湿式静电除雾器(WESP)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、背景

近年,世界各国对环境保护越来越重视,环境保护标准日趋严格。

、NOx及受到排放标准的限制,一些发达国家除对烟气中排放的SO

2

烟尘采取有效的治理措施外,微细烟尘、汞等以气溶胶形式存在的污染物的减排已被提到了议事日程。

到目前为止,我国燃煤锅炉绝大部分都设置了除尘和脱硫装置,其中湿法脱硫工艺占全部脱硫装置的90%左右。其中对煤烟型的污染物排放限制主要为SO

和烟尘。

2

湿法脱硫工艺虽具有高脱硫率、高可用率等优点,但其存在的固有问题在实际运行中也日益显现出来,主要有:

●GGH阻力大、电耗高、易堵塞,严重影响系统的正常运行;

●无GGH时石膏固体颗粒、水雾飘落造成局部影响,白色烟羽造

成景观污染;

●净烟气中SO3对尾部烟道和烟囱的低温腐蚀;

●脱硝或氨法脱硫等带来的NH3逃逸问题;

●未来对微细烟尘(PM2.5)、汞的排放限制等。

由于上述问题得不到有效的解决,对生产企业、周边群众乃至环保部门造成了越来越严重的困扰。

湿式静电除雾器(WESP)技术可以有效的解决这些问题。

我公司经过多年技术跟踪、实验室及工业试验等研究过程,开发出了先进的荷电除雾器技术,并进行了多方案工业化设计。成功地提出了大型湿法脱硫装置存在问题的解决方案,并能够达到多种污染物联合脱除的效果。

在工业生产中,如果气体中含有某种物质的蒸汽,当将其冷却到一定的温度时,蒸汽会冷凝结成液体或固体。或者气体高速通过某种液体,气体被液体的蒸汽饱和并夹带液体飞沫。用荷电除雾器来清除悬浮于气体中的微细液体和固体粒子。如硫酸生产净化清除气体中的硫酸雾。发生炉煤气和焦炉煤气除焦油雾,硫酸生产的放空尾气中除硫酸雾。硫酸浓缩废气中除硫酸雾。电厂废气除硫酸和亚硫酸雾,以及水蒸汽雾等。

WESP早于干式静电除尘器,在工业领域已有将近100年的应用历史。近年欧美发达国家在配套湿法脱硫净烟气处理领域,已经取得了多个大型机组WESP多年成功应用的业绩。

此前,在国内WESP主要应用于制酸和冶金等行业中脱除SO

3

焦油。用于发电机组湿法脱硫净烟气处理的WESP实例较少且投资较高,大大的限制了其推广应用。

2、用途和目的

我公司开发的WESP技术主要用途和目的为:

●取消湿法脱硫中的GGH,降低脱硫系统阻力和脱硫运行的故障

率,降低系统电负荷;

●通过有效的去除脱硫净烟气中的SO3和水雾,延缓湿烟气对烟囱

的腐蚀。采取一定组合措施后可完全解决烟囱腐蚀难题;

●解决湿法脱硫中烟囱周围石膏颗粒、水雾飘落和排烟浑浊的难

题;

●进一步提高SO2的脱除率;

●SO3、NH3、微细烟尘(PM2.5)、汞等多种污染物联合脱除,适应

未来更严格的排放标准。

3、工作原理与设备部件组成

3.1工作原理

荷电喷雾技术是应用高压静电在喷头与喷雾目标间建立一静电场,通过不同的充电方法被充上电荷,形成群体荷电雾滴,然后在静电场力和其他外力的联合作用下,雾滴作定向运动而吸附在目标的各个部位,达到沉积效率高、雾滴飘移散失少、改善生态环境等良好的性能。

待处理气体为含有微细尘粒,雾粒及被液体蒸汽饱和的湿气体。为了满足生产工艺,环境保护,有价金属回收的要求。必须将气体中的悬浮物清除,处理合格后的气体用于下工序生产或排放。

各种待处理的气体,由于受到紫外线照射,高温和放射性副射的作用。使得每种中性气体中都含有1-2%的带电分子和电子。另方面,当这种带有悬浮粒子的湿气体进入电滤器电场后,由于在电滤器的电晕极线上施加了足够高的直流电压,从电晕极发射出大量向沉淀极高速运动的电子。在电场力的作用下,高速运动的电子高速撞击中性分子,从气体分子中打出一个或若干个外层电子,中性分子转变为正离子和自由电子,这些派生的电子在电场作用下继续高速运动,撞击新的中性分子而使其电离,如此迅速地派生出新的离子和电子,在电晕极线附近的气体发生雪崩式电离,在电极线周围2mm形成电离区。同时,带负电的粒子和电子向沉淀极的运动过程中被过渡区的雾粒捕

集,中性粒子荷电并长大,继续向沉淀极运动,最后在沉淀极沉积并发生电中和。

含有微细悬浮粒籽的气体,在荷电除雾器中,悬浮粒子受到气体流动的推动力,粒子本身的重力,电场的电力,粒子运动的摩擦力和电场力的共同作用。带电粒子在电场里的运动是在以上几种主要作用力的合力作用下进行的,因此,它的运动速度称为漂移速度。对任何具体荷电除雾器,当漂移速度过小时,倘若气体的电离,粒子荷电以及粒子通过两极间所需要的时间比气体通过整个管长所需时间要长。悬浮粒子被逃脱。电场产生“电晕闭塞”。因此,漂移速度的大小决定电滤器的电场气速和除雾的效率。漂移速度的理论值的计算公式如下:

w =0.11E2ρ/μ厘米/秒(1)

式中:w—漂移速度,厘米/秒

E—电场强度,伏/厘米

ρ-粒子半径厘米

W—漂移速度厘米/秒

μ-气体粘度克/厘米。秒(泊)

从上式看出,粒子的漂移速度与电场强度的平方,粒子的半径成正比,与气体的粘度成反比。

电场中任一位单置的电场强度计算式如下:

Ex=U/[2。3xlg(R/r)] 伏/厘米(2)

式中:E—电场中任一位置的场强,伏/厘米

U—电晕电极上被施加的电压,伏

x—该处距电晕电极的距离,厘米

lg—以10为底的对数,

R—沉淀极的半径,厘米

r—电晕电极的半径,厘米

从上式看出:在施加于电极上的电压一定时,电场强度与粒子距电晕极的距离,沉淀极半径和电晕极半径之比的对数成反比。也就是增大电晕极的半径有利电场强度提高。

另外,粒子在电场中向沉淀极漂移运动是由于电场力的作用产生的。而粒子在电场中所受的力可用下式表示:

F=neE 达因(3)

式中:F—粒子在电场中受到的力,达因。

n—粒子所带元电荷数目

e—电子的电荷量,4.77*10静电单位。

E—沉淀极处的电场强度,静电单位。

相关文档
最新文档