反胶团萃取解读
生化工程下游技术知识课件第八章反胶团萃取
反胶团萃取技术与其他分离技术的结合使用可以进一步提高分离效果和降低成本。
对生化工程的贡献
反胶团萃取技术的出现为生化工 程领域提供了一种新的分离纯化 手段,有助于提高产品的质量和
产量。
反胶团萃取技术可以应用于生物 医药、食品加工、环境保护等领 域,有助于推动相关产业的发展。
反胶团萃取技术还有助于促进生 化工程与其他学科的交叉融合,
反胶团萃取技术可用于细胞分离,根据细胞的不同性质实现细胞的分离和纯化。
细胞破碎
反胶团萃取也可用于细胞破碎,通过破坏细胞膜释放细胞内的内容物,用于下游 提取和纯化过程。
04 反胶团萃取的挑战与前景
反胶团萃取技术的局限性
适用范围有限
目前反胶团萃取技术主要适用于生物大分子物质的分离,对于小 分子物质的分离效果不佳。
促进相关领域发展
反胶团萃取技术的广泛应用将促进相关领域的发展,如生物制品的 分离纯化、药物制备等。
推动科技进步
反胶团萃取技术的发展将推动科技进步,为其他领域的技术创新提供 借鉴和启示。
05 结论
总结
反胶团萃取是一种有效的生化分离技术,具有高选择性、高回收率和低能耗等优点。
反胶团萃取在蛋白质、酶和其他生物分子的分离纯化方面具有广泛的应用前景。
推动学科发展。
对未来的影响
随着反胶团萃取技术的不断发展和完 善,其应用范围和应用领域将进一步 扩大。
反胶团萃取技术的深入研究将有助于 推动生化工程领域的技术创新和产业 升级,为人类社会的可持续发展做出 贡献。
反胶团萃取技术与其他技术的结合使 用将有助于解决一些传统分离方法难 以解决的问题,提高分离效果和降低 成本。
优化操作条件
通过实验研究,优化反胶 团萃取的操作条件,降低 对设备的要求,提高技术 的可操作性。
反胶团萃取法
反胶团萃取法
反胶团:是分散于连续有机相中、由表面活性剂所形成的稳定的纳米尺度的聚集体。
反胶团萃取:是利用表面活性剂在有机溶剂中形成的反胶团,从而在有机相内形成分散的亲水微环境,使生物分子在有机相(萃取相)内存在于反胶团的亲水微环境中,消除了生物分子,特别是蛋白质类生物活性物质难溶解在有机相中或在有机相中发生不可逆变性的现象。
特点:
1.成本低,溶剂可反复使用;
2.萃取率高;
3.反胶团是透明的、热稳定的体系;
4.极性“水核”具有较强的溶解能力;
5.生物大分子由于具有较强的极性,可溶解于极性水核中,防止与外界有机溶剂接触,减少变性作用。
6.由于“水核”的尺度效应,可以稳定蛋白质的立体结构,增加其结构的刚性,提高其反应性能。
反胶团萃取技术
反胶团萃取法,亦称“逆胶束萃取法”。
利用反相微胶团在油相中形成的亲水空穴能选择性地溶解某些蛋白质分子的特性,来分离萃取蛋白质分子的一种方法。
反相微胶团是指油相中表面活性剂浓度超过临界胶团浓度后,在非极性油溶液中形成的聚集体,其内腔由表面活性剂分子的亲水头构成,外面被伸向连续油相的憎水尾部所包围,这种结构使其在连续油相中形成了许多亲水空穴,水相中的极性分子有可能溶解在油相中。
如水相中含有几种蛋白质,可调节系统的条件,使某些蛋白质溶于胶团中,而其他蛋白质则不能,以此达到分离的目的。
该法已成功地通过控制pH和氯化钾浓度,实现了α-核糖核酸酶、细胞色素C和溶菌酶的分离以及α-淀粉酶的连续萃取和反萃取操作。
反胶团萃取
静电相互作用: 反胶团萃取一般采用离子型表面活性剂制备反胶团相,其中 应用最多的是阴离子型表面活性剂AOT,阳离子型表面活性剂主 要有氯化三辛基甲铵和溴化十六烃基三甲胺等季铵盐。这些表面 活性剂所形成的反胶团内表面带有负电荷或正电荷。因此,当水 相pH值偏离蛋白质等两性电解质的等电点时,由于溶质带正电荷 (pH<pI)或负电荷(pH>pI),与表面活性别发性强烈的静电相互作 用,影响溶质在反胶团相的溶解率,即在两相间的分配系数。理 论上,当溶质所带电荷与表面活性剂相反时,由于静电引力的作 用,溶质易溶于反胶团,溶解率或分配系数较大,反之,则不能 溶解到反胶团相中。
(2)反胶团内酶反应动力学行为与在正常的水相中相似, 活性与pH的关系同样表现为钟状曲线。
3、反胶团溶解作用的推动力
生物分子溶解于AOT等离子型表面活性剂反胶团相的
主物分子间的空间相互作用;
3、疏水性相互作用。 这些因素对生物分子的溶解率(萃取率)都有重要影 响,其中静电相互作用是最主要的。
经验式推算:
式中右侧第一项为反胶团的水核直径,第二项 (2.4nm)为AOT分子长度的二倍。一般反胶团的W0不超过 40。因此,根据上式,利用AOT形成的反胶团水核直径 一般不超过12nm,可大致容纳一个直径为5—10nm的蛋 白质。当蛋白质分子与反胶团直径相比大得多时,则难 溶解于反胶团中。
2、反胶团的溶解作用
4、萃取及反萃取动力学
水相中的溶质加入反胶团相需经历三步传质过程: 通过表面液膜扩散从水相到达相界面; 在界面处溶质进入反胶团中; 含有溶质的反胶团扩散进入有机相。
反萃取操作中溶质亦经历相似的过程,只是方 向相反,在界面处溶质从反胶团内释放出来。
F:\临时\反胶团萃取.pdf
反胶团萃取的原理
反胶团萃取的原理胶团是一种由胶原蛋白和其他蛋白质组成的胶体颗粒,它在食品加工和制备中具有重要的作用。
然而,在某些情况下,我们需要将胶团从食品中去除,这就需要用到反胶团萃取技术。
反胶团萃取的原理主要是利用一定的物理或化学手段,将胶团从食品中分离出来。
本文将介绍反胶团萃取的原理及其应用。
首先,反胶团萃取的原理涉及到胶团的特性。
胶团在溶液中通常呈现为胶态,其粒径较大,表面带有电荷,因此在溶液中具有一定的稳定性。
为了实现反胶团的萃取,我们需要破坏胶团的稳定性,使其聚集成团,从而可以被分离出来。
其次,反胶团萃取的原理可以通过改变溶液的物理条件来实现。
例如,可以通过调节溶液的pH值,改变离子强度,或者调节温度来破坏胶团的稳定性。
在酸性条件下,胶原蛋白的电荷状态会发生改变,从而导致胶团的聚集。
另外,通过加热或者冷却溶液,也可以改变溶液中胶团的稳定性,使其聚集成团。
此外,反胶团萃取的原理还可以通过添加特定的化学物质来实现。
例如,可以添加盐类、有机溶剂、蛋白酶等物质来改变溶液中胶团的性质,从而实现胶团的聚集和分离。
这些化学物质可以改变胶团表面的电荷状态,破坏其稳定性,使其聚集成团,便于分离。
最后,反胶团萃取的原理还可以通过物理手段来实现。
例如,可以利用超声波、高压处理、离心等方法来破坏胶团的稳定性,使其聚集成团,便于分离。
这些物理手段可以有效地改变胶团的结构和性质,从而实现胶团的萃取。
综上所述,反胶团萃取的原理主要是通过改变溶液的物理和化学条件,破坏胶团的稳定性,使其聚集成团,从而实现胶团的分离。
这种技术在食品加工和制备中具有重要的应用,可以有效地改善食品的质量和口感。
希望本文对反胶团萃取的原理有所帮助,谢谢阅读!。
反胶团萃取
反胶团萃取1.研究背景传统的分离方法,如液-液萃取技术,具有操作连续、多级分离、放大容易和便于控制等优点,在化学、化工、石化等领域得到广泛应用。
但很难用于具有某些特殊性质的生化产品(如蛋白质、氨基酸等)的提取与分离,原因在于这类物质多数不溶于非极性有机溶剂,或与有机溶剂接触后会引起变性和失活。
20世纪80年代中期发展起来的反胶团萃取技术解决了这一难题。
所谓反胶团,是指当油相中表面活性剂的浓度超过临界胶束浓度后,其分子在非极性溶剂中自发形成的亲水基向内、疏水基向外的具有极性内核(polar core)的多分子聚集体(aggregates)。
反胶团的极性内核可以溶解某些极性物质,而且在此基础上还可以溶解一些原来不能溶解的物质,即所谓二次加溶原理。
例如,反胶团的极性内核在溶解了水后,在内核中形成“水池”(water poo1),可以进一步溶解蛋白质、核酸和氨基酸等生物活性物质。
胶团的屏蔽作用,使这些生物物质不与有机溶剂直接接触,而水池的微环境又保护了生物物质的活性,从而达到了溶解和分离生物物质的目的。
这种技术既利用了溶剂萃取的优点,又实现了生物物质的有效分离,作为一种新型的生物分离技术应用于蛋白质、氨基酸及药物、农药等物质的分离分析中,显示了巨大的应用潜力。
[1]2.文献综述2.1反胶团的形成[2]正向胶团(normal micelle)是表面活性剂分子在极性溶剂,如水中形成的一种亲水基团(头)朝外,而疏水基团(尾)朝内的具有非极性内核的多分子聚集体。
洗涤剂中的表面活性剂分子在水中形成的就是这种胶团,其非极性内棱可以溶解各种油污。
从而达到去污的效果。
与此相反,表面活性剂在非极性溶剂如某些有机溶剂中就会形成亲水头向内和疏水尾向外的具有极性内核(polar core)的多分子聚集体(aggregates),由于其表面活性剂的排列方向与一般的正向胶团相反,因此,称为反胶团。
示意图如图(2-1)。
图2-1 表面活性荆分子在非极性溶荆中形成的反胶目反胶团的极性内核可以溶解某些极性物质,而且在此基础上还可以溶解一些原来不能溶解的物质,即所谓二次加溶原理。
反胶团萃取的原理
反胶团萃取的原理
反胶团萃取是一种从溶液中去除胶体颗粒的方法。
它利用与胶体颗粒相反的电荷特性,通过添加电荷相反的染料或胶体颗粒,使胶体颗粒与添加剂发生吸附作用,形成重叠反胶团结构。
这些重叠的反胶团结构会相互吸引,从而形成更大的聚集体,使胶体颗粒变得更易沉淀。
该方法的原理是通过添加电荷相反的剂量,改变胶体颗粒表面的电荷性质。
胶体颗粒通常具有带负电或带正电的表面电荷分布,造成它们在溶液中的稳定分散。
当添加具有相反电荷的反胶团剂,如阳离子染料或阳离子胶体颗粒时,这些反胶团剂会吸附到胶体颗粒表面,改变胶体颗粒电荷的分布。
反胶团剂与胶体颗粒的吸附作用导致胶体颗粒之间的吸引力增强,形成更大的组块。
这些组块比起单个胶体颗粒更重,因此在重力或离心力的作用下更容易沉淀。
此外,重叠的反胶团结构还可以通过减少胶体颗粒与溶剂之间的接触面积,进一步促进沉淀。
反胶团萃取方法简单易行,并且可以有效地去除溶液中的胶体颗粒。
通过调整反胶团剂的剂量和溶液的pH值等条件,可以
控制胶体颗粒的去除效果。
然而,需要注意的是,该方法可能对一些溶液中的其他成分产生影响,因此在具体操作中需要仔细考虑和控制实验条件。
反胶团萃取
pUK21CMV1.2
pPhyt148
28
实验方法
培养基、溶液及分析试剂的配制
质粒DNA的粗提
-SDS碱裂解法大量制备质粒DNA
大肠杆菌RNA的提取
-RNA out 法
反胶团萃取溶液的制备
反胶团萃取溶液的制备
核酸水溶液的制备
核酸测定
凝胶电泳
29
反胶团萃取溶液的制备
称取一定质量的表面活性剂 TOMAC( 三 辛 基 甲 基 氯 化 铵 ) 或 2C16QA( 双 十 六 烷 基 二 甲 基 溴 化 铵 ) , 溶于一定体积比例的异辛烷/正戊醇 混合有机溶剂中,配成一定浓度的 透明澄清的反胶团溶液:TOMAC溶 于 1 % ( v/v ) 正 戊 醇 / 异 辛 烷 ; 2C16QA溶于5%(v/v)正戊醇/异辛 烷。
反萃取率E’
核酸的反萃取率E’定义为反萃入另一 水相的核酸浓度和正向萃取平衡时的有 机相核酸浓度的比值:
E’ = [C’aq]eq / [Corg]eq = [C’aq]eq /([Caq]init-[Caq]eq)
35
对反胶团萃取的考察因素
pH值
表面活性 剂浓度
萃取时间
反胶束萃取
离子强度
初始浓度
蛋白质溶解模型:
a、水壳模型:蛋白质位于水池的中 心,周围存在的水层将其与反胶团壁 隔开;
b、半岛模型:pro表面存在强烈疏水 区,该区直接与有机相接触;
c、pro吸附于反胶团内壁;
d、pro疏水区与几个反胶团的S疏水
尾发生相互作用,被几个小反胶团所
“溶解”。
5
溶解推动力
A 静电作用:
当溶质所带电荷与表面活性剂相反时,由于静电引力的作用,溶质易 溶于反胶团,溶解率或分配系数较大,反之,则不能溶解到反胶团相 中.
反胶团萃取解读
反胶团萃取张睿摘要:本问介绍了反胶团萃取的基本概念及其影响反胶团萃取蛋白质的因素,并分析了动力学和热力学的理论,从而建立了平衡模型。
关键词:反胶团、萃取、平衡模型1.研究背景传统的分离方法,如液-液萃取技术,具有操作连续、多级分离、放大容易和便于控制等优点,在化学、化工、石化等领域得到广泛应用。
但很难用于具有某些特殊性质的生化产品(如蛋白质、氨基酸等)的提取与分离,原因在于这类物质多数不溶于非极性有机溶剂,或与有机溶剂接触后会引起变性和失活。
20世纪80年代中期发展起来的反胶团萃取技术解决了这一难题。
所谓反胶团,是指当油相中表面活性剂的浓度超过临界胶束浓度后,其分子在非极性溶剂中自发形成的亲水基向内、疏水基向外的具有极性内核(polar core)的多分子聚集体(aggregates)。
反胶团的极性内核可以溶解某些极性物质,而且在此基础上还可以溶解一些原来不能溶解的物质,即所谓二次加溶原理。
例如,反胶团的极性内核在溶解了水后,在内核中形成“水池”(water poo1),可以进一步溶解蛋白质、核酸和氨基酸等生物活性物质。
胶团的屏蔽作用,使这些生物物质不与有机溶剂直接接触,而水池的微环境又保护了生物物质的活性,从而达到了溶解和分离生物物质的目的。
这种技术既利用了溶剂萃取的优点,又实现了生物物质的有效分离,作为一种新型的生物分离技术应用于蛋白质、氨基酸及药物、农药等物质的分离分析中,显示了巨大的应用潜力。
[1]2.文献综述2.1反胶团的形成[2]正向胶团(normal micelle)是表面活性剂分子在极性溶剂,如水中形成的一种亲水基团(头)朝外,而疏水基团(尾)朝内的具有非极性内核的多分子聚集体。
洗涤剂中的表面活性剂分子在水中形成的就是这种胶团,其非极性内棱可以溶解各种油污。
从而达到去污的效果。
与此相反,表面活性剂在非极性溶剂如某些有机溶剂中就会形成亲水头向内和疏水尾向外的具有极性内核(polar core)的多分子聚集体(aggregates),由于其表面活性剂的排列方向与一般的正向胶团相反,因此,称为反胶团。
反胶团萃取的原理
反胶团萃取的原理
嘿,今天咱们来聊聊反胶团萃取的原理。
你可以把反胶团想象成一个个小小的“魔法口袋”。
这些“魔法口袋”其实就是表面活性剂分子聚集在一起形成的。
它们在溶液中就像是一群有组织的小团队。
当我们要萃取某种物质时,就好像要把一个特定的宝贝从一堆杂物里找出来。
反胶团的“魔法口袋”会发挥作用,它们能识别并“抓住”我们想要的那个物质。
比如说,我们要从一堆混合物中提取出某种蛋白质。
反胶团就像是一个个聪明的小手,精准地抓住蛋白质,然后把它包裹起来,带进自己的“口袋”里。
这就像是在一个混乱的房间里,有一个神奇的工具可以专门挑出你需要的东西,并且保护好它,不让它受到其他东西的干扰。
而我们通过一些操作,就可以把这些装着我们需要物质的反胶团提取出来,从而实现对目标物质的萃取啦。
怎么样,这下对反胶团萃取的原理是不是有了更形象的理解呀?。
反胶团萃取
反胶团萃取原理
萃取过程: ① 蛋白质从水溶液主 体扩散到界面; ② 在界面形成包容蛋 白质的反胶团; ③ 含有蛋白质的反胶 束在有机相中扩散离 开界面。
二、蛋白质的溶解
反胶团溶解蛋白质的四种可能模型:
a 水壳模型
b
c
d
水壳模型
对于亲水性蛋白质,目前普遍接受的是水壳模型。
许多实验数据均间接地证明了水壳模型的正确性:
随着Mr的增加,蛋白质分 子和胶团之间的立体性相 互作用增加,萃取率有下 降趋势。
蛋白质的Mr与(pH-pI)绝对 值呈线性关系
(2)添加无机盐的影响
添加无机盐会增加 溶液的离子强度, 能使静电性相互作 用变弱,一般情况 下萃取率下降。
添加无机盐的影响
无机盐对有机溶剂有脱水作用,反胶团的W减小, 使立体性相互排斥作用增大。
反胶团在许多方面的研究都很活跃
作为生物膜的简化模型;
作为显示酶类性质的一种模型进行基础性研究;
作为具有新型功能的疏水性反应场;
作为酶和微生物的一种新型的固定化方法;
作为微小型的生物反应器; 作为生理活性物质及生物活性大分子的特异性分 离场而进行的应用性研究。
反胶团萃取的优点
大多数CMC在0.1~1.0 mmol/L的范围内。
(2)反胶团含水率W
含水率(W):指水和表面活性剂的浓度之比。
W = c水/c表
W对反胶团的大小以及反胶团内微水相的物理 化学性质影响很大。 W越大,反胶团的半径越大。
反胶团含水率W
反胶团“水池”中的水与普通的水在性质上有差异。 如,AOT反胶团
第八章反胶团萃取
在AOT反胶团中,水合化一分子AOT需要 6~8个水分子,而其他水分子则不受束缚, 可与普通水一样自由流动,所以当W>16 时,“水池”中的水逐渐接近主体水相粘度, 胶团内也形成双电层。
胶团变化示意图
反胶团的制备
1.液液接触法
即将含蛋白质的水相与含表面活性剂的
有机相接触。
2.注入法
将含有蛋白质的水溶液直接注入到含有
影响液膜萃取的操作参数
pH:对弱电解质,pH将影响其荷电形式
及不同电荷形式溶质的分率,从而影响 萃取率。
速度:对于支撑液膜,料液流速引起流
体力学的特性改变直接影响萃取率;对 于乳状液膜,搅拌速度影响乳化液的分 散和液膜的稳定性。
共存杂质
流动载体为离子交换萃取剂时,料液中 如果存在与目标分子带相同电荷的杂质时,由 于杂质的竞争会减小用于目标分子和供能离子 输送的载体量,引起目标分子通透性的下降。
反胶束萃取的原理: 疏
静电引力:主要是蛋白质的表面电荷
与反胶束内表面电荷(离子型表面活 性剂)之间的静电引力作用。 空间位阻作用:增大反胶束极性核的 尺寸,以减小大分子蛋白进入胶核的 传质阻力。
反胶束萃取的原理:
凡是能够引起静电引力,能够促使反
胶束尺寸增大的因素均有利于提高分 配系数。 这些因素主要是pH、离子强度、表面 活性剂种类和浓度等,通过因素优化, 实现选择性地萃取和反萃取。
液膜 料液 (W/O)/W型乳液液膜
②支撑液膜
支撑液膜是将固体膜浸在膜
溶剂(如有机溶剂中)使膜溶剂 液膜 充满膜的孔隙形成液膜。 支撑液膜分隔料液相和反萃 反 料 相,实现渗透溶质的选择性萃取。 萃 液 相 当液膜为油相时,常用的多 孔膜为聚四氟乙烯、聚乙烯和 聚丙烯等高疏水性膜。 与乳状液膜相比,支撑液膜 支撑液膜 结构简单,放大容易。
6b反胶团萃取
(5)反胶团萃取技术的成本低,溶剂可反复使用等。
二、反胶团的形成
1、反胶团的构造: 在胶体化学中,如向水溶液中加入表面活性剂,并使
其浓度超过一定数值时,表面活性剂就会在水相中形成胶体
或微胶团,它是表面活性剂的聚集体。其亲水性的极性端向 外指向水溶液,疏水性的非极性“尾”向内相互聚集在一起。
当向非极性溶剂中加入表面活性剂,并使其浓度超过一
阳离子表面活性剂
非极性有机溶剂:环己烷,庚烷, 辛烷等
分离蛋白质时, 使用最多的是阴离子型表面活性剂AOT。
2、反胶团的物理化学特性及制 备
(1)反胶团的物理化学特性
① 反胶团的临界胶团浓度
表面活性剂在非极性有机溶剂中能形成反胶团的 最小浓度
② 反胶团含水率W
W=C水/C表
W越大,反胶团的半径越大
用 AOT反胶团体系萃取 血红蛋白时发现 , 蛋白质 浓度高时,萃取率降低;而蛋 白质浓 度低时,萃取率较高。
⑥表面活性剂
表面活性剂的类型 目前最常用的反胶团或微乳液是 AOT/异辛烷 体系。一是AOT形成的反胶团较大 ,有利于蛋 白质的萃取 ;二是AOT形成反胶团时不需加助 表面活性剂。 表面活性剂的浓度 当其它条件一定时 ,表面活性剂浓度也存在某 临界值。小于此临界值时 ,增大表面活性剂的 浓度可提高蛋白质的萃取率 ,大于临界值时 , 则无明显影响
② 空间相互作用
A. 盐浓度增大对
反胶团相产生脱水效 应, 含水率W0随盐浓 度的增大而降低,反胶 团直径减小, 空间排 阻作用增大, 蛋白溶 解下降。
B .在各蛋白的pI处(排除了静电相互作用的影响), 反胶团萃取实验研究表明: 随着M增大, 蛋白的分配 系数(m, 溶解率)下降。表明随M增大, 空间排阻作 用增大, 蛋白的溶解率降低.
反胶团萃取
② 分离迅速。双水相系统(特别是聚合物/无机盐系 统)分相时间短,传质过程和平衡过程速度均很快,因此相对 于某些分离过程来说,能耗较低,而且可以实现快速分离。
③ 条件温和。由于双水相的界面张力大大低于有机 溶剂与水相之间的界面张力,整个操作过程可以在室温下 进行,因而有助于保持生物活性和强化相际传质。既可以 直接在双水相系统中进行生物转化以消除产物抑制,又有 利于实现反应与分离技术的耦合。
④ 步骤简便。大量液体杂质能够与所有固体物质同 时除去,与其他常用的固液分离方法相比,双水相分配技术 可以省去1~2个分离步骤,使整个分离过程更为经济。
初期的双水相萃取过程仍以间歇操作为主。 近年来,在天冬酶、乳酸脱氢酶、富马酸酶与青霉 素酰化酶等多种产品的双水相萃取过程中均采用 了连续操作,有的还实现了计算机过程控制。这不 仅对提高生产能力,实现全过程连续操作和自动控 制,保证得到高活性和质量均一的产品具有重要意 义, 而且也标志着双水相萃取技术在工业生产的 应用正日趋成熟和完善。
1、吸附原理和吸附剂
(1)、吸附原理
吸附剂固体之所以能够吸附流体分子,是因为固体表 面上的质点处于力场不平衡状态, 固体表面具有过剩的能 即表面能,当固体与流体分子接触时,被吸附物质与固体之 间由于某种吸附力的作用使固体与流体混合物中的某些 组分产生吸附,从而降低了表面能。吸附过程所放出的热 量,称为该物质在固体表面的吸附热。
(3)、在生物转化、化学渗透释放和电泳等中引入双 水相分配,给已有的技术赋予了新的内涵,为新分离过程的 诞生提供了新的思路。
二、吸附
第六章 萃取-反胶团萃取
萃取
以超临界流 体为萃取剂, 体为萃取剂, 以液体为萃取剂, 以液体为萃取剂, 含有目标产 含目标 含有目标产物原 液液萃取 产物的 液固萃取 超临界 物的原料可 料为液体 或浸取 流体萃取 以是液体, 原料为 以是液体, 固体 也可以是固 根据萃取剂的种类和形式的不同分为: 根据萃取剂的种类和形式的不同分为: 体。
16
(二)蛋白质的溶解
(1)水壳模型 ,蛋白 ) 质位于水池的中心, 质位于水池的中心,周 围存在的水层将其与反 胶团壁(表面活性剂) 胶团壁(表面活性剂) 隔开; 隔开; (2)蛋白质中的亲脂 ) 部分直接与非极性溶 剂的碳氢化合物相接 触;
17
(3)蛋白质被吸 ) 附在微胶团的 内壁” “内壁”上;
5
二、反胶团的形成
(一)反胶团的构造
水溶液+表面活性剂(浓度 某一数值 某一数值) 水溶液 表面活性剂(浓度>某一数值)胶体或微 表面活性剂 胶团(表面活性剂的聚集体); 胶团(表面活性剂的聚集体); 非极性溶剂中+表面活性剂 浓度>某一数值 表面活性剂( 某一数值) 非极性溶剂中 表面活性剂(浓度 某一数值)表 面活性剂的聚集体(反胶团)。 面活性剂的聚集体(反胶团)。
(4)蛋白质被几 ) 个微胶团所溶解, 个微胶团所溶解, 微胶团的非极性尾 端与蛋白质的亲脂 部分直接作用。 部分直接作用。 大多数学者接受的 是水壳模型。 是水壳模型。
18
(三)影响反胶团萃取蛋白质的主要因素
蛋白质的萃取与蛋白质的表面电荷、 蛋白质的萃取与蛋白质的表面电荷、反胶 表面电荷 团内表面电荷之间静电作用及反胶束的大 团内表面电荷之间静电作用及反胶束的大 之间静电作用及 小有关。 有关。
第五章反胶团萃取与双水相萃取
反胶团溶液形成的条件和特性
5. 反胶团的含水率、大小
Wo
C水 C表面活性剂
R 3WoVW As
一般为10-100 nm
反胶团萃取蛋白质的基本原理
反胶团的溶解作用
由于反胶团内存在微水池,故可溶解氨基酸、肽和蛋白 质等生物分子,为生物分子提供易于生存的亲水微环境。 因此反胶团萃取特别蛋适合白质类生物大分子。
反胶团溶液形成的条件和特性
3. 胶团、反胶团的形成
将表面活性剂溶于水中,当其浓度超过临界胶束浓 度(CMC)时,表面活性剂就会在水溶液中聚集在一起 而形成聚集体,在通常情况下,这种聚集体是水溶 液中的胶束,称为胶团。
若将表面活性剂溶于 非极性的有机溶剂中, 并使其浓度超过临界胶 束浓度(CMC),便会在 有机溶剂内形成聚集体, 这种聚集体称为反胶团。
3、混合澄清槽
混合-澄清式萃取器是一种最常用的液 -液萃取设备,该设备由料液与萃取剂的混 合器和用于两相分离的澄清器组成,可进 行间歇或连续的液-液萃取。
但该设备最大的缺点是反胶团相与水 相相混合时,混合液易出现乳化现象,从 而增加了相分离时间。
反胶团萃取的应用
➢ 蛋白质分离
反胶团萃取的应用
➢ 浓缩α-淀粉酶
将亲和配基(活性色素辛巴蓝)加入 到大豆卵磷酯-正已烷系统中,制成亲和反 胶团相,并将此胶团相固定于聚丙烯中空 纤维膜内,从而构建起亲和反胶团萃取膜 的分配色谱装置(AMPC)。
2、离心萃取器
反胶团溶液-水-蛋白质所组成的萃取体 系,由于表面活性剂的存在,界面张力低, 易乳化。另外,由于萃取的目标产物是蛋 白质,易变性失活。为了尽量避免蛋白质 的变性,应尽量缩短操作时间,因而反胶 团离心萃取是一项很合适的蛋白质萃取分 离技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反胶团萃取张睿摘要:本问介绍了反胶团萃取的基本概念及其影响反胶团萃取蛋白质的因素,并分析了动力学和热力学的理论,从而建立了平衡模型。
关键词:反胶团、萃取、平衡模型1.研究背景传统的分离方法,如液-液萃取技术,具有操作连续、多级分离、放大容易和便于控制等优点,在化学、化工、石化等领域得到广泛应用。
但很难用于具有某些特殊性质的生化产品(如蛋白质、氨基酸等)的提取与分离,原因在于这类物质多数不溶于非极性有机溶剂,或与有机溶剂接触后会引起变性和失活。
20世纪80年代中期发展起来的反胶团萃取技术解决了这一难题。
所谓反胶团,是指当油相中表面活性剂的浓度超过临界胶束浓度后,其分子在非极性溶剂中自发形成的亲水基向内、疏水基向外的具有极性内核(polar core)的多分子聚集体(aggregates)。
反胶团的极性内核可以溶解某些极性物质,而且在此基础上还可以溶解一些原来不能溶解的物质,即所谓二次加溶原理。
例如,反胶团的极性内核在溶解了水后,在内核中形成“水池”(water poo1),可以进一步溶解蛋白质、核酸和氨基酸等生物活性物质。
胶团的屏蔽作用,使这些生物物质不与有机溶剂直接接触,而水池的微环境又保护了生物物质的活性,从而达到了溶解和分离生物物质的目的。
这种技术既利用了溶剂萃取的优点,又实现了生物物质的有效分离,作为一种新型的生物分离技术应用于蛋白质、氨基酸及药物、农药等物质的分离分析中,显示了巨大的应用潜力。
[1]2.文献综述2.1反胶团的形成[2]正向胶团(normal micelle)是表面活性剂分子在极性溶剂,如水中形成的一种亲水基团(头)朝外,而疏水基团(尾)朝内的具有非极性内核的多分子聚集体。
洗涤剂中的表面活性剂分子在水中形成的就是这种胶团,其非极性内棱可以溶解各种油污。
从而达到去污的效果。
与此相反,表面活性剂在非极性溶剂如某些有机溶剂中就会形成亲水头向内和疏水尾向外的具有极性内核(polar core)的多分子聚集体(aggregates),由于其表面活性剂的排列方向与一般的正向胶团相反,因此,称为反胶团。
示意图如图(2-1)。
图2-1 表面活性荆分子在非极性溶荆中形成的反胶目反胶团的极性内核可以溶解某些极性物质,而且在此基础上还可以溶解一些原来不能溶解的物质,即所谓二次加溶原理。
例如,反胶团的极性内核在溶解了水后,在内核形成了“水池”(water pool),可以进一步溶解蛋白质、核酸、氨基酸等生物活性物质。
由于胶团的屏蔽作用,使这些生物物质不与有机溶剂直接接触,而水池的微环境又保护了生物物质的活性,达到了藩解和分离生物物质的目的。
图2-2是解释此过程的一种常用的模型一“水壳模型”的示意图。
图2-2 利用反胶团特蛋白质溶解于有机溶荆中的水壳模型这种技术既利用了溶剂萃取的优点,又实现了生物物质的有效分离,成为一种新型的生物分离技术。
2.2 反胶团及其萃取原理反胶团是表面活性剂溶解在有机溶剂中形成的纳米级聚集体,是一种透明、稳定的热力学体系。
反胶团中表面活性剂非极性头向外与有机溶剂接触,极性头向内形成极性核,极性核溶入水后形成微“水池”。
反胶团的一个重要参数是它的含水量(“水池”中溶入的水与表面活性剂的摩尔比,W0),它决定反胶团的尺寸。
在W0<10时[3],水分子被束缚在反胶团的壁上,它的凝固点下降、共价键参数改变、氢键破坏;只有在W。
较大时,才存在自由水。
当含反胶团的有机溶剂和蛋白质水溶液接触时,蛋白质在某种作用力(静电、亲和、疏水)下进入“水池”中,水和表面活性剂分子在蛋白质周围形成一个保护层,使蛋白质避免与有机溶剂接触,不致失活。
2.3 反胶团萃取蛋白质的影响因素蛋白质的萃取受很多因素影响,这些因素包括原料液的pH值、离子强度、表面活性剂和有机溶剂种类等:蛋白质等电点、亲水性、电荷密度及分布也是影响其萃取的重要因素。
2.3.1 表面活性剂表面活性剂是反胶团萃取的一个关键因素,不同结构的表面活性剂形成的反胶团含水量和性能有很大差别。
通常希望所选表面活性剂形成极性核较大的反胶团,且反胶团与蛋白质的作用不应太强,以减少蛋白质的失活。
最常用的是阴离子表面活性剂丁二酸(二)-2-乙基己基酯磺酸钠(AOT),它形成反胶团时,不需要加入助剂。
AOT反胶团体系适宜于萃取小分子量(分子量<30kDa)蛋白质(如溶菌酶、胰蛋白酶、细胞色素C等)。
Somnuk等[4]用AOT-异辛烷体系进行了从发酵液中提取细胞色素C、溶解酵素、核糖核酸酶A的试验,结果三种酶的最终萃取率在70%~97%之间,并发现酶在原料液中的初始浓度对萃取率[萃入有机相的蛋白质浓度(或质量)与原料相中蛋白质浓度(或质量)的比值]没有影响。
Ludger[5]等用同一反胶团体系在Graesser接触器中对溶解酵素和细胞色素C进行提取,40min后,两者的萃取率都在95%以上。
AOT 反胶团体系对于分子量较大(胃蛋白酶、血红蛋白、血清蛋白等)的蛋白质萃取率很低,且易在两相界面形成不溶性凝聚物[6,7]。
分子量大,蛋白质的体积就大,传递过程中障碍也大,所以萃取率相对的小。
Goto[8]等合成了一系列双油基磷酸型(DOLPA、DTDPA、DEPTA)表面活性剂。
他们发现,DTDPA反胶团体系对溶解酵素和细胞色素C的萃取率近乎100%,对血红蛋白(HB)的萃取率为80%;而同一条件下AOT反胶团体系对HB的萃取率仅为16%,且在两相界面上有红色不溶凝聚物出现。
结果表明,决定蛋白质萃取率的一个关键因素是表面活性剂的疏水基结构,由于表面活性剂的疏水基和蛋白质的疏水部位问的作用,可显著提高蛋白质萃取率。
为使大分子蛋白质溶入反胶团,所用表面活性剂有较强的疏水性是必要的,DTDPA疏水基比AOT 大,对蛋白质的输水部位作用较强,所以对血红蛋白有较好的萃取。
Long等[9]用DEPTA-异辛烷萃取血红蛋白的试验。
结果表明,原料相中血红蛋白浓度为0.5mg/mL、KC1为0.2mol/L,有机相中DEPTA为0.02mol/L时,HB的萃取率在等电点附近达到97%;经紫外检测,反萃后的HB与原料相的HB谱峰无显著差异,表明HB仍保持较高的活性。
常用的阳离子表面活性剂有三辛基甲基氯化铵(TOMAC)、十六烷基三甲基溴化铵(CTAB)、十二烷基苯基氯化铵(DMBAC)、Aliquat366等铵盐;利用非离子表面活性剂形成反胶团的研究很少,主要有Span-60、Tween-80等。
向单一反胶团体系中加入助表面活性剂或导入亲和试剂形成复合反胶团体系,这样能显著提高反胶团的选择性和蛋白质的萃取率。
近年来,复合反胶团体系研究的较多。
Koichiro[10]等采用AOT-TOA(长链烷基胺)混合反胶团体系萃取溶菌素酶和牛血清蛋白(BSA)的研究。
AOT/TOA体系与酸性原料液混合时,TOA与HB结合形成阳离子铵盐,铵盐能和极性头带负电的AOT作用形成复合物,从而改变反胶团的性能。
他们发现,对于溶菌素酶,AOT和AOT-TOA的萃取率相近。
在pH<5时,AOT 体系在界面和水相中有不溶物出现,这是由于强烈的静电作用,溶菌素酶和AOT结合形成凝聚物所致,AOT-TOA无此现象。
AOT反胶团体系在较宽的pH范围内对大分子蛋白质BSA的萃取率很低,且有凝聚物出现。
AOT-TOA对BSA 的萃取率在90%以上,这说明TOA的加入改变了AOT与BSA之间的作用力(静电或疏水),抑制了凝聚物的形成。
严勇朝[11]等用TRPO-AOT萃取牛血红蛋白时发现,混合反胶团的萃取能力高于单纯的AOT,前者在pH较宽范围内保持很高的萃取率。
DLS(动力光散射仪结果证实,TRP0使AOT反胶团变大,从而提高其萃取容量。
2.3.2 亲和助剂在反胶团中导入与目标蛋白有特异亲和作用的助剂可形成亲和反胶团。
亲和助剂的极性头是一种亲和配基,可选择性地结合目标蛋白,该系统使蛋白质的萃取率和选择性大大提高。
而且可使操作参数(如pH值、离子强度)的范围变宽。
Zhang等[12]采用CTAB-己烷反胶团系统,以色素Cibicaron Blue 3GA (CB)为亲和配体,发现在等电点附近,CB为1.6mmol/L时,BSA的萃取率由7.88%提高到63%,并使可发生萃取的pH范围增大。
在等电点附近,反胶团和蛋白质的静电作用很弱,CB的加入说明亲和作用是BSA萃取率提高的主要因素。
Motonari[13]等向C10E4反胶团中导入胰岛素抑制剂作为亲和配体,成功地从胰液素中提取出胰岛素,并抑制了胰岛素的自身降解。
C10E4是非离子表面活性剂,对亲水性蛋白质的静电作用很小,抑制剂的亲和作用是该过程的主要动力。
研究表明[14,15],亲和反胶团体系具有很好的开发应用前景。
2.3.3 水相pH值pH值对蛋白质萃取过程的影响主要体现在改变蛋白质的表面电荷上。
一定条件下,当原料相pH值小于蛋白质的等电点(PI)时,蛋白质表面带正电,如选用的反胶团内核带负电,蛋白质会在静电作用下由水相转入反胶团相,从而实现不同PI的蛋白质分离。
一般说来,不同蛋白质达到最大萃取率时原料液pH值偏离蛋白质PI的程度不一样,但pH偏离PI较远时,由于强烈的静电作用,表面活性剂吸附于蛋白质表面,在两相界面形成蛋白质一表面活性剂不溶凝聚物,蛋白质变性严重。
2.3.4 离子强度的影响离子影响蛋白质表面电荷的分布及表面活性剂的电离程度,一个重要因素是萃取过程中随蛋白质一起进入反胶团极性核的离子会产生“屏蔽”作用,减小表面活性剂极性头之间的相斥力,反胶团变小,性能改变。
Yashhiro等[16]采用AOT-异辛烷体系研究了不同离子对溶菌素酶的萃取情况。
结果发现,对KC1-KC1(原料相和反萃相的盐的种类)体系,溶菌素酶能成功被萃取和反萃;对NaC1-KC1体系,虽然形成的反胶团尺寸较大,但在界面出现了不溶性凝聚物,不利萃取;对KC1-BaC12体系,由于Ba2+与表面活性剂的极性头问的强烈静电作用,Ba2+聚结在反胶团极性核内,反胶团最小。
表面活性剂、Ba2+、蛋白质形成复杂的凝聚物,无法完成溶菌素酶的萃取。
通常,随着离子强度的增大,蛋白质与反胶团内核的静电作用变弱,萃取率减小。
Giordana等[17]用AOT反胶团萃取。
一糜蛋白酶时发现所选离子种类(NaC1,KC1,LiC1,CaC12 )和浓度对萃取率均有显著影响。
随离子强度增大,萃取率降低;相同萃取率时对应各种离子强度也有显著差别。
离子强度最小为0.08mol/L。
Li+最大为1.2mol/L。
Andrews等用同样的反胶团体系考察了核糖核酸酶A等四种蛋白质的萃取情况。
结果表明,随离子强度( K+,Na+)增大,四种蛋白质的萃取率均减小,当原液相中为K+时,萃取率减小趋势比Na+快的多,这说明半径较大的K+“屏蔽”作用较强,使蛋白质和反胶团间的作用力减小较快。