粉末冶金铁基结构零件_主题创新报告_20130926

粉末冶金铁基结构零件_主题创新报告_20130926
粉末冶金铁基结构零件_主题创新报告_20130926

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

粉末冶金零件的优化设计

详细说明 改进前的设计 改进后的设计 1.应使压模中的粉末受到大致相等的压缩,并能顺利地从压模中取出模压成型的制品。在零件压制方向如有凸起或凹槽时,则粉末在压制时各部分的密实度不易一致,因此凸起或凹槽的深度以不大于零件总高度的1/5为宜,并有一定的拔模锥度 2.当由上向下压制的结构零件较长时,其中间部分和两端的粉末密实度差别比较大。所以在实际生产中,常现在其长度为直径的2.5~3.5倍,壁愈薄其长度与直径之比的倍数愈低 3.当零件的壁厚急剧变化或零件的壁厚悬殊时,零件各部的密度也相差很大,这样烧结时会引起尺寸变化和变形,应尽量避免 4.设计带有凸缘或台阶的零件,其内角应设计成圆角,以利于压制时凹模中粉末的流动和便于脱模,并可避免产生裂纹 5.尽量避免深窄的凹槽、尖角或薄边的轮廓,避免细齿滚花和细齿形因为这些结构装粉成型都很困难 6.避免尖边、锐角和切向过渡 7.零件只能设计成与压制方向平行的花纹,菱形的花纹不能成型,应避免 8.与压制方向垂直的孔(图a )、径向凹槽(图b )、内螺纹及外螺纹(图c )、倒锥(图d )、拐角处的退刀槽(图f )等结构难以压制成型,当需要时可在烧结后进行切削加工 9.底部凹陷的法兰(图a )、外圆中部的凸缘(图b )不能压制成型。上部凹陷的法兰(图c )为坯件,当埋头孔的面积小于压制面积的1倍左右,深度(H )小于零件全高的1/4左右时,要作5°的拔梢(图d )才可以成型

10.从模具强度和压制件强度方面的因素考虑,并从孔与外侧间的壁厚要便于装粉考虑,制品窄条部分的最小尺寸应有一定的限度 11.为了使凸模具有必要的刚度,使粉末容易充满型腔和便于从压模内取出制品,零件结构应避免尖锐的棱角,并适当增加横截面的面积 12.避免过小的公差 13.对于长度大于20mm 的法兰制作,法兰直径不应超过轴套直径的1.5倍,在可能条件下,应尽量减下法兰的直径,以避免烧结后的变形。法兰根部的圆角半径可参考右图的表,轴套壁厚(δ)与法兰边宽(b )都必须大于1.5mm 设计阶梯形制件时,阶差不应小于直径的1/16,其尺寸不应小于0.9mm 轴套直径/mm <12 >12~25 >25~50 >50~65 >65 圆角半径/mm 0.8 1.2 1.6 2.4 >2.5 14.粉末冶金制件的端部最好不要有过锐棱角,并避免工具倒圆。倒角时尽可能留出0.2mm 左右的小平面,以延长凸模的寿命 在设计粉末冶金齿轮时,齿根圆直径应大于轮毂直径3mm 以上,以减小成型中的困难 15.在很多情况下,粉末冶金零件适于代替机械加工比较困难或加工劳动量大、材料利用率低的一些零件。在某些情况下,还可以代替一些本来需要加工后装配在一起的部件 需要装配的零件 不需装配的粉末冶金零件 16.当把铸件或锻件改为粉末冶金零件时,将粉末冶金零件上的凸部移到与其相配合的零件上,以简化模具结构和减少制造上的困难 用模锻或铸造,然后用机械加工法制造 用粉末冶金法制造

主体结构评估报告范本样本

×××工程( 或项目) 主体结构质量评估报告 监理方针: 科学管理、诚信服务 公正守法、持续改进 管理模式: 科学化、制度化、标准化、信息化 安徽凯奇建设项目管理有限公司 年月日

签署页

目录 1.工程概况....................................................................... 错误!未定义书签。2.工程各参建单位........................................................... 错误!未定义书签。3.工程质量评估依据 ...................................................... 错误!未定义书签。4.施工合同及监理合同履约情况 .................................. 错误!未定义书签。5.质量验收情况............................................................... 错误!未定义书签。6.施工质量问题及事故处理情况 .................................. 错误!未定义书签。7.工程资料审查情况 ...................................................... 错误!未定义书签。8.工程质量评估结论 ...................................................... 错误!未定义书签。

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

主体结构质量评估报告(完整模板)

编号: **工程质量评估报告 (主楼20层以下土建主体结构工程) 一、工程概况 1、工程概况: **工程位于市北京路号南侧,总建筑面积125899m2(地上建筑面积93828m2)。 一期工程建筑面积约110000m2,主楼地面以上36层,地下二层,建筑物高度171.60m,为钢筋混凝土框架—核心筒结构;裙楼七层,局部八层,建筑物高度36.00m,为钢筋混凝土框架—剪力墙结构。 一期工程地下二层结构抗震等级为框架三级、剪力墙三级;地下一层以上结构抗震等级分裙楼框架二级、剪力墙一级,主楼及其附近范围为框架特一级、核心筒剪力墙特一级。 本工程由**投资建设,**承担建筑设计,***公司承担施工阶段监理。 主体结构工程由***公司承建。 2、施工情况: 本工程主楼自2006年1月20日出±0.00至2007年2月26日封顶,主体施工历时13个月(其中主楼20层结构主体于2006年9月14日完成),20层以下墙体自2006年10月开始砌筑,历时5个月完成。裙楼主体施工从2006年3月9日至2007年1月30日封顶,历时9个月,5层以下墙体自2006年11月开始砌筑,历时4个月完成。 二、质量评估依据、评估范围 1、质量评估依据 1)***设计研究院有限公司--“***”施工图及有关文件; 2)《建筑工程施工质量验收统一标准(B50300-2001)》;

3)《混凝土结构工程施工质量验收规范》GB50204—2002; 4)《高层建筑混凝土结构技术规程》JGJ3—2002; 5)《高强混凝土结构技术规程》 CECS104:99; 6)《钢筋焊接及验收规程》 JGJ18—2003; 7)《砼强度检验评定标准(BJ107-97)》; 8)《江苏省建筑安装工程施工技术操作规程(砌体结构工程)》DB32/295-1999; 9)《江苏省建筑安装工程施工技术操作规程(砼结构工程)》DB32/296-1999 10)《钢结构工程施工质量验收规范》GB50205-2001 11)《钢结构工程质量检验评定标准》GB50221 12)《建筑钢结构焊接技术规程》JGJ81 13)与本工程有关的标准、规范、规程及技术性文件; 14)市建筑安装工程质量监督站的有关要求; 2、本质量评估报告的评估范围 本质量评估范围为:主楼±0.00以上20层以下主体结构及墙体,裙楼±0.00以上5层以下主体结构及墙体。 三、工程分部、分项划分、验收情况及工程质量评定等 1、工程分部、分项划分

主体结构验收评估报告

康城小学(二期)扩建工程主体结构分部验收 建设单位:集美区教育局 代建单位:厦门市杏林建设开发有限公司 设计单位:福建建科建筑设计院有限公司 勘察单位:厦门地质工程勘察院 施工单位:厦门树鑫建设集团有限公司 监理单位:厦门工程咨询有限公司 质监部门:集美区建设工程质量安全监督站 项目总监: 单位技术负责人 厦门广正工程咨询有限公司

日期:2015年月日 康城小学(二期)扩建 主体结构分部验收质量评估报告 一、工程概况: m,地上建筑面积本工程为集美区康城小学二期扩建工程,总建筑面积为3541.982 m,建筑占地面积1144.5602m。层数分别为地上4层。总建筑高度为:16.95m。功能布3541.982 局:图书馆、连廊A、梁架A。结构体系:现浇钢筋砼框架结构,抗震设防烈度为7度,主体结构合理使用年限为50年,建筑等级为二级,屋面防水等级为二级。一层柱混凝土强度等级为C30,二层梁板至屋面层梁板混凝土强度等级为C25。主体结构砌体采用600mm×240 mm×200 mm,600 mm ×200 mm×200 mm,600 mm×200 mm×200 mm三种规格加气混凝土砌块砌筑。填充墙采用A5.0加气砼砌块,M5.0混合砂浆砌筑。 二、施工、监理及专项验收情况: 1、2014年10月13日基础地基槽验收合格。 2、2015年3月3日进行观感验收 三、项目部监理人员情况: 项目总监:、土建专监:、见证员:、监理员:、安全监理员: 四、分部工程评估依据: 监理过程中,我司认真执行现行与本工程有关的国家标准、法律、法规及行业、省、市地方法规、标准,执行的规范及标准如下: 建筑工程质量验收统一标准(GB50300-2013) 建筑地基基础工程施工质量验收规范(GB50202-2012) 混凝土结构工程施工质量验收规范(GB50204-2002)2011年修订版 砌体工程施工质量验收规范(GB50203-2011) 钢筋焊接及验收规范(JGJ18-2012) 混凝土强度检验评定标准(GBT50107-2010) 工程测量规范(GB50026-2007) 建筑结构可靠度设计统一标准(GBJ50068-2001) 建筑工程抗震设防分类标准(GBJ50223-2008) 混凝土结构设计规范(GBJ50010-2010) 建筑结构荷载规范(GBJ50009-2012)

粉末冶金工艺及材料基础知识介绍

粉末冶金工艺及材料基础知识介绍 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。

1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布

粉末冶金零件毛刺产生原因及去除技术

粉末冶金零件毛刺产生原因及去除技术 粉末冶金是绿色制造技术,具有高质量、高效率、低成本的特点,已广泛应用于机械、电子、自动化和航空航天等领域。随着工业化和自动化水平的提高,对机械零件的制造精度要求越来越高,使用条件要求越来越苛刻,毛刺逐渐引起高度重视,去除毛刺成为零件加工过程中的关键工序。 1毛刺产生原因 毛刺的产生与零件的设计和制造方法有很大关系。粉末冶金是以金属粉末(或金属粉末与非金属粉末的混合)作为原料,经过成形和烧结制造金属材料、复合材料及各种类型制品的工艺过程。粉末零件压制模具的设计、安装粉坯成形过程,将直接影响到粉末冶金零件的表面质量。 1、模具结构 粉末冶金模具一般包括4部分,例如用于制作压溃强度试样的成形模具,即由上模冲、下模冲、芯棒、阴模组成,如图1所示。 2、毛刺产生的原因 (1)模具的间隙 粉末冶金技术是一种金属粉末模压成形技术,模具的阴模与模冲、模冲与芯棒之间的相对滑动必然存在配合间隙,当金属粉末或精整烧结坯件在模具中受到压力而成形时,会产生流动或塑性变形。成型件在模具配合间隙处,产生的填充效应,是造成毛刺的根本原因。当间隙在0.008mm左右时,零件的直线、棱角部分会出现毛刺;当模具间隙达0.002mm 时,就易出现锐边毛刺。粉末冶金件的毛刺会随着间隙的变化而变化,而模具的间隙还依赖于加工表面粗糙度的变化,如图2所示,当Ra值从0.2增加到0.8,间隙从0.002mm增加0.008mm。这类毛刺均匀分布在零件周围,零件表面粗糙度好。 (2)模具的精度 粉末压制多采用容量装粉法,模具表面与粉末直接接触,细小的粉末颗粒,易进入模具间隙中,形成多体摩擦。在生产实践中,模冲与阴模、模冲与芯棒之间的间隙是动态变化的,粉末颗粒就会随着模具间隙的变化而变形,从而产生加工硬化,增加了粉末颗粒的硬度和耐磨性。虽然模具具有较高的硬度和耐磨性,但模具间的粉末颗粒在加工硬

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/T14667.1-9 3

-35 240 390 260 1.0 25070 7.0 F-0008-50HT -65HT -75HT -85HT 380 450<0.5S 480 22HRC 60HRC 6.3 450520 <0.5 55028 60 6.6 520 590 <0.5 620 32 60 6.9 590 660 <0.5 690 35 60 7.1 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目 的而添加的其它元素)总量的最大值为2.0% ⊙铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号最小强度(A)(E) 拉伸性能 横向 断裂 压缩 屈服 强度 (0.1%) 硬度 密度屈服极限极限强度 屈服强度 (0.2%) 伸长率 (25.4mm ) 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 1.0 310 120 11HR B N/A 6.0 120 190 160 1.5 350140 18 6.3 140 210 180 1.5 390 160 26 6.6 170 230 200 2.0 430 180 36 6.9 FC-0205-30 -35 -40 -45 210 240 240 <1.0 410 340 37HR B N/A 6.0 240 280 280 <1.0 520 370 48 6.3 280 340 310 <1.0 660 390 60 6.7

金属粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能一、GB/T14667.1-93 二、MPIF-35

烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。烧结铁-铜合金和烧结铜钢的化学 成分(%). 材料牌 号 Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-0208 93.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成 分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为 了特殊目的而添加的其它元素)总量 的最大值为2.0%

粉末冶金零件的切削加工

粉末冶金零件的切削加工 内容摘要:粉末冶金是一种以金属粉末为原料,用于烧结成形,制造金属摩擦材料和制品的工艺技术。目前,粉末冶金工业中主导性产品为粉末冶金机械零件和铁氧磁性材料。粉末冶金的机械零件生产主要集中在结构零件、滑动轴承、摩擦零件以及过滤元件、过孔性材料等几方面。 粉末冶金是一种以金属粉末(包括有非金属粉末混入状况)为原料,用于烧结成形,制造金属摩擦材料和制品的工艺技术。粉末冶金生产的材料、零件具有质优、价廉、节能和省材等特点,被广泛应用于汽车、电子、仪器仪表、机械制造、原子反应堆、特种高性能合金制造等工业领域,用途愈来愈广泛。粉末冶金材料的产品结构大体分为粉末冶金机械零件;铁氧体磁性材料。包括永生磁铁磁性材料和软磁铁磁性材料;硬质合金材料和制品;高熔点金属材料和难熔性金属材料;精细陶瓷材料和制品。 目前,粉末冶金工业中主导性产品为粉末冶金机械零件和铁氧磁性材料。粉末冶金的机械零件生产主要集中在结构零件、滑动轴承、摩擦零件以及过滤元件、过孔性材料等几方面。磁性材料则主要分为硬磁材料、软磁材料及磁介质材料3大类。软磁磁性材料生产主要为纯铁、铁铜磷相合金、铁镍合金、铁铝合金材料和制品。硬磁材料生产的主体则为铝镍铁合金、铝镍钻铁合金、钐钻合金、钕铁硼合金材料和制品的生产。而磁介质的生产主要集中在软磁材料和制品的生产。而磁介质的生产主要集中在软磁材料和电介质组合物制成的制品生产方面。随着需求的增加和产品范围的扩大,在该领域新技术的开发和利用愈来愈收到人们的关注。 粉末冶金工艺制造有许多重要独特的优点,如实现净成形,消除切削加工,还有采用粉末冶金工艺制造的零件,可以在零件中有意识留下残余的多空结构,提高零件自润滑和隔音效果,另外使用粉末冶金制造工艺能够生产用传统铸造工艺很难或者不可能制造的复杂合金零件。正由于这些优点,使用粉末冶金工艺制造的初衷之一是消除所有的加工,但是这个目标还没有达到。大多数的零件只是“接近最终形状”,还需要某种精加工。然而和铸件和锻件相比,粉末冶金零件很耐磨,难以加工,这也制约了冶金粉末工艺制造的推广应用。 性能 粉末冶金零件的性能,包括可加工性能,不仅和合金化学成分相关,而且和多孔结构的水平相关。许多粉末冶金制造的结构零件含孔率多大15~20%,用作过滤装置的零件的含孔率可能高达50%。而采用锻造或热离子压铸的粉末冶金的零件含孔率较低,只有1%或更少。后者在汽车和飞机制造应用中正变得特别重要,因为这种材料的零件具有更高的强度。

铁基粉末冶金零件热处理

铁基粉末冶金零件热处理 摘要:热处理是一种成熟的,经常使用的工艺性技术。这篇文章评述了人们不大注意的铁基粉末冶金零件整体淬火时,孔隙度与合金含量对其淬透性的影响。 关键词:铁基粉末冶金零件;热处理;淬透性 在铁基粉末冶金零件生产中,零件材料必须具有的许多性能与组织结构都是在烧结过程中形成的,但其中一些性能只有通过后续热处理,才能得到改进与完善。因此,热处理对于铁基粉末冶金零件产业是极其重要的一项技术。 铁基粉末冶金零件的热处理原理,虽然和成分相同的铸锻零件相同,但由于粉末冶金零件具有一定量孔隙度与合金化元素的微观分布可能不均一,因此,粉末冶金零件的热处理工艺可能有所不同。关于孔隙度对铁基粉末冶金零件材料热处理性能的影响,经几十年的探索与实践,已有较清楚地认识,摘要介绍如下。 1 孔隙度对铁基粉末冶金零件整体淬火的影响 大部分铁基粉末冶金零件,为了增高强度、硬度及耐磨性,都需要进行整体淬火,即淬火与回火。需要进行整体淬火的铁基粉末冶金零件,其化合碳含量应≥0.3%(质量分数),并且在图1中的A3温度以上呈奥氏体状态。 图1 碳钢的热处理相图 铁基粉末冶金零件的整体淬火由以下3道工序组成: 奥氏体化。在具有和化合碳含量相当碳势的保护性气氛下,将零件加热到高于A3温度,通常为850℃,并保温一定时间,其长短视零件形状及尺寸而定。诸如30min,使之奥氏体化。 淬火。从奥氏体化温度或稍低,但仍高于A3的温度,将零件淬于油或水中,使奥氏体转变成硬且脆的马氏体或贝氏体。对于铁基粉末冶金零件,最好是淬于温油(50℃)中,这是因为粉末冶金零件具有孔隙度,淬火冷却速度太快时,零件可能开裂。另外,采用盐水淬火时,淬火后,存留于孔隙中的盐水会导致零件严重腐蚀。 回火。依据GB/T19076-2003“烧结金属材料-规范”铁基粉末冶金零件通常是在180℃(烧结镍钢为260℃)下回火,回火时间通常是依据零件断面厚度,按每25.4mm回火1h。其目的是消除奥氏体转变为马氏体与贝氏体时产生的内应力。回火可减小马氏体与贝氏体的脆性,提升零件材料的韧性。 1.1 孔隙度对粉末冶金Fe-C材料淬透性的影响 淬透性的定义是,快速冷却时,在一给定深度,材料试样从奥氏体转变为马氏体的能力。淬透性通常是用顶端淬火法测定的。为测定烧结碳钢的淬透性,由水雾化铁粉与0.9%(质量分数)石墨粉的混合粉,用压制-烧结制成Φ80mm×高30mm,密度为6.0~7.1g/cm3的坯料[化合碳0.8%(质量分数)]。再由坯料切削加工成顶端淬火试样,于870℃,在中性气氛中,奥氏体化30min后水淬。从淬火端每隔2.5mm测定一次表观硬度HRA。同时,还和由C-1080锻钢切削加工的顶端淬火试样进行了对比。试验结果示于图2。 从图2可看出,材料试样的密度(即孔隙度)对淬透性有若干影响。首先,孔隙度减低材料的热导率,这是因为孔隙中充满空气,而空气的热导率比钢小。另外,由于硬度压痕和材料基体中的孔隙度相关,从而也影响测定的硬度值。图2还表明,淬透性差不多随着烧结钢材料密度增大呈直线性增高。因此,在设计-具有给定材料密度的粉末冶金碳钢零件时,对于选择使零件横截面能全部转变成马氏体的合适材料组成,图2是有用的。 1.2 铁基粉末冶金材料的淬透性标准 在设计-铁基粉末冶金零件时,要想使粉末金零件的横截面经过淬火-回火转变成马氏体,就必须依据材料的淬透性来选择适当的材料。

粉末冶金常识

粉末冶金常识 1、粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形 和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称“金属粉末“)。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为“粉末冶金材料“)或制品(称为“粉末冶金制品“)。 2、粉末冶金常识之粉末冶金最突岀的优点是什么? 粉末冶金最突岀的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和 制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造岀合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高 达95%X上,它还能在一些制品中以铁代铜,做到了“省材、节能“。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类? 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3 )消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项? 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物 理性能主要包括那几项? 用于粉末冶金的粉末物理性能主要包括以下三项:( 1)粉末的颗粒形状;( 2)粉末的粒度和粒度组成;(3)粉末的比表面。

粉末冶金材料学

1.粉末冶金技术的特点(优越性) 能制造熔铸法无法获得的材料和制品 1、难熔金属及其碳化物、硼化物和硅化物; 2、孔隙可控的多孔材料 3、假合金 4、复合材料;5 微、细晶(准晶)和过饱和固溶的块体金属和制品; 能制造性能优于同成分熔铸金属的粉末冶金材料 1、制造细晶粒、均匀组织和加工性能好的稀有金属坯锭; 2、制造成分偏析小、细晶、过饱和固熔的高性能合金; 具有高的经济效益 1、少无切削; 2、工序短,效率高; 3、设备通用性好,适合于大批量生产; 2.粉末冶金材料的分类 1、机械材料和零件; 2、多孔材料及制品; 3、硬质工具材料 4、电接触材料; 5、粉末磁性材料; 6、耐热材料; 7、原子能工程材料; 3.粉末冶金材料的孔隙产生过程及其存在形态 产生过程:颗粒间隙(松装粉末聚集体或粉末成形素坯)烧结形成孔隙。存在形态:开孔:与外表面连通的孔隙,半开孔:孔隙只有一端与外表面连通的孔隙,闭孔:与外表面不连通的孔隙,连通孔:互相连通的孔隙 4. 孔隙对材料性能影响的基本理论; 减小承载面积;应力集中剂(减小孔隙尺寸、孔隙球化、孔隙内表面圆滑处理能有效降低应力集中,从而提高强度和韧性)应力松弛剂:裂纹遇到孔隙后被磨钝,提高断裂水平 5.哪些力学性能对孔隙形状敏感:强度、弹性模量、延伸率、断裂韧性、冲击韧性、硬度 6. 提高粉末冶金材料密度的方法:复压复烧,溶浸、粉末冶金热锻 7.固溶强化机理:晶体中有合金元素,固溶原子与晶体中缺陷的交互作用,溶质元素使基体(溶剂)金属的塑性变形抗力、强度、硬度增大,延性和韧性降低 8.影响固溶度(合金溶解度)的因素:晶格因素,相对尺寸因素,化学亲和力,电子浓度因素 9.什么是金属材料热处理?将固态金属或合金采用适当的方式进行加热、保温和冷却,以改变金属或合金的内部组织结构,使材料满足使用性能要求。 10.加热奥氏体化时影响粒度的因素:加热温度和保温时间,加热速度,合金元素,原始组织 11.刚冷却时等温转变的基本类型及对应组织结构的名称 共析钢等温转变:珠光体,贝氏体,马氏体;亚共析钢等温转变:奥氏体,铁素体,珠光体;过共析钢等温转变:奥氏体,渗碳体,珠光体 12.烧结钢热处理的工艺特点及注意事项 工艺特点:奥氏体化温度高:致密钢为AC+30~50℃,烧结钢为AC+100~200℃,密度的要求:烧结钢密度过低(<6.0g/cm3)淬火无任何效果,淬透性比致密钢差 注意事项:(1)孔隙率>10%易腐蚀,不能在盐浴中加热(2)表面热处理前应进行封孔处理:滚压、精整、或氮化、硫化处理 (3)加热时应气氛保护或添加保护性填料 (4)淬火介质不能用水。 13.烧结钢淬透性的影响因素:孔隙度,合金元素,氧、碳含量 14.身高结钢合金化的特点:1、孔隙的影响:密度低于6.5g/cm3,合金的强化作用很弱;2、某些强化效果好合金元素,如Cr、Mn易氧化,常以中间合金粉或预合金粉引入;3、铜和磷常用,4、烧结钢中常用的合金元素除碳外,主要有Cu、Ni、Mo、Cr、P等 15. C含量对烧结Fe-C系结构与性能的影响 珠光体随C含量而增大而增大,渗碳体随C含量而增大而增大强度有极大值,塑性(延伸率、断面收缩率)单调下降;由于碳分布不均匀,一般烧结钢显微组织为:珠光体+铁素体+少量渗碳体+孔隙+夹杂 16.常见烧结碳钢显微组织:铁素体,珠光体,渗碳体 17.影响烧结碳钢化合碳含量的因素:1、石墨加入量,2、烧结气氛3、烧结温度4、烧结时间5、氧含量

铁基粉末冶金零件的蒸汽处理

铁基粉末冶金零件的蒸汽处理 关键词:粉末冶金蒸汽处理铁基零件铁基粉末冶金零件的蒸汽处理 摘要:蒸汽处理在铁基粉末冶金零件生产中得到了广泛应用。 本文论述了铁基粉末冶金零件蒸汽处理的优点、机理、工艺流程以及零件在蒸汽处理后的检测方法和标准,并对常见的问题进行分析和提出相应的解决措施。 关键词粉末冶金, 蒸汽处理, 铁基零件本论文已公开刊出,如需引用或参考,请注明出处: 李其龙, 徐伟, 董吉宝, 段聪翀, 张东.铁基粉末冶金零件的蒸汽处理.现代制造技术与装备专刊即2012第十四届华东五省一市粉末冶金交流会.2012:58-61. 作者简介:李其龙,男,硕士学历,主要从事材料科学与机械加工方面的研究。Email:li-qilong@https://www.360docs.net/doc/72772410.html, 1.引言粉末冶金工艺可以用来制造多种材料的零件[1-4],而铁基零件又是主要产品,在汽车、农机、仪表、家电等行业中均有使用,既可以作为减摩零件使用,比如含油轴承,也可以作为结构零件使用,比如齿轮、转子等。粉末冶金生产工序通常包括制粉、混粉、压制、烧结等[5],工业制造铁基粉末冶金零件,此外,高温水蒸汽处理,简称蒸汽处理,也是大部分零件中所必经的工序,它是对粉末冶金件的后续表面热处理,可以提高或改善零件的性能,比如硬度、气密性、耐磨性和耐腐蚀性等。为了使蒸汽处理更好的服务于生产,本文根据作者对蒸汽处理的理解和在实践中的一些经验总结,就蒸汽处理的优点、机理、工艺流程、质量检测以及常见问题和解决措施进行分析讨论。 2.蒸汽处理工艺的优点在用粉末冶金工艺开发铁基零件过程中,传统的压制-烧结工艺制造的零件,一次压制密度一般在7.0g/cm3左右,即相对密度在90%左右,采用复压-复烧工艺和温压工艺制造的零件,相对密度一般都在92%~94%之间,即粉末冶金零件不可避免的存在着空隙,蒸汽处理一个很重要的目的就是封孔作用。对于制冷压缩机用粉末冶金零件来说,蒸汽处理已经成为对其封孔,增加其气密性的最好、最经济的工艺,比如连杆式压缩机中的活塞,要求能承受1.5~3.0MPa的气体压力不发生泄漏,蒸汽处理封孔仅是渗铜封孔处理的15%和氟塑料封孔处理的30%左右[6]。为进行蒸汽处理的零件在使用和放置过程中,环境中的水汽和一些腐蚀介质容易吸附在表面和入浸到内部,在不均匀组织之间产生微电池腐蚀,导致零件较容易的生锈和被腐蚀,蒸汽处理防腐蚀的有效期比化学发蓝处理明显增加[7]。蒸汽处理,即把铁基零件放置在加热炉中,在一定温度下,向炉中通入一定量的过饱和水蒸汽,在零件的周围就存在着大量水蒸汽,凡是接触到蒸汽的表面铁原子,包括外表面和连通空隙的内表面,就会发生氧化反应,生成一层氧化物膜,这层氧化物膜的主要成分是Fe3O4,Fe3O4属体心立方系,密度5.16g/cm3,故Fe3O4比铁的容积比大,使零件的内部连通空隙封闭,达到封孔的目的,增加零件的气密性。由于该氧化物膜和覆盖在零件的基体表面,非常致密牢固的黏附着,导致环境中的水汽和腐蚀介质难以进入零件内部,到达良好的防锈功能。由于Fe3O4的硬度很高,纯Fe3O4的洛氏硬度为50HRC左右,处理后的零件的表观硬度到达60HRB以上,有利于提高零件基体的表面硬度、耐磨性、抗磨损能力,抗拉强度也可以得到提高,文献[8]显示,蒸汽处理后,铁基材料的抗拉强度提高40-50%。蒸汽处理后的零件,上乘的处理结果是零件外观颜色呈现出非常光滑美观的蓝黑色金属光泽,这种颜色,人眼看上去是比较舒适的,在分拣、包装产品时,不容易产生视觉疲劳。蒸汽处理前后对零件尺寸影响不大,氧化物层深度可能在0.51~1.27mm[9],尺寸一般增加约0.005~0.01mm[10],在技术和装置都没有苛刻的要求,企业较容易满足其处理条件,处理时对环境没有污染,能耗不高,经济环保。3.蒸汽处理机理Fe在不同的条件下,可能会

粉末冶金材料的分类及应用

粉末冶金材料的分类及应用 粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程称为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。 粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切屑或少切屑的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。 粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 粉末冶金的生产过程 (1)生产粉末。粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。 (2)压制成型。粉末在500~600MPa压力下,压成所需形状。 (3)烧结。在保护气氛的高温炉或真空炉中进行。烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。 (4)后处理。一般情况下,烧结好的制件可直接使用。但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。 粉末冶金材料的主要类型 1 硬质合金 硬质合金是以一种或几种难熔碳化物的粉末为主要成分,加入起粘结作用的钴粉末,用粉末冶金法制得的材料。 常用硬质合金按成分和性能特点分为:钨钴类、钨钴钛类、钨钛钽(铌)类。常用硬质合金的牌号、成分和性能见表1。 表1 常用硬质合金的牌号、成分和性能

粉末冶金零件的金相制样

粉末冶金零件的金相制样 除铸造、机械成形与机械加工等技术外,粉末冶金(P/M)技术也是制造金属零件的重要方法之一。该技术可极大减少钢锭金属的不良性能,通过混合不同金属粉末、或金属与非金属粉末,可以达到预期理想的金属性能,而采用其它方法,这些金属通常不易熔成合金。 粉末加工、将其压制为有用形状、以及烧结的过程费用很高,但与锻件或铸件相比,采用这种方法最终制成的零件具有某些无可比拟的优点。 主要优点包括: - 可生成精细均质晶粒结构 - 可形成复杂形状,尺寸公差精密 - 制成品表面光洁度性能优良 与其它成形方法相比,花费很高的机械加工过程可得以缩减或直接除去,于是减小了碎屑损失。因此,对于小型、形状复杂,和精密零件(如齿轮、链环等)的大批量生产而言,粉末冶金技术是最经济有效的方法。 而且,通过该加工技术,可制造大量特种合金,这些合金具有完全不同材料性能,如高温刚度与硬度。由碳化钨粉末烧结而成的高速切割刀具正是这样一个实例:采用粉末冶金加工技术获得许多独特的金属性能。烧结压制零件的密度影响强度、韧性、硬度等重要性能,因此,达到特定的孔隙度至关重要。为了进行工艺流程控制,需应用金相学知识以检验孔隙度、非金属杂质、以及交叉污染等。在研究与失效分析中,金相学也是一个主要工具,用于开发新产品,改进加工工艺。除化学分析外,质量控制还包括一些物理方法,以检验密度、尺寸变化、流率等。 金相制样困难之处 研磨与抛光下图表示正确、典型孔隙度。

解决方案:足够长时间抛光 粉末冶金零件制备 制造 为了达到粉末金属零件的理想构造与近净成形,需对以下生产程序进行严格工艺流程控制: - 制备粉末 - 将粉末与添加剂(如:润滑剂、碳、和合金元素)混合 - 在硬质合金模具中压制粉末 - 在保护性气体环境下高温烧结(1100℃-1200℃) 化学方法与雾化法是粉末制备中两种最常用的方法。化学方法将金属在低于熔点的温度下从矿石氧化物直接转变为金属粉末。例如,铁粉末制备如下:首先,直接从铁矿中提炼出海绵铁,然后,通过机械加工,将海绵铁压碎为粉末,再通过降低温度退火进一步精炼得到纯铁粉末。这种方法适宜于合金与低密度金属应用场合,如轴承。

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能

-15 -20 100 170 120 2.5 120 60 6.7 140 260 170 7.0 130 80 7.3 F-0005-10 -20 -25 100 170 120 < 1 125 25HRB N/A 6.1 140 220 160 1.0 160 40 6.6 170 260 190 1.5 190 55 6.9 F-0005-50HT -60HT -70HT 340 410 (D) < 0.5 300 20HRC 58HRC 6.6 410 480 < 0.5 360 22 58 6.8 480 550< 0.5 420 25 58 7.0 F-0008-20 -25 -30 -35 140 200 170 < 0.5 190 35HRB N/A 5.8 170 240 210 < 0.5 210 50 6.2 210 290 240 < 1.0 210 60 6.6 240 390 260 1.0 25070 7.0 F-0008-50HT -65HT -75HT -85HT 380 450< 0.5 S 480 22HRC 60HRC 6.3 450520 < 0.5 55028 60 6.6 520 590 < 0.5 620 32 60 6.9 590 660 < 0.5 690 35 60 7.1 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了 特殊目的而添加的其它元素)总量的 最大值为2.0%。▲ 注: 用差减法求出的其它元素(包括为了 特殊目的而添加的其它元素)总量 烧结铁-铜合金和烧结铜钢的化学成分 (%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的 而添加的其它元素)总量的最大值为2.0% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号 最小强度(A)(E) 拉伸性能横向 断裂 压缩 屈服 硬度 密度 屈服极限极限强度屈服强度伸长率宏观微观

相关文档
最新文档