——应用用,主要是估计,检验,最重要的是抽样分布!
知识点:一一 基本概念 二二 常用用的统计量量 三 常用用统计量量的抽样分布 四 正太总体的抽样分布
一一 基本概念
1.总体,个体,总体容量量 ,简单随机样本
Note:1)定义:1.服从标准正态分布;2.独立立 3.标准正态平方方和才服从X2分布
2)性质:1.叠加性(自自由度叠加)2.X2的期望,方方差
3)图像(注意上分位点)
要注意单位化!
2.t(n)分布(定义,性质,图像)
Note:1.定义:1.X服从标准正态,2.Y服从X2,3.X,Y相互独立立4.t的表达式
1)统计量量:简单随机样本的函数
2)抽样分布:统计量量的分布——灵魂(只有四个,N,X2,t,F)
二二 常用用(基本)的统计量量(注意样本均值,样本方方差,样本标准差都是随机变量量,可以求E D)
1.样本均值(公式,三个推论)
1)期望,方方差,若服从正态,则其也服从正态,具体形式
2.样本方方差(公式,注意两点)
2.性质:图像(对称)(类似标准正态分布图像)(分位点表达式)
3.F(m.n)分布(定义,性质,图像)
Note:1.定义:X服从X2(m)2.Y服从X2(n)3.X,Y独立立;4F表达式
数理统计主要知识点
《数理统计》的主要知识点 一.统计量及其抽样分布 (一)统计量的概念1. 统计量的定义: 简单地说,统计量就是样本i x 的函数,它除i x 外不含其它未知参数。
2. 简单随机抽样:从总体中抽取样本n x x x 21,若它们相互独立同分布 ,且分布与总体 相同,则称其为简单随机抽样。
3. 常见的统计量:(1)样本均值: ∑==n i i x n x 11 (2)样本方差:()21211∑=--=n i i x x n s (3)样本k 阶原点距: ∑==n i k i k x n a 11 (4)样本k 阶中心距: ()∑=-=ni k i k x x n b 11(二)抽样分布的结构和性质 1.2χ分布: 若 n X X X ,,21 是来自总体X 的简单随机抽样,且X ~()1,0N ,则随机变量2χ=22221nX X X +++ ,此时称其分布为自由度为n 的2χ分布,记2χ~()n 2χ 性质: ①()n E=2χ ② ()n D 22=χ2.F 分布:若X ~()n 2χ,Y ~()m 2χ,且Y X 与相互独立,记随机变量F mY n X=,称其分布为自由度为n 与m 的F 分布,记 F ~F ()m n ,性质:()()nm F m n F ,1,1αα-= 3.t 分布:设随机变量Y X 与相互独立,且X ~()1,0N ,Y ~()n 2χ,则称 nY X t =的分布为自由度为n的t 分布,记t ~t ()n性质:①自由度为1的t 分布是标准柯西分布,它的均值不存在;②1>n 时,t 分布的数学期望存在且为0;③1>n 时,t 分布的方差存在且为2-n n ④当自由度较大时,t 分布可以用()1,0N 近似。
二.参数估计:(一)点估计:1. 矩估计:(替换原理)一般地:①用样本均值估计总体均值;即 ()x X E =②用样本二阶中心矩估计总体方差;()()2121∑=-==ni i nx x n s X D③用事件A 出现的频率估计事件A 发生的概率。
数理统计的基本概念汇总
6数理统计的基本概念6.1 基本要求1 理解总体、样本(品)、样本容量、简单随机样本的概念。
能在总体分布给定情况下,正确无误地写出样本的联合分布,这是本章的难点。
2*了解样本的频率分布、经验分布函数的定义,了解频率直方图的作法。
3 了解χ2分布、t分布和F分布的概念及性质,了解临界值的概念并会查表计算。
4 理解样本均值、样本方差及样本矩的概念。
了解样本矩的性质,能借助计算器快速完成样本均值、样本方差观察值的计算。
了解正态总体的某些常用抽样分布。
6.2 内容提要6.2.1 总体和样本1 总体和个体研究对象的某项特征指标值的全体称为总体(或母体),组成总体的每个元素称为个体。
总体是一个随机变量,常用X,Y等来表示。
2 样本从总体中随机抽出n个个体称为容量为n的样本,其中每个个体称为样品,它们都是随机变量。
3 简单随机样本设X1,X2,…,X n是来自总体X的容量为n 的样本,如果这n个随机变量X1,X2,…,X n相互独立且每个样品X i与总体X具有相同的分布,则称X1,X2,…,X n为总体X的简单随机样本。
4 样本的联合分布*该部分内容考研不作要求。
149150若总体X 具有分布函数F (x ),则样本(X 1,X 2,…,X n )的联合分布函数为∏==ni i n x F x x x F 121)(),,,(若总体X 为连续型随机变量,其概率密度函数为f (x ),则样本的联合概率密度为∏==ni in x f x x x f 121)(),,,( (6.1)若总体X 为离散型随机变量,其分布律为P {X =a i }=p i (i =1,2,…n),则样本的联合分布为∏======ni i i n n x X P x X x X x X P 12211}{},,,{ (6.2)其中),,,(21n x x x 为),,,(21n X X X 的任一组可能的观察值。
6.2.2 样本分布1 频率分布设样本值(x 1,x 2,…,x n )中不同的数值是x 1*,x 2*,…,x l *,记相应的频数分别为n 1,n 2,…,n l ,其中x 1*< x 2*<…< x l *且n n li i =∑=1。
数理统计复习资料
数理统计复习资料数理统计复习资料数理统计是一门应用数学的学科,主要研究数据的收集、整理、分析和解释。
它在各个领域都有广泛的应用,包括经济学、医学、社会科学等。
在学习数理统计时,我们需要掌握一些基本的概念和方法,以及一些常用的统计分布和假设检验。
下面是一些数理统计复习资料的内容。
1. 概率论基础概率论是数理统计的基础,它研究随机事件的发生概率。
在学习概率论时,我们需要了解一些基本的概念,如样本空间、事件、概率等。
同时,还需要掌握概率的计算方法,包括加法法则、乘法法则、条件概率等。
此外,还需要了解一些常用的概率分布,如二项分布、泊松分布、正态分布等。
2. 统计推断统计推断是数理统计的核心内容,它研究如何通过样本对总体进行推断。
在学习统计推断时,我们需要了解抽样分布和估计量的性质。
同时,还需要学习点估计和区间估计的方法,包括最大似然估计、矩估计、置信区间等。
此外,还需要掌握假设检验的基本原理和方法,包括单样本均值检验、两样本均值检验、方差分析等。
3. 回归分析回归分析是数理统计的重要应用,它研究自变量与因变量之间的关系。
在学习回归分析时,我们需要了解线性回归模型和非线性回归模型的基本原理。
同时,还需要学习回归系数的估计方法,包括最小二乘估计、岭回归、lasso回归等。
此外,还需要掌握回归模型的诊断方法,包括残差分析、模型选择等。
4. 方差分析方差分析是数理统计的一种重要方法,它研究不同因素对观测值的影响。
在学习方差分析时,我们需要了解单因素方差分析和多因素方差分析的基本原理。
同时,还需要学习方差分析的假设检验方法,包括F检验、多重比较等。
此外,还需要掌握方差分析的扩展方法,如混合设计、重复测量设计等。
5. 非参数统计非参数统计是数理统计的一种重要分支,它不依赖于总体分布的假设。
在学习非参数统计时,我们需要了解秩和检验、符号检验、Wilcoxon秩和检验等基本方法。
同时,还需要学习非参数回归、非参数方差分析等扩展方法。
第一节数理统计的基本概念-
某批 灯泡的寿命
国产轿车每公里 的耗油量
该批灯泡寿命的全 体就是总体
国产轿车每公里耗油量 的全体就是总体
一、总体和样本
数理统计
1. 总体——研究对象全体元素组成的集合.
所研究的对象的某个(或某些)数量指标的全体, 它是一个随机变量(或多维随机变量), 记为 X.
总体有三层含义: 研究对象的全体;全部数据; 分布.
(1) 当总体X是离散型时, 其分布律为: P (X x i) p (x i)(i 1 ,2 , ) 样本的联合分布律为:
p (x 1 ,x 2 , ,x n ) P (X 1 x 1 ,X 2 x 2 , ,X nn x n )
P (X 1 x 1 )P (X 2 x 2 ) P (X n x n ) p ( x i ) i1
数理统计
总体
寿命 X 可用概率(指数)分布来刻划
寿命总体是指数分布总 体
某批 灯泡的寿命 常用随机变量或用其分布函数表示总体,
比如说总体 X 或总体 F (x) .
类似地, 在研究某地区中学生的营养状况时, 若关心的数量指标是身高和体重, 我们用 X 和 Y 分别表示身高和体重, 那么此总体就可用二维随机变量 (X, Y) 或其联合分布函数 F (x, y)来表示.
解: P(X x)x e, x0,1,2,
x!
n
P (X 1t1,X 2t2, ,X ntn ) P (X ti)
i 1
n
n ti e
i1 ti !
ti
i1
e n
t1 !t2 ! tn !
例5: 设某批产品共有N个,其中的次品数为M, 其次品率为: p=M/N,
数理统计主要知识点
数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。
本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。
一、概率分布概率分布是数理统计的基础。
它描述了一个随机变量所有可能的取值及其对应的概率。
常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。
2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。
3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。
4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。
二、参数估计参数估计是根据样本数据来推断随机变量的参数值。
常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。
2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。
三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。
它包括假设、检验统计量和显著性水平三个重要概念。
1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。
2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。
3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。
四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。
它可以帮助人们了解因果关系,做出预测和控制因素的效果。
1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。
2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。
数理统计基础
数理统计基础数理统计是统计学中的一个重要分支,它不仅是现代科学研究的必备工具,更是经济、金融、医学、社会科学等领域的重要基础。
本文将从基础概念、数据的搜集与整理、概率分布及其统计推断、参数估计与假设检验等方面,简要介绍数理统计的基本概念和理论。
一、基础概念1.总体和样本总体指我们需要研究的全体对象,样本则是从总体中选出的一部分对象。
为了使样本更具有代表性,我们需要采用随机抽样的方法。
总体和样本的关系是,样本是从总体中抽出的一部分,通过对样本的研究可以得到对总体的推断。
2.统计量和参数统计量是样本数据的函数,参数是总体分布的特征数值。
例如样本均值是样本数据的函数,而总体均值是总体分布的特征数值。
统计量可以用来描述样本的分布情况,帮助我们对总体进行推断。
3.分位数和分位点分位数是在数值序列中把一个样本分割为几个等份的数值,分位点则是将整个样本分成若干等份的点。
例如,中位数是50%分位数,将样本分为两个等份。
分位数和分位点是描述样本分布特征的指标。
二、数据的搜集与整理数据的搜集与整理是数理统计的重要前提。
在数据搜集时,需要注意样本的代表性、随机性和可比性。
在数据整理时,需要进行数据清洗,包括误差校正、缺失数据的填补等。
整理出清晰、准确、有意义的数据,是进行统计分析的基础。
三、概率分布及其统计推断在统计分析中,分布是一个关键概念。
常见的分布有正态分布、泊松分布等。
概率密度函数是描述分布特征的函数,可以用于对总体和样本进行分析和描述。
概率分布的统计推断包括参数估计和假设检验两个重要方面。
1.参数估计参数估计是指根据已知的样本数据,推断总体分布的参数。
这里介绍两种参数估计方法:最大似然估计法:在总体分布已知的情况下,利用样本数据进行最大似然估计。
最大似然估计是一种广泛应用于统计学中的方法,可以得到比较准确的参数估计。
贝叶斯方法:在总体分布未知的情况下,利用概率论的贝叶斯公式计算后验分布并进行参数估计。
贝叶斯方法面对的是更加复杂的情形,但能够在一定程度上处理不确定性。
考研数学数理统计基础知识点总结
考研数学数理统计基础知识点总结在准备考研数学的过程中,掌握数理统计基础知识是非常重要的。
本文将为您总结一些常见的数理统计基础知识点,帮助您更好地备考。
一、概率论基础知识1. 事件与样本空间:事件是指样本空间中的某个子集,样本空间则是指随机试验的所有可能结果的集合。
2. 概率的定义:概率是指事件发生的可能性大小,其取值范围在0到1之间。
3. 概率的运算:包括加法公式和乘法公式。
加法公式适用于互斥事件的概率计算,乘法公式则适用于独立事件的概率计算。
4. 条件概率:指在已知某一事件发生的条件下,另一事件发生的概率。
5. 贝叶斯定理:用于计算事件的后验概率,在已经得到一些信息的情况下,通过先验概率和条件概率计算出事件的后验概率。
二、随机变量与概率分布1. 随机变量的概念:随机变量是指随机试验结果的某个函数,可以是离散的或连续的。
2. 概率质量函数与概率密度函数:对于离散型随机变量,其概率可以通过概率质量函数来描述;对于连续型随机变量,则需要使用概率密度函数。
3. 常见的离散型随机变量:包括伯努利分布、二项分布、泊松分布等。
4. 常见的连续型随机变量:包括均匀分布、正态分布、指数分布等。
三、统计推断1. 抽样与抽样分布:抽样是指从总体中选取一部分个体进行研究,抽样分布则是指统计量在大量抽样下的分布情况。
2. 参数估计:根据样本数据对总体的某个参数进行估计,可以使用点估计和区间估计两种方法。
3. 假设检验:对总体参数的某个假设进行检验,包括设置原假设和备择假设,以及计算检验统计量和判断拒绝域。
4. 方差分析:一种用于比较两个或多个总体均值是否有显著差异的统计方法,适用于独立样本、配对样本和重复测量样本。
四、相关与回归分析1. 相关分析:用于判断两个变量之间的相关性强弱,包括计算相关系数和进行假设检验。
2. 简单线性回归分析:用于建立一个自变量与因变量之间的线性关系模型,通过最小二乘法来估计回归系数。
3. 多元线性回归分析:在简单线性回归的基础上,将多个自变量引入回归模型中进行分析,以探究多个变量对因变量的影响。
数理统计知识点总结(总22页)
数理统计知识点总结(总22页)一、基本概念1、统计学:统计学是一门研究人群或事物特性及变化规律的学科,是应用数理统计方法研究某种规律的学科,是整理、综合和分析统计资料的学科。
2、统计资料:统计资料是从实际中收集的有关统计对象的数据,也可以称为实验资料。
3、变量:历史的发展过程中,统计中的变量可分为定量变量和定性变量。
前者是指可以用数字表示的变量,又被称为被观察变量或解释变量;后者多由文字描述,不能量化,又被称为因变量或行为变量。
4、分类变量:又称为分类统计数据,是指按照一定的范围将变量等分,主要用于描述变量的构成状况。
5、样本:样本是用于做统计分析的一部分数据,它按照一定的要求从某种群体中抽取出来,它是统计资料的简写总结。
样本本身并非具有代表性,但在发现规律方面与总体相比,它有许多独特的优势。
二、数理统计方法1、数据描述:数据描述是指用定量和定性的方式把统计对象描述出来,也就是用汇总统计和分类统计的方法研究统计资料的特征。
2、分布类型:经过研究的统计资料各变量的分布可分为三种基本形式:正态分布、对数分布和正玄分布。
3、抽样技术:抽样是指在随机或不完全随机的情况下,从一个总体中抽出一定数量的抽样单位,用它们反映整体的一般特性的科学方法。
4、统计推断:统计推断是指借助于统计技术去评价样本资料与总体资料之间的联系,并借以判断在一定概率水平上总体参数的取值情况,并对总体参数做出推断。
5、回归分析:回归分析是利用统计方法,探索两个或多个变量之间存在的关系,及掌握这种关系的参数。
三、统计推断1、假设检验:假设检验是统计推断的基本方法,是统计方法求出的取值所处位置在参数特定范围内的概率,通常用统计量在假设下把允许的概率建模出来。
2、置信区间:置信区间是统计学中定量评价事物变化范围的一种分析方法,其作用是加以比较研究结果,以及让相应的概率参数可以被确定的概率范围的压缩,使数据更有说服力。
3、方差分析:方差分析是检验研究变量之间是否存在显著的差异性的统计分析方法,其研究的是变量的变异程度。
数理统计相关知识汇总
数理统计相关知识汇总数理统计是应用概率论和数学方法来研究数据的收集、分析、解释和预测的一门学科。
它广泛应用于各个领域,如自然科学、社会科学、医学、经济学等,并在决策、规划和控制等方面发挥重要作用。
以下是数理统计相关的一些基本概念和方法。
1.数据收集与描述数据收集是数理统计的第一步。
可以通过统计调查、实验、抽样等方法来获取数据。
描述统计是对收集到的数据进行总结和展示的过程,一般包括以下几个方面:-资料整理:整理数据,包括删除错误或无效的数据,填补缺失值等。
-描述性统计:计算和描述数据的中心趋势(如均值、中位数、众数)和离散程度(如范围、方差、标准差)。
-分布特征:观察数据的分布情况,例如直方图、箱线图等。
2.概率基础概率是数理统计的理论基础,用于描述事件发生的可能性。
概率论包括以下几个重要概念:-随机试验:具有多个结果可能的试验,每个结果的发生概率是已知的。
-样本空间和事件:样本空间是随机试验所有可能结果的集合,事件是样本空间的子集。
-概率的公理:概率遵循一些基本公理,如非负性、规范性、可列可加性等。
-条件概率和独立性:条件概率描述在已知一些事件发生的条件下,其他事件发生的概率。
独立事件是指两个事件的发生不相互影响。
-随机变量和概率分布:随机变量是根据试验结果取值的变量,概率分布描述随机变量取每个可能值的概率。
3.统计推断统计推断是基于样本数据对总体的推断。
主要包括参数估计和假设检验两个方面:-参数估计:根据样本数据推断总体参数的值。
常用的参数估计方法有点估计和区间估计。
点估计通过一个样本统计量来估计总体参数,如样本均值估计总体均值;区间估计给出总体参数估计值的一个范围,如置信区间。
-假设检验:根据样本数据对关于总体的一些假设进行推断。
假设检验常包括原假设和备择假设,通过计算样本统计量的观察值与假设下的期望值之间的差异来判断假设的合理性,从而做出接受或拒绝原假设的决策。
4.回归分析回归分析用于探索自变量和因变量之间的关系。
数理统计基础知识(一)(1)
数理统计的基本概念
c x0
CxnPx(1-P)n-x值表
c 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 p 0.001 0.9980 1.0000 0.9970 1.0000 0.9960 1.0000 0.002 0.9960 1.0000 0.9940 1.0000 0.9920 1.0000 0.003 0.9940 1.0000 1.9910 1.0000 0.9881 0.9999 1.0000 0.9851 0.9999 1.0000 0.005 0.9900 1.0000 0.9851 0.9999 1.0000 0.9801 0.9999 1.0000 0.9752 0.9998 1.0000 0.01 0.9801 0.9999 0.9703 0.9997 1.0000 0.9606 0.9994 1.0000 0.9510 0.9990 1.0000
数理统计的基本概念 随机变量 如果事前我们无法准确地知道变量的具体取值,这样的变量 就是随机变量;在6西格玛项目中,我们处理的大都是随机变 量。如: 每周所收到的定单的数量; 每批零件的报废数量; 每天接到的顾客服务电话数量;
每批产品的交付时间;
每个零件的加工尺寸等。 概率是研究随机变量的工具
数理统计的基本概念
是整数的X的值,相应的分布函数值列在中间。
例:设随机变量X服从二项分布b(8,0.01),求P(X≤2)及P(X=2). 解:由于P(X≤2)=F(2), 这里n=8,p=0.01,c=2, F(2)=0.9999,即P(X≤2)=0.9999 同理可查出F(1)=0.9973, 因此:P(X=2)=F(2)-F(1)=0.9999-0.9973=0.0026
数理统计相关知识汇总
其他: 设备维修、更新,项目选 择、评价,工程优化设计与管理等。
12
多元分析方法、时间序列分析和最优化等方法 都是依赖于计算机的发展而发展的,如果不使 用计算机,多元分析方法、时间序列分析和最 优化等方法中的许多计算几乎是不可能完成的。
网络计划 线性规划
排队论 非线性规划
动态规划 对策论
从不使用 有时使用 经常使用
3
各种方法在中国使用情况
(随机抽样)(1998年)
100 90 80 70 60 50 40 30 20 10 0
统计 计算机模拟
网络计划 线性规划
排队论 非线性规划
动态规划 对策论
从不使用 有时使用 经常使用
4
统计学(statistics)是用以收集数据、分析数据 和由数据得出结论的一组概念、原则和方法。
比如,北京GDP在一年中是快速增长的,而一个 刚出生的巴拿马婴儿在这一年中的体重也是快速 增长的。如果画出图来,它们有类似线性的关系 ,但它们之间显然没有因果关系。
29
只要有关系,即使不是因果关系也不妨碍人们利 用这种关系来进行推断。比如利用公鸡打鸣来预 报太阳升起;虽然公鸡打鸣绝对不是日出的原因 (虽然打鸣发生在先)
的方法主体都是统计。
18
§1.2 现实中的随机性和规律性、概率和机会
我们知道物理学的许多定律:
例如 v=v0+at ; F=ma 等等
然而在许多领域,很难用如此确定的公式或论述 来描述一些现象。一些现象既有规律性又有随机 性(randomness)。 例如:肺癌患者中(主动或被动)吸烟的比例 较大,这体现了规律性;而绝非每个吸烟的人都 会患肺癌,这体现了随机性。
数理统计考研知识点总结
数理统计考研知识点总结一、描述统计1. 基本概念:数据、变量、统计资料、频数、频率、累积频数、累积频率、平均数、中位数、众数、标准差、分位数、几个概念的含义和计算方法;2. 统计图和图表:直方图、饼图、条形图、线图、散点图的绘制和含义,表格的制作和解读;3. 相对位置和波动程度:标准差、变异系数、分位数(位数和分位数秩),说明统计描述时给出的数据规律有多准确、有多平均、有多稳定。
二、概率论基础1. 基本概念:概率空间、随机试验、样本点、样本空间、事件、概率的定义、基本性质;2. 条件概率和独立性:条件概率、乘法法则、全概率和贝叶斯定理、独立性与互斥性;3. 随机变量及其分布:随机变量的定义、离散型随机变量、连续型随机变量、随机变量的分布函数;4. 数学期望和方差:数学期望的定义、性质和计算方法、方差的定义、性质和计算方法;5. 大数定律和中心极限定理:伯努利大数定律、切比雪夫不等式、中心极限定理的基本概念及其应用。
三、参数估计和假设检验1. 参数估计:点估计、区间估计、样本容量对估计精度的影响、均值和方差的区间估计;2. 假设检验:假设检验的基本思想、基本步骤、假设检验的原理、拒绝域和p值的概念;3. 正态总体均值和方差的检验:单个正态总体均值和方差的假设检验问题、两个正态总体均值和方差的假设检验问题。
四、方差分析、相关分析和回归分析1. 方差分析:方差分析的基本原理、单因素方差分析、多因素方差分析;2. 相关分析:相关系数的概念及其计算、相关系数的性质、假设检验问题、相关系数的显著性检验、线性相关的检验;3. 回归分析:回归分析概念及其应用、简单线性回归模型的参数估计、残差分析和回归模型选择。
五、非参数统计1. 秩和秩次统计量:秩和检验及其应用、秩次统计量的定义和性质;2. 符号检验:符号检验的概念、假设检验问题的符号检验;3. 秩和检验:两独立样本的秩和检验、两相关样本的秩和检验、多样本的秩和检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如,当X~N(μ,σ2)时,称总体X为正态总体.正态 总体有以下三种类型:
①μ未知,但σ2已知; ②σ2未知,但μ已知; ③μ,σ2均未知.
河南理工大学精品课程
概率论与数理统计
二、样本与样本值
数理统计的基本任务就是通过对从总体中抽取的
一部分个体(称为总体的样本)进行观察,根据所记录的
数据(样本值)经整理与加工,以推断总体的某些性质. “从总体中抽取一个个体”就是对总体进行一次观
定义3 设X1,X2,…,Xn是来自总体X的样本,x1,x2,
…,xn为其样本值,则称不含任何总体分布中未知参数的 连续函数g( X1, X 2,, X n ) 为统计量,相应实数 g(x1, x2,, xn )
称为其观察值。
河南理工大学精品课程
概率论与数理统计
常用统计量有: 样本均值
(修正)样本方差
概率论与数理统计
总体X
随机抽样 获得样本
样本X1,X2,…,Xn
完成试验 获得数据
样本值x1,x2,…,xn
整理加工 统计推断
统计 工作
河南理工大学精品课程
概率论与数理统计
§2、抽样分布
一、统计量 样本是进行统计推断的依据。但在实际应用时,一
般不是直接使用样本本身,而是对样本进行整理和加工,
即针对具体问题构造适当的函数—统计量,利用这些函数 来进行统计推断,揭示总体的统计特性.
由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
河南理工大学精品课程
概率论与数理统计
上α分位点(双侧α/2分位点)
定义 点 F (n1, n2 )为 F (n1, n2 ) 分布的上α分位点
P{F F (n1, n2 )} (0 1).
F分布上α分位点 f (x) 有如下性质:
2/2 (15)
2 0.025
(15)
27.488
河南理工大学精品课程
概率论与数理统计
2、t-分布
定义 设 X ~ N (0,1),Y ~ 2 (n),且X与Y独立,则称
随机变量
t X Y /n
服从自由度为n的t-分布,记为 t ~ t(n).
❖ t-分布的概率密度为
f
(x)
[(n 1)
n(n
检每个灯泡! 可以逐一测量每个工大男生的身高,但工作量大.而我
们仅需对工大男生身高情况有个大致了解,因此,不必要抽
测每个工大男生!
河南理工大学精品课程
概率论与数理统计
做法 从总体中随机地抽取若干个体(灯泡、工大男 生),测试其所需数据(寿命、身高),最后对所得数据通过 整理加工和分析来推断总体(这批灯泡寿命、工大男生身 高)的分布情况,从而了解整体情况.
我们仅介绍其有关参数估计与参数假设检验等基本 内容。
河南理工大学精品课程
概率论与数理统计
§1、随机样本
一、总体与个体
定义1 在数理统计中,将所研究对象的全体称为总 体(母体),其中每个对象称为个体。
由于通常关注的是研究对象的某些个数量指标,因此 也称这些数量指标取值的全体为总体,其中每个元素称为
个体. 例如,检验灯泡厂生产的灯泡寿命:受检的全体灯泡就
P
1 F
F
(n2 ,
n1
)
,
比较后得
F1-
1 ( n1 ,
n2 )
F
(n2 ,
n1 ),
即F1
( n1 ,
n2 )
F
1 (n2 ,
. n1 )
用来求分布表中未列出的一些上 分位点.
例
F0.95 (12,9)
1 F0.05 (9,
12)
1 0.28
0.357
.
三、样本均值与样本方差的分布
设总体X有均值与方差:
dt
1
1
.
0
2 2 2
河南理工大学精品课程
概率论与数理统计
二、抽样分布
完全由样本确定的函数就是统计量。 统计量是随机变量,它的分布称为抽样分布。
下面,介绍来自正态总体的几个重要统计量的分布. 1、χ2-分布(卡方分布) 定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
D(X )
E(X
2)
[E(X )]2
2
2 1
河南理工大学精品课程
概率论与数理统计
补充知识: Γ-函数
定义
(x) ett x1dt
0
(x 0)
❖ 性质 (x 1) x(x) (x 0); (n 1) n!;(2) (1) 1;
重要积分
et2 t
xdt
1
1
x
0
22
(x 1);
e t 2
因为F ~ F (n1, n2 ),
所以 1 P{F F1 (n1 , n2 )}
P
1 F
F1
1 ( n1 ,
n2 )
1
P
1 F
1 F1 (n1,
n2 )
1
P
1 F
1 F1 (n1 ,
n2
)
,
故
P
1 F
பைடு நூலகம்
F1
1 (n1 ,
n2
)
,
因为 1 F
~
F (n2 ,
n1 ),
所以
(修正)样本方差还可表示为
S 2
1
n
[
n 1 i1
X
2 i
nX
2]
【推导】
S2
1 n 1
n i 1
(Xi
X
)2
1 n 1
n i 1
(
X
2 i
2Xi X
X
2)
1
n
[
n 1 i1
X
2 i
2X
n i 1
Xi
n i 1
X 2]
1n [
n 1 i1
X
2 i
2nX
2
nX 2 ]
1
n
[
特别的,若X的概率密度为f(x),则 X1, X 2 ,, X n 的联合
概率密度为
河南理工大学精品课程
概率论与数理统计
n
f *(x1, x2 ,, xn ) f (xi ). i 1
若X的概率分布为p(x),则 X1, X 2 ,, X n 的联合概率分
布为
n
p*(x1, x2 ,, xn ) p(xi ). i 1
n1 n1 1
f
(x)
[(n1 n2 ) / 2](n1 / n2 ) 2 x 2 n1n2 ,
(n1 / 2)(n2 / 2)[1 (n1x / n2 )] 2
0,
x 0, 其它.
河南理工大学精品课程
概率论与数理统计
f (x)
n1 10, n2 25
n1 10, n2 5
O
x
F-分布的性质
1,2,)
bk
1 n
n i 1
( xi
x)k (k
1,2,)
河南理工大学精品课程
概率论与数理统计
重要结论:样本矩(的连续函数)依概率收敛
于总体矩(的连续函数)[矩估计的理论基础]。
总体k阶(原点)矩
E( X k ) k (k 1,2,)
总体的期望就是其一阶矩:
E( X ) 1
总体的方差:
2
X
2 1
X
2 2
X
2 n
服从自由度为n的χ2-分布,记为 2 ~ 2 (n).
河南理工大学精品课程
概率论与数理统计
❖ 2 (n)-分布的概率密度为
f
(x)
2n
/
2
1 (n
/
2)
x
n 1 x
2 e2
,
0,
x 0, 其它.
f (x)
n 1
n5
n 15
O
河南理工大学精品课程
x
概率论与数理统计
察(试验),并记录其数据结果.
在相同条件下对总体X进行n次独立、重复的观察,
将n次试验结果依次记为 X1, X 2 ,, X n ,则称之为来自
总体X的容量为n的一个简单随机样本;n次试验完成后
所得样本的一组观察值 x1, x2,, xn 称为样本值.
河南理工大学精品课程
概率论与数理统计
定定义义22 设总体X的分布函数为F,若X1,X2,…,Xn
n 1 i1
X
2 i
nX
2]
河南理工大学精品课程
概率论与数理统计
❖ 样本方差
S *2
1 n
n i 1
(Xi
X )2
n 1S2 n
样本均值是样本一阶原点矩;样本方差是样本二阶
中心矩。
上述各统计量的观察值为
x
1 n
n i 1
xi
s 2
1 n 1
n i 1
( xi
x)2
ak
1 n
n i 1
xik (k
是总体,每个灯泡就是个体。也可理解:全体灯泡寿命数
值构成总体,每个灯泡的寿命数值为一个体。
河南理工大学精品课程
概率论与数理统计
又如,调查工大男生身高情况:工大全体男生就是总
体,每个工大男生就是一个个体。也可理解:全体工大男
生身高数值构成总体,每个工大男生身高数值就是一个个
体。
灯泡的寿命检验是一个破坏性试验,即当得知一个灯 泡寿命时,该灯泡的使用价值也就消失了.因此,不可能抽
P{ 2 2 (n)} (0 1).