初一数学下册第一单元练习题

合集下载

完整)北师大版七年级数学下册第一章课后练习题集

完整)北师大版七年级数学下册第一章课后练习题集

完整)北师大版七年级数学下册第一章课后练习题集北师大版七年级数学下册第一章课后题集——幂的乘方一、基础题1.32x = 2^5x;3-a(-a) = 3 + a^2;a×a = a^2;2n)^(1/3) × [(1/3)/(3/2)] = 2;y^(4/2n) = (y^2)^(1/n) = a^7;3^(-2) × c^3 = c^3/9;2.若(a^3)^n = (a^n)^m(m。

n都是正整数),则m = 3n。

3.计算(-1/2x^2y)^(4/3)的结果正确的是(B)1/x^4y^2.4.判断题:(对的打“√”,错的打“×”)a^2 + a^3 = a^5(√);x^2 × x^3 = x^6(√);x^2)^3 = x^6(×);a^4 × a^2 = a^6(×);5.若m、n、p是正整数,则(am×an)^p等于(C)anmp。

6.计算题:1)-p(-p)^4 = -p^5;2)-(a^2)^3 = -a^6;3)(-a^2)^3 = -a^6;4)[-6^3]^4 = 6^12;5)[2/3 × p^3 × (-p^2)^3] + 2 = -2p^19/27;6)[(x^2)^3]^7 = x^42;7)(x^2)^n - (x^n)^2 = x^2n - x^2n = 0;8)(-a^2)^3 × a^3 + (-4a)^2 × a^2-5 × a^3^7 = -a^6 × a^3 + 16a^2 × a^2-5 × a^3^7 = -a^9 + 16a^-3 × a^3^7 = 16 - a^12.7.若x^m × x^(2m) = 2,求x^(9m)的值。

解:x^m × x^(2m) = x^(3m) = 2^(1/3);则x^(9m) = (x^(3m))^3 = 2.二、提高题:1.计算(-a^2)^3 × (-a^3)^2的结果是(A)-a^12.2.如果(9n)^2 = 3,则n的值是(D)无法确定。

北师大版七年级数学(下册)第一章测试卷(附参考答案)

北师大版七年级数学(下册)第一章测试卷(附参考答案)

数学七下北师测试卷第一章1.计算(a2)3的结果为( )A.a4B.a5C.a6D.a92.计算a·a-1的结果为( )A.-1B.0C.1D.-a3.2-3可以表示为( )A.22÷25B.25÷22C.22×25D.(-2)×(-2)×(-2)4.若a≠b,下列各式中不能成立的是( )A.(a+b)2=(-a-b)2B.(a+b)(a-b)=(b+a)(b-a)C.(a-b)2n=(b-a)2nD.(a-b)3=-(b-a)35.如果x2-kx-ab=(x-a)(x+b),则k应为( )A.a+bB.a-bC.b-aD.-a-b6.(-)2016×(-2)2016等于( )A.-1B.1C.0D.20167.长方形一边长为2a+b,另一边比它长a-b,则长方形的周长是( )A.10a+2bB.5a+bC.7a+bD.10a-b8.如图所示,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.下列各组数中,互为相反数的是( )A.(-2)-3与23B.(-2)-2与2-2C.-33与(-1)3D.(-3)-3与()310.计算(x4+y4)(x2+y2)(y-x)(x+y)的结果是( )A.x8-y8B.x6-y6C.y8-x8D.y6-x611.计算:a·a2=.12.计算:3a3·a2-2a7÷a2=.13.已知a+b=3,a-b=-1,则a2-b2的值为.14.-x-x2y+2π是次项式,单项式的系数是.15.如果2x6y2n和-x3m y3是同类项,则代数式9m2-5mn-17的值是.16.若(x+5)(x-7)=x2+mx+n,则m=,n=.17.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011,摩托车的声音强度是通常说话声音强度的倍.18.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a,定义a=ad-bc,上述记号就叫做2阶行列式.若x=8,则x=.19.计算:(1)(-3xy2)3·(1x3y)2;(2)y(2x-y)+(x+y)2;(3)(x2y4-x3y3+2x4yz)÷x2y;(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).20.化简求值:(1)(1+x)(1-x)+x(x+2)-1,其中x= 1;(2)x(x+y)-(x-y)(x+y)-y2,其中x=0.52016,y=22017. 21.已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值. 22.解方程:(2m-5)(2m+5)-(2m+1)(2m-3)=(π-3.14)0.23.用简便方法计算:(1)498×502;(2)2992.24.按下列程序计算,:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.参考答案1.C2.C3.A4.B5.B6.B7.A8.D9.D10.C11.a312.a513.-314.三三32-2π2π77x y z15.416.-2 -3517.10618.219.(1)解:原式=-27x3y6·1x6y2 =-3x9y8. (2)解:原式=2xy-y2+x2+2xy+y2 =x2+4xy. (3)解:原式=x2y4÷x2y-x3y3÷x2y+2x4yz÷x2y =y3-xy2+2x2z. (4)解:原式=(2x)2-y2+x2+2xy+y2-4x2+2xy =4x2-y2+x2+2xy+y2-4x2+2xy =x2+4xy. 20.(1)解:原式=1-x2+x2+2x-1=2x. 将x=代入,原式=2x=2·=1. (2)解:原式=x2+xy-(x2-y2)-y2=x2+xy-x2+y2-y2=xy. 当x=0.52016,y=22017时,原式=0.52016×22017=(0.5×2)2016×2=2.21.解:原式=3a(2a+1)-(2a+1)(2a-1) =6a2+3a-4a2+1=2a2+3a+1∵2a2+3a-6=0,∴2a2+3a=6.∴原式=7.22.(2m-5)(2m+5)-(2m+1)(2m-3)=(π-3.14)0. 解:4m2-25-(4m2-6m+2m-3)=14m2-25-4m2+6m-2m+3=14m-22=14m=23m=.23.(1)解:498×502=(500-2)×(500+2)=5002-22=250000-4=249996.(2)解:2992=(300-1)2=3002-2×300×1+1=90000-600+1=89401.24.解:(1)(2)代数式可表示为:(n2+n)÷n-n=-n=n+1-n=1.。

初一数学下册第一章整式的除法习题(含详细解析答案)

初一数学下册第一章整式的除法习题(含详细解析答案)

初一数学下册第一章整式的除法习题(含详细解析答案)------------------------------------------作者xxxx------------------------------------------日期xxxx北师大版数学七年级下册第一章1.7整式的除法课时练习一、选择题1. 15a3b÷(-5a2b)等于()A.-3a B.-3ab C.a3b D.a2b答案:A解析:解答:15a3b÷(-5a2b)=-3a,故A项正确.分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题.2. -40a3b2÷(2a)3等于()A.20b B.-5b2 C.-a3b D.-20a2b答案:B解析:解答:(-40a3b2)÷(2a)3=-5b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式除以单项式法则可完成此题.3. -20a7b4c÷(2a3b)2等于()A.-ab2c B.-10ab2c C.-5ab2c D.5ab2c答案:C解析:解答:-20a7b4c÷(2a3b)2=-5ab2c,故C项正确.分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式除以单项式法则与同底数幂的除法可完成此题.4. 20x14y4÷(2x3y)2÷(5xy2)等于()A.-x6 B. y4 C.-x7 D.x7答案:D解析:解答:20x14y4÷(2x3y)2÷(5xy2)= x7,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式除以单项式法则与同底数幂的除法法则可完成此题.5.(2a3b2-10a4c)÷ 2a3等于()A.a6b2c B.a5b2c C.b2-5ac D.b4c-a4c答案:C解析:解答:(2a3b2-10a4c)÷ 2a3=b2-5ac,故C项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.6. ( x4y3+x3yz)÷x3y等于()A.x4y3+xz B.y3+x3y C.x14y4 D.xy2+z答案:D解析:解答:( x4y3+x3yz)÷x3y = xy2+z,故D项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.7.(x17y+x14z)÷(-x7)2 等于()A.x3y+z B.-xy3+z C.-x17y+z D.xy+z答案:A解析:解答:(x17y+x14z)÷(-x7)2= x3y+z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.8.(612b2-612ac)÷[(-6)3]4等于()A.b2-b2c B.a5-b2c C.b2-ac D.b4c-a4c答案:C解析:解答:(612b2-612ac)÷[(-6)3]4= b2-ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.9.(8x6y+8x3z)÷(2x)3等于()A.x6y+x14z B.-x6y+x3yz C.x3y+z D.x6y+x3yz答案:C解析:解答:(8x6y+8x3z)÷(2x)3= x3y+z,故C项正确.分析:先由积的乘方法则得(2x)3=8x3,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.10.(4x2y4+4x2z)÷(2x)2等于()A.4y4+z B.-y4+z C.y4+x2z D.y4+z答案:D解析:解答:4x2y4+4x2z)÷(2x)2= y4+z,故D项正确.分析:先由积的乘方法则得(2x)2=4x2,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.11.(x7y4+x7z)÷x7等于()A.y4+z B.-4x2y4+xz C.x2y4+x2z D.x2y4+z答案:A解析:解答:(x7y4+x7z)÷x7=y4+z,故A项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.12.( x3y2+x2z)÷ x2等于()A.xy+xz B.-x2y4+x2z C.x y2+z D.xy4+x2z答案:C解析:解答:x3y2+x2z)÷ x2= x y2+z,故C项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.13.( -5a4c-5ab2c) ÷(-5ac)等于()A.-a6b2-c B.a5-b2c C.a3b2-a4c D.a3+b2答案:D解析:解答:( -5a4c-5ab2c) ÷(-5ac)= a3+b2,故D项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.14.( x2y2+y7+y5z)÷y2等于()A.x2+ y5+y3z B.x2y2+y5z C.x2y+y5z D.x2y2+y7+y5z答案:A解析:解答:x2y2+y7+y5z÷y2=x2++ y5+y3z,故A项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.15.(2a4+2b5a2)÷a2等于()A.a2c+b5c B.2a2+2b5 C.a4+b5D.2a4+ba2答案:B解析:解答:(2a4+2b5a2)÷a2=2a2+2b5,故B项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.二、填空题16.(5x3y2+5x2z)÷5x2等于;答案:xy2+z解析:解答:(5x3y2+5x2z)÷5x2=5x3y2÷5x2 +5x2z÷5x2 = xy2+z分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题17.(2a3b2+8a2c)÷2a2等于;答案:ab2+4c解析:解答:(2a3b2+8a2c)÷2a2=2a3b2÷2a2 +8a2c÷2a2= ab2+4c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题18.(6a3b2+14a2c)÷a2等于;答案: 6ab2+14c解析:解答:(6a3b2+14a2c)÷a2=6a3b2÷a2+14a2c÷a2= 6ab2+14c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题19.(-6a3-6a2c)÷(-2a2)等于;答案:3a+3c解析:解答:(-6a3-6a2c)÷(-2a2)= (-6a3)÷(-2a2)+(-6a2c)÷(-2a2)=3a+3c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题20.(-12x3-4x2)÷(-4x2)等于;答案:3x+1解析:解答:(-12x3-4x2)÷(-4x2) = (-12x3)÷(-4x2)+(-4x2) ÷(-4x2)= 3x+1分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题三、计算题21.-20 x3 y5 z÷(-10x2y)答案:2xy4z解析:解答:解:-20 x3 y5 z÷(-10x2y)= 2 x3-1 y5-1 z=2xy4z分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题22.(-6 x4 y7)÷(-2 x y2) ÷(-3 x2y4)答案:- x y解析:解答:解:(-6 x4 y7)÷(-2 x y2) ÷(-3 x2y4)= - x4-1-2y7-2-4=- x y分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题23.(2a4 -6a2+4a)÷2a答案:a3 -3a+2解析:解答:解:(2a4 -6a2+4a)÷2a=2a4÷2a-6a2÷2a+4a÷2a= a3 -3a+2分析:先由多项式除以单项式法则与同底数幂的除法法则计算,再合并同类项可完成此题.24.(3a3b2+3 a2b3- 3 a2b2)÷3ab答案:a2b+ ab2-ab解析:解答:解:(3a3b2+3 a2b3- 3 a2b2)÷3ab=3a3b2÷3ab+3 a2b3÷3ab - 3 a2b2÷3ab=a2b+ ab2-ab分析:由多项式除以单项式法则与同底数幂的除法法则计算可完成题.25.( x2 y3-9x y5+8y2)÷y2答案:x2y-9x y3+8解析:解答:解:( x2y3-9x y5+8y2)÷y2= x2y3÷y2-9x y5÷y2+8y2÷y2= x2y3-2-9x y5-2 +8y2-2= x2y-9x y3+8分析:先由多项式除以单项式法则与同底数幂的除法法则计算,再合并同类项可完成此题.。

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案第一章:整式的乘除单元测试卷(一)一、精心选择(每小题3分,共21分)1.多项式xy^4+2x^3y^3-9xy+8的次数是A。

3 B。

4 C。

5 D。

62.下列计算正确的是A。

2x^2·6x^4=12x^8 B。

(y^4)m/(y^3)m=ymC。

(x+y)^2=x^2+y^2 D。

4a^2-a^2=33.计算(a+b)(-a+b)的结果是A。

b^2-a^2 B。

a^2-b^2 C。

-a^2-2ab+b^2 D。

-a^2+2ab+b^24.3a^2-5a+1与-2a^2-3a-4的和为A。

5a^2-2a-3 B。

a^2-8a-3 C。

-a^2-3a-5 D。

a^2-8a+55.下列结果正确的是A。

-2/(1/3)=-6 B。

9×5=45 C。

(-5)³=-125 D。

2-3=-1/86.若(am·bn)^2=a^8b^6,那么m^2-2n的值是A。

10 B。

52 C。

20 D。

327.要使式子9x^2+25y^2成为一个完全平方式,则需加上()A。

15xy B。

±15xy C。

30xy D。

±30xy二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式3xy^2,m,6a^2-a+3,12,4x^2yz-(1/2)xy^2,3ab中,单项式有5个,多项式有2个。

2.单项式-5x^2y^4z的系数是-5,次数是7.3.多项式3ab^4-ab+1/5有3项,它们分别是3ab^4、-ab、1/5.4.⑴x^2·x^5=x^7.⑵(y^3)^4=y^12.⑶(2a^2b)^3=8a^6b^3.⑷( -x^5y^2)^4=x^20y^8.⑸a^9÷a^3=a^6.⑹10×5-2×4=46.5.⑴(-2)/(1/3)=-6.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷(-12x^5y^3)/(-3xy^2)=4x^4y。

(完整word版)七年级数学下册第一章单元测试题(3套)及答案

(完整word版)七年级数学下册第一章单元测试题(3套)及答案

北师大版七年级数学下册第一章整式的乘除 单元测试卷(一)班级—姓名 ___________ 学号 _________ 得分 __________、精心选一选(每小题3分,共21分)5•下列结果正确的是41.多项式xy^332x y9xy 8的次数是A. 3B. 42.下列计算正确的是亠 2 亠 48 4 m3 mA. 2x 6x 12xB .y y3.计算a ba b 的结果是22 . 2A. b aB .a bC. i24. 3a 5a1与 22a 3a4的和为D. 6mC.2ab b 2x 2D.D. 4a2ab b 22A. 5a 2a 3B. a 28a 3 C.a 2 3aD. a 28aC. 52aB. 500C. 53.7 0D.m n 26.右a ba8b6,那么m22n的值是A. 10B. 52C. 20D. 327.要使式子9x225y2成为一个完全平方式,则需加上A. 15xyB. 15xyC. 30xyD. 30xy长方形铁片,求剩余部分面积。

(6分)、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)2 2 21 2 2 、 » ,1•在代数式3xy , m , 6a a 3 , 12 , 4x yz xy ,中,单项式有53ab—个,多项式有 ______ 个。

2•单项式 5x 2y 4z 的系数是 ____________ ,次数是 ________ 。

2 32a 2b2006⑷ 320052 243•多项式3abab -有5项,它们分别是4•⑴x 2x 53 4⑵y 3a 9 a 3⑹10401 25.⑴一mn36 3 -mn 56•⑴(2a a m 3 b )25312x y2a a2 842c 23xy三、精心做一做(每题5分,共15分)1・4x y 5xy 7x 5x y 4xy xc 2 c 2 c ‘ ,32・2a 3a 2a 1 4a3. 2x2y 6x3y48xy 2xy四、计算题。

七年级数学下册第一单元测试题含答案

七年级数学下册第一单元测试题含答案

七年级数学下册第一单元测试题含答案一、填空:(每题3分,共21分)1、若2x-3y=5,则6-4x+6y=_______。

2、已知甲、乙两数的和为13,乙数比甲数少5,则甲数是________,乙数是________.3、已知(y-3x+1)2+|2x+5y-12|=0,则x=_____,y=_____。

4、如果方程组与方程y=kx-1有公共解,则k=________.5、(10江西)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:¬¬¬¬¬ .6、已知:,,则 ab = 。

7、如果方程组的解是,则,。

8. 已知与都是方程ax+by=0(b≠0)的解,则c=________.9. 若方程组的解是,某学生看错了c,求出解为,则准确的c 值为________,b=________.二、选择题:(每题4分共28分)1、下列方程组中,属于二元一次方程组的是()A、 B、 C、 D、2、在方程组中,如果是它的一个解,那么a、b的值为( )A.a=1,b=2 B.不能惟一确定C.a=4,b=0 D.a=,b=-13、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A、 B、 C、 D、4、方程组的解的情况是()A、一组解B、二组解C、无解D、无数组解5、二元一次方程组的解满足方程 x-2y=5,那么k的值为( )A. B. C.-5 D.16、方程组12 x+13 y=3ax-y=a 的解是()A、 x=4ay=3aB、 x=-4ay=-5aC、 x=165 ay=115 aD、x=16ay=17a7、若二元一次方程5x-2y=4有正整数解,则x的取值为()A、偶数B、奇数C、偶数或奇数D、 08. 甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,在下列方程组中准确的是 ( )A. B.C. D.三、解方程组(每题5分,共20分)1、 2、四、解答题(每题6分,共14分)1. 在解方程组bx+ay=10x-cy=14时,甲准确地解得x=4y=-2,乙把c写错而得到x=2y=4,若两人的运算过程均无错误,求a、b、c的值。

七年级下学期数学第一单元测试题(优秀范文5篇)

七年级下学期数学第一单元测试题(优秀范文5篇)

七年级下学期数学第一单元测试题(优秀范文5篇)第一篇:七年级下学期数学第一单元测试题数学七年级下学期第一单元测试题的比值是().3.在比例里两个()的积等于两个()的积.4.()的比,叫做这幅图的比例尺.5.单价必定,数量和总价().6.和必定,加数和另一个加数().7.三角形面积必定,它的底与它的高().8.甲、乙两数的比是4∶3.乙数是60,甲数是().9.图上距离是10厘米表示实际距离20千米,这幅图的比例尺是().10.盐水是由盐和水按1∶100的质量比合成的,其中盐的质量占,水的质量占二、判断下面各题中的两种量成什么比例或不成比例.1.实际距离必定,图上距离和比例尺.()2.圆的面积和它的半径()3.一个因数必定,积和另一个因数.()4.一条绳子长度必定,剪去的部分和剩下的部分.()5.长方形的周长必定,它的长和宽.()三、根据下面条件,分别写出一个正比例联系和一个反比例联系.1.长方体体积、底面积、高正比例联系反比例联系2.被除数、除数、商正比例联系反比例联系四、解比例.1.2.3.4.五、应用题(比例解答).1.一辆汽车2小时行驶140千米,照这样速度,从甲地到乙地长490千米,需要行驶多少小时?2.一个修路队,原来计划每天修400米,15天可以完成任务.结果12天完成任务,实际每天修多少米?参考答案一、填空.1.0.752.63.内项外项4.图上距离和实际距离5.正比例6.不成比例7.反比例8.809.1∶20000010.二、判断下面各题中的两种量成什么比例或不成比例1.正比例2.不成比例3.正比例4.不成比例5.不成比例四、根据下面条件,分别写出一个正比例联系和一个反比例联系1.长方体体积、底面积、高正比例联系:反比例联系:底面积×高=长方体体积(必定)2.被除数、除数、商正比例联系:反比例联系:除数×商=被除数(必定)五、解比例1.0.42.3.24.8六、应用题1.解:设需要小时.140=490×2=7答:需要行驶7小时.2.解:设实际每天修米.12=400×15=400×15÷12=500答:实际每天修路500米.第二篇:七年级数学第一单元测试题导语:试题,用于考试的题目,要求按照标准回答。

七年级数学下册第一单元综合测试题(北师大版)

七年级数学下册第一单元综合测试题(北师大版)

七年级数学下册第一单元综合测试题(北师大版)一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.2a+3b=5ab B.a5÷a=a4(a≠0)C.(2a)3=6a3D.a2•a3=a62.下列运算正确的是()A.(﹣x3)2=﹣x6B.x4+x4=x8C.x2•x3=x6D.xy4÷(﹣xy)=﹣y33.如图a,边长为a的大正方形中有一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b,这一过程可以验证()A.a2+b2﹣2ab=(a﹣b)2B.a2+b2+2ab=(a+b)2C.2a2+b2﹣3ab=(2a﹣b)(a﹣b)D.a2﹣b2=(a+b)(a﹣b)4.计算(y﹣x)(y+x)的结果是()A.x2﹣y2B.y2﹣x2C.x2+y2D.﹣x2﹣y25.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6B.6C.18D.306.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.47.下列各式:①﹣(﹣a3)4=a12②(﹣a n)2=(﹣a2)n③(﹣a﹣b)3=(a+b)3④(a﹣b)4=(﹣a+b)4其中正确的个数是()A.1B.2C.3D.48.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m 9.若(x﹣2)2=x2+mx+n,则m,n的值分别是()A.4,4B.﹣4,4C.﹣4,﹣4D.4,﹣4 10.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.D.二.填空题(共4小题,满分16分,每小题4分)11.若m﹣n=6,且m+n=4,则m2﹣n2=.12.计算:(﹣)﹣3=.13.若多项式9x2﹣Mxy+y2是完全平方式,则常数M为14.小红:如图是由边长分别为a,b的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.请根据小明和小红的对话,用含有a,b的式子表示如图所示的阴影部分的面积.三.解答题(共14小题,满分54分)15.计算:(每题4分,共8分)(1)1007×993;(2);16.计算:(每题4分,共16分)(1)(﹣3a4)2﹣2a3a5;(2)2(3xy+x)﹣3x(2y﹣).(3)(a+b)2﹣(a+b)(a﹣b);(4)(6x3y﹣2x2y2﹣2xy3)÷(﹣2xy)﹣(3x+2y)(y﹣x).17.(6分)已知m+n=3,mn=2.(1)当a=2时,求a m•a n﹣(a m)n的值;(2)求(m﹣n)2+(m﹣4)(n﹣4)的值.18.(8分)若m+n=7,mn=12,求①m2+n2②m﹣n的值.19.(6分)若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(4﹣x)2+(x﹣9)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面的问题:若x满足(x﹣2018)2+(x﹣2021)2=31,求(x﹣2018)(x﹣2021)的值.20.(10分)用等号或不等号填空,探究规律并解决问题:(1)比较a2+b2与2ab的大小:①当a=3,b=3时,a2+b22ab;②当a=2,b=时,a2+b22ab;③当a=﹣2,b=3时,a2+b22ab.(2)通过上面的填空,猜想a2+b2与2ab的大小关系,并证明你的猜想;(3)如图,点C在线段AB上,以AC,BC为边,在线段AB的两侧分别作正方形ACDE,BCFG,连接AF,设两个正方形的面积分别为S1,S2,若△ACF的面积为1,求S1+S2的最小值.。

北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练1、4(a+b)+2(a+b)-5(a+b)化简得:(4+2-5)(a+b)=a+b答案为:a+b2、(3mn+1)(3mn-1)-8mn化简得:9m^2n^2-1-8mn=9m^2n^2-8mn-1答案为:9m^2n^2-8mn-13、-2-3×(1-(-1)÷2^2)×22÷7化简得:-2-3×(1-(-1)÷4)×2= -2-3×(1+0.25)×2=-16.5答案为:-16.54、[(xy-2)(xy+2)-2xy+4]÷(xy)化简得:(x^2y-4+2xy+4)÷xy=(x^2y+2xy)÷xy=x+2答案为:x+25、(2a-1)^2+(2a-1)(a+4),其中a=-2化简得:(2(-2)-1)^2+(2(-2)-1)(-2+4)=(-5)^2+(-10)(2)=45答案为:456、(1÷2ab)×(-2ab^2)^2÷4÷(1÷2x)^3化简得:-2a^2b^4×8x^3=-16a^2b^4x^3答案为:-16a^2b^4x^37、2(x^2+5xy)-6(2xy-x^2)化简得:2x^2+10xy-12xy+6x^2=8x^2-2xy答案为:8x^2-2xy8、(x+2)(x-3)-(x+1)(x-2)化简得:x^2-x-6-x^2+x+2x-2=x-4答案为:x-410、(x+2y)^2-(x+y)(x-y),其中x=-2,y=3化简得:(2(-2)+6)^2-(2(-2)+3)(2(-2)-3)=16-(-13)=29 答案为:2911、(-x-y)(x-y)+(x+y)^2化简得:-x^2+xy+xy-y^2+x^2+2xy+y^2=4xy答案为:4xy13、x^2-(x+2)(x-2)化简得:x^2-(x^2-4)=4答案为:414、(-3x^3)^2-(-2x^2)^3化简得:9x^6-8x^6=x^6答案为:x^615、(2a+b)^4÷(2a+b)^2化简得:(2a+b)^2=4a^2+4ab+b^2答案为:4a^2+4ab+b^216、123-124×122利用乘法公式计算124×122=化简得:123-=-答案为:-17、[(x+1)(x+2)-2]÷(-x)化简得:-(x^2+3x)=-(x(x+3))答案为:-(x(x+3))18、(2xy)·(-7xy)÷(14xy)化简得:-1/2答案为:-1/219、[(2x+y)^2+(2x+y)(2x-y)-4xy]÷(-2x),其中x=2,y=1化简得:[(2(2)+1)^2+(2(2)+1)(2(2)-1)-4(2)]÷(-2(2))=-15 答案为:-1520、-2a(3a-4b^2)÷5化简得:6a^2-8b^2÷5=-8/5(5-3a)(5+3a)答案为:-8/5(5-3a)(5+3a)21、(a+2b)(a-2b)化简得:a^2-4b^2答案为:a^2-4b^222、(x-1)(2x+3)化简得:2x^2+x-3答案为:2x^2+x-323、(a-3b)^2-9b^2-3.14化简得:a^2-6ab+9b^2-9b^2-3.14=a^2-6ab-3.14答案为:a^2-6ab-3.1424、3x^2y(-4xy^2)+5xy(-6xy)^2,其中x=2,y=3化简得:-36x^4y^3+5(-216x^3y^3)=-36x^4y^3-1080x^3y^3 答案为:-36x^4y^3-1080x^3y^325、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:326、(9abc)÷(2ab)·(-abc)化简得:-18c答案为:-18c27、(15xy-12xy-3x)÷(-3x)化简得:-1答案为:-128、(a+b)-4(2a-3b)+(3a-2b)化简得:a+b-8a+12b+3a-2b=-4a+11b答案为:-4a+11b30、(x+2)^2-(x-1)(x+1)化简得:x^2+4x+4-(x^2-1)=5x+5答案为:5x+531、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:332、(a-b)(a+ab+b)+b(a+b)化简得:a^2+ab^2+2ab+b^2答案为:a^2+ab^2+2ab+b^21.题目中的符号应该使用正确的数学符号,比如乘号用*代替,除号用/代替。

数学七年级下册第一单元难题及答案

数学七年级下册第一单元难题及答案

相交线与平行线压轴题型1.如图,AB CD ∥,点F 在直线AB 上,EF FG ⊥.若150EFB ∠=︒,则FGD ∠的大小为( ) A .30B .50︒C .60︒D .75︒(第1题图) (第2题图)2.如图,已知直线AB CD ∥,则∠α、∠β、∠γ之间的关系是( ) A .2180αβγ∠+∠-∠=︒ B .βαγ∠-∠=∠ C .360αβγ︒∠+∠+∠=D .180βγα︒∠+∠-∠=3.①如图1,AB ∥CD ,则∠A +∠E +∠C =180°;②如图2,AB ∥CD ,则∠E =∠A +∠C ;③如图3,AB ∥CD ,则∠A +∠E -∠1=180°;④如图4,AB ∥CD ,则∠A =∠C +∠P .以上结论正确的个数是( )A .①②③④B .①②③C .②③④D .①②④4.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( ) A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对5.将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( ) A .16B .24C .30D .40(第5题图) (第6题图) (第7题图)6.如图,C 是直线AB 上一点,CD ∠AB ,EC ∠CF ,则图中互余的角的对数与互补的角的对数分别是( ) A .3,4B .4,7C .4,4D .4,57.如图,点B 在点A 北偏东40°方向,15cm AB =,点C 在点B 北偏西50°方向,10m BC =,则点C 到直线AB 的距离为______m .8.将直角三角板ABC 按如图所示的位置放置,45ABC ∠=︒,90ACB ∠=︒,直线CE //AB ,BE 平分ABC ∠,在直线CE 上确定一点D ,满足30BDC ∠=︒,则EBD ∠=________.9.如图,已知AD//BC,BD平分∠ABC,∠A=112°,且BD∠CD,则∠ADC=_____.(第9题图)(第10题图)(第11题图)10.如图,已知AB∠CD,点E,F分别在直线AB,CD上点P在AB,CD之间且在EF 的左侧.若将射线EA沿EP折叠,射线FC沿FP折叠,折叠后的两条射线互相垂直,则∠EPF的度数为_____.11.如图,∠ABC中,∠C=90︒,AC=5cm,CB=12cm,AB=13cm,将∠ABC沿直线CB向右平移3cm得到∠DEF,DF交AB于点G,则点C到直线DE的距离为______cm.12.探究并尝试归纳:(1)如图1,已知直线a与直线b平行,夹在平行线间的一条折线形成一个角∠A,试求∠1+∠2+∠A的度数,请加以说明.(2)如图2,已知直线a与直线b平行,夹在平行线间的一条折线增加一个折,形成两个角∠A和∠B,请直接写出∠1+∠2+∠A+∠B=度.(3)如图3,已知直线a与直线b平行,夹在平行线间的一条折线每增加一个折,就增加一个角.当形成n个折时,请归纳并写出所有角与∠1、∠2的总和:【结果用含有n的代数式表示,n是正整数,不用证明】13.如图1,AM∠NC,点B位于AM,CN之间,∠BAM为钝角,AB∠BC,垂足为点B.(1)若∠C=40°,则∠BAM=______;(2)如图2,过点B作BD∠AM,交MA的延长线于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,BE平分∠DBC交AM于点E,若∠C=∠DEB,求∠DEB 的度数.14.已知:如图1,直线AB、CD被直线MN所截,且AB∠CD.点E在直线AB、CD 之间的线段MN上,P、Q分别在直线AB、CD上,连接PE、EQ.(1)小明探究发现:∠PEQ=∠APE+∠CQE,请你帮小明说明理由;(2)如图2,已知∠FPB=12∠EPB,∠FQD=12∠EQD,若∠PEQ=80°,请你利用小明发现的结论求∠PFQ的度数;(3)如图3,若∠FPB=31∠EPB,∠FQD=31∠EQD,请你直接写出∠PEQ和∠PFQ之间的数量关系.答案:1、解:∠∠EFA +∠EFB =180°,∠EFB =150°, ∠∠EFA =30°, ∠EF ∠FG , ∠∠EFG =90°,∠∠AFG =∠EFG -∠EFA =60°, ∠AB ∠CD , ∠∠FGD =∠AFG =60°, 故选:C .2、解:如图,过∠β顶点作AB 的平行线,把∠β分成∠1和∠2,则∠1=∠α,∠2+∠γ=180°,∠1+∠2=∠β, ∠∠β+∠γ−∠α=180°, 故选D .3、解:①过点E 作直线EF AB ∥,∠AB CD ∥,∠AB CD EF ∥∥,∠∠A +∠1=180°,∠2+∠C =180°, ∠∠A +∠C +∠AEC =360°,故①错误; ②过点E 作直线EF AB ∥,∠AB CD ∥,∠AB CD EF ∥∥,∠∠A =∠1,∠2=∠C ,∠∠AEC =∠A +∠C ,即∠AEC =∠A +∠C ,故②正确; ③过点E 作直线EF AB ∥,∠AB CD ∥,∠AB CD EF ∥∥,∠∠A +∠3=180°,∠1=∠2, ∠∠A +∠AEC -∠2=180°,即∠A +∠AEC -∠1=180°,故③正确; ④如图,过点P 作直线PF AB ∥,∠AB CD ∥,∠AB CD PF ∥∥,∠∠1=∠FPA,∠C=∠FPC,∠∠FPA=∠FPC+∠CPA,∠∠1=∠C+∠CPA,∠AB∠CD,∠∠A=∠1,即∠A=∠C+∠C PA,故④正确.综上所述,正确的小题有②③④.故选:C.4、解:∠两个角的两边分别平行,∠这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∠这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∠这两个角的度数是50°和130°.∠这两个角的度数是50°、130°或10°、10°.故选:C.5、解:设1号正方形的边长为x,2号正方形的边长为y,则3号正方形的边长为x+y,4号正方形的边长为2x+y,5号长方形的长为3x+y,宽为y-x,由图1中长方形的周长为32,可得,y+2(x+y)+(2x+y)=16,解得:x+y=4,如图,∠图2中长方形的周长为48,∠AB+2(x+y)+2x+y+y-x=24,∠AB=24-3x-4y,根据平移得:没有覆盖的阴影部分的周长为四边形ABCD的周长,∠2(AB+AD)=2(24-3x-4y+x+y+2x+y+y-x)=2(24-x-y)=48-2(x+y)=48-8=40,故选:D.6、CD AB⊥,90ACD BCD∴∠=∠=︒,90ACE DCE∴∠+∠=︒,90BCF DCF∠+∠=︒,EC CF⊥,90ECF∴∠=︒,90DCE DCF∴∠+∠=︒,ACE DCF∴∠=∠,BCF DCE∠=∠,90BCF ACE∴∠+∠=︒,则图中互余的角的对数为4对;90ACD BCD ECF∠=∠=∠=︒,180ACD BCD ACD ECF BCD ECF∴∠+∠=∠+∠=∠+∠=︒,点C是直线AB上一点,180ACB∴∠=︒,180ACE BCE∴∠+∠=︒,180ACF BCF∠+∠=︒,又ACE DCF∠=∠,BCF DCE∠=∠,180DCF BCE∴∠+∠=︒,180ACF DCE∠+∠=︒,则图中互补的角的对数为7对,故选:B.7、10.8、15°或127.5°. 9、124°. 10、45°或135°.11、7513. 12、(1)360°;(2)540;(3)180(1)n⋅+︒.13、(1)130°;(2)证明:如图,过点B作BF∥DM,则∠ADB+∠DBF=180°.∵BD⊥AM,∴∠ADB=90°.∴∠DBF=90°,∠ABD+∠ABF=90°.又∵AB⊥BC,∴∠CBF+∠ABF=90°.∴∠ABD=∠CBF.∵AM∥CN,∴BF∥CN,∴∠C=∠CBF.∴∠ABD=∠C.(3)设∠DEB=x,由(2)可得∠ABD=∠C,∵∠C=∠DEB,∴∠ABD=∠C=∠DEB=x.过点B作BF∥DM,如图,∴∠DEB=∠EBF,∠C=∠FBC.∴∠CBE=∠EBF+∠FBC=∠DEB+∠C=2x.∵∠DBC=∠ABC+∠ABD=90°+x.∵BE平分∠DBC,∴∠DBC=2∠CBE=4x,即4x=90°+x,解得x=30°.∴∠DEB的度数为30°.14、(1)如图1,作EH∠AB.∠AB∠CD,∠EH∠AB∠CD.∠∠1=∠APE,∠2=∠CQE,∠∠1+∠2=∠APE+∠CQE,∠∠PEQ=∠APE+∠CQE;(2)如图2,由(1)的结论得∠PEQ=∠APE+∠CQE=80°,∠∠EPB+∠EQD=360°﹣(∠APE+∠CQE)=280°.∠∠FPB=12∠EPB,∠FQD=12∠EQD,∠∠FPB+∠FQD=12(∠EPB+∠EQD)=140°,由(1 )的结论得∠PFQ=∠FPB+∠FQD=140°;(3)结论:∠PEQ+3∠PFQ=360°.证明:如图3中,设∠FPB=y,∠FQD=x.∠∠FPB=13∠EPB,∠FQD=13∠EQD,∠∠EPB=3x,∠EQD=3y,∠∠1+∠2=360°﹣(∠EPB+∠EQD)=360°﹣3(x+y),由(1 )的结论得∠PFQ=∠FPB+∠FQD=x+y,∠PEQ=∠1+∠2,∠∠PEQ=360°﹣3PFQ,即∠PEQ+3∠PFQ=360°.。

七年级下册数学第一章测试题

七年级下册数学第一章测试题

七年级下册数学第⼀章测试题北师⼤版七年级下册数学第⼀章测试题⼀.选择题(共10⼩题)22的结果是()y)1.计算(﹣x42422222 xy yD C.xA.x.﹣yy B.﹣x2.下列计算正确的是()8422524232﹣xx)=x÷==xx B.(﹣3x D)=6x.C.A.(﹣x(﹣)2+x﹣2)的结果,与下列哪⼀个式⼦相同?((x﹣1)﹣(x)3.计算(2x+1)2222﹣x3 3 D.3 Cx.+A.xx﹣2x+1 B.x ﹣﹣2x﹣22﹣6(x+1)(x﹣1)的值为(4x﹣4=0,则3(x﹣2))4.若x+A.﹣6 B.6 C.18 D.30222的值是()=34,则(x﹣2016.已知(x﹣2015)+(x﹣2017))5A.4 B.8 C.12 D.16 22﹣6b的值为(﹣b).已知6a﹣b=3,则代数式aA.3 B.6 C.9 D.122+的值是(=62,则x满⾜7.已知正数xx)+A.31 B.16 C.8 D.48.如图(1),是⼀个长为2a宽为2b(a>b)的矩形,⽤剪⼑沿矩形的两条对⾓轴剪开,把它分成四个全等的⼩矩形,然后按图(2)拼成⼀个新的正⽅形,则中间空⽩部分的⾯积是()2222﹣D.a(C.a﹣b)bA.ab B.(a+b)22+A,则A=((5a﹣3b)).设(95a+3b)=A.30ab B.60ab C.15ab D.12ab222的值为(y),xy=2,则x 10.⼰知(x﹣y)+=49A.53 B.45 C.47 D.51⼆.选择题(共10⼩题)42)=______8ab.5a )?(﹣11.计算:(﹣mm16,则m=______.?8 =212.若2?4xy=______.8,则2 ?13.若x+3y=02+bx+c,则代数式9a﹣3b+c的值为______.x14.已知(x﹣1)(+3)=ax22=4,则ab的值为______a﹣b).b15.已知(a+)=7,(22﹣4m+6的值为______.16.若(m﹣2)=3,则m17.观察下列各式及其展开式:222 b+2ab(a+b)+=a33223﹣b+3ab+(ab)=ab﹣3a4432234 b+4ab﹣b6a+b4a﹣=a)b+a(.554322345…﹣+10a+b5ab ﹣(a+b)10a=ab﹣5abb10的展开式第三项的系数是______.﹣b)请你猜想(a2﹣(k﹣1)a+4a9是⼀个关于a的完全平⽅式,则k=______.18.若xy3x2y﹣=______.,则a.若a=2,a =31920.我国南宋数学家杨辉⽤三⾓形解释⼆项和的乘⽅规律,称之为“杨辉三⾓”.这个三⾓形n(n=1,2,3,4…)的展开式的系数规律(按a的次数由⼤到⼩的顺序)给出了(a+b):20162014项的系数是______xx.﹣)展开式中含请依据上述规律,写出(三.选择题(共8⼩题)2x=.,其中x+1))21.先化简,再求值(x﹣1(x﹣2)﹣(202﹣(m﹣2)()m+2).132×(﹣)+2016 .(2)化简:(m+)计算:22.(1(﹣2)+ 22的值.3)﹣x)﹣(x﹣x2x﹣3x=2,求3(2+)(223.已知﹣,b=2.a=8a﹣2ab),其中2a+24.先化简,再求值:(2ab)(﹣b)﹣a(2222的值.aab)﹣()+.已知(25ab=25,ab=9,求与+b42+的值.和=3,求xx +26.已知x﹣27.如图(1),将⼀个长为4a,宽为2b的长⽅形,沿图中虚线均匀分成4个⼩长⽅形,然后按图(2)形状拼成⼀个正⽅形.(1)图(2)中的空⽩部分的边长是多少?(⽤含a,b的式⼦表⽰)22的数量关系;b),ab和(2a2(2)观察图(),⽤等式表⽰出(2a﹣b)+(3)若2a+b=7,ab=3,求图(2)中的空⽩正⽅形的⾯积.28.已知a+b=5,ab=6.求下列各式的值:22+)ab1(2.)a﹣b(2)(2=x(x+2)7)时.A29.已知关于x的多项式A,当﹣(x﹣(1)求多项式A.2+3x+l=0,求多项式A的值.(2)若2x22222232y的值.x]x()﹣xx,求x)﹣.已知(30xy=9,+y=5[(y﹣xyyx﹣y)÷北师⼤版七年级下册数学第⼀章测试题参考答案与试题解析⼀.选择题(共10⼩题)22的结果是())2016?盐城)计算(﹣x y1.(42422222.﹣xxyyy B.﹣x yD C.Ax.【分析】直接利⽤积的乘⽅运算法则计算得出答案.2242.=xx y)y(﹣【解答】解:故选:A.【点评】此题主要考查了积的乘⽅运算,正确掌握运算法则是解题关键.2.(2016?来宾)下列计算正确的是()8422252243﹣x D.C.(﹣x.A(﹣x))x=x=x B.(﹣3x=)=6x÷【分析】根据积的乘⽅法则:把每⼀个因式分别乘⽅,再把所得的幂相乘;负整数指数幂:p﹣(a≠0,pa为正整数);同底数幂相除,底数不变指数相减,对各选项分析判断后利=⽤排除法求解.326,故A错误;)=x 【解答】解:A、(﹣x224,故B)错误;=9xB、(﹣3x2﹣,故C正确;= C、(﹣x)844,故D错误.=xD、x ÷x故选:C.【点评】本题考查积的乘⽅、负整数指数幂、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2+x﹣2)的结果,与下列哪⼀个式⼦相同?()+1)(x﹣1)﹣(x (3.(2016?台湾)计算2x2222﹣3.x+x﹣x3 ﹣2x﹣3 C.xDA.x+﹣2x1 B.【分析】原式利⽤多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.2+x﹣x2)12x+)(x﹣1)﹣(【解答】解:(22+x﹣2)2x+x﹣1)﹣((=2xx﹣22﹣xx+2 ﹣x﹣1﹣=2x2﹣2x+1,=x故选A【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22﹣6(x+1)(x﹣1)(x临夏州)若﹣+4x4=0,则3x﹣2)的值为()?(4.2016A.﹣6 B.6 C.18 D.30【分析】原式利⽤完全平⽅公式,平⽅差公式化简,去括号整理后,将已知等式代⼊计算即可求出值.22,4x=4+x,即4=0﹣4x+x解:∵【解答】.222222+4x)x+18=﹣12x+18==3x)﹣﹣12x+12﹣6x3+6=﹣(∴原式=3x3x﹣4x+4)﹣6(x(﹣1﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.222的值是()(则x﹣20162015))+(x﹣2017)=34,(5.(2016?仙居县⼀模)已知x﹣A.4 B.8 C.12 D.16 2222=34,﹣1)+(x)﹣=34变形为(x﹣2016+1)2016【分析】先把(x﹣2015)(+x﹣20172的⽅程,解)x﹣2016把(x ﹣2016)看作⼀个整体,根据完全平⽅公式展开,得到关于(⽅程即可求解.22=34,)+(x﹣【解答】解:∵(x﹣2015)201722=34,)﹣2016﹣1x﹣2016+1)+(x∴(22﹣2(x﹣2016)﹣﹣20161)+1=34,)(x﹣2016 +2(x﹣2016)+1+(x2+2=34,﹣2016)2(x2=32,x﹣2016)2(2=16.﹣2016)(x故选:D.22=34变形为(x2017))﹣+(x﹣【点评】考查了完全平⽅公式,本题关键是把(x﹣201522=34,注意整体思想的应⽤.1)+(x﹣20162016+1)﹣22﹣6b的值为(﹣b)a6.(2016?重庆校级⼆模)已知a﹣b=3,则代数式A.3 B.6 C.9 D.12【分析】由a﹣b=3,得到a=b+3,代⼊原式计算即可得到结果.【解答】解:由a﹣b=3,得到a=b+3,2222﹣6b=9b,6b=b﹣+6b+(则原式=b+3)9﹣b﹣故选C【点评】此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键.2+的值是()=62(.2016?长沙模拟)已知正数x满⾜x,则+x74.C16.8D31A.B.=是正数,根据x,即可计算.+【分析】因为x【解答】解:∵x是正数,==8=.∴x += 故选C.=)进⾏计0>x本题考查完全平⽅公式,解题的关键是应⽤公式【点评】x+(算,属于中考常考题型.)的矩形,⽤剪⼑沿矩形a>b),是⼀个长为2a宽为2b(8.(2016?泰⼭区⼀模)如图(1)拼成⼀个新的正⽅形,则的两条对⾓轴剪开,把它分成四个全等的⼩矩形,然后按图(2 )中间空⽩部分的⾯积是(2222﹣D.)a C.(a﹣b)bA.ab B.(a+b正⽅形的⾯积﹣【分析】先求出正⽅形的边长,继⽽得出⾯积,然后根据空⽩部分的⾯积= 矩形的⾯积即可得出答案.),【解答】解:由题意可得,正⽅形的边长为(a+b2,故正⽅形的⾯积为(a+b)4ab,⼜∵原矩形的⾯积为22.a﹣b)=(a+b)4ab=﹣(∴中间空的部分的⾯积C.故选难度此题考查了完全平⽅公式的⼏何背景,求出正⽅形的边长是解答本题的关键,【点评】⼀般.22)A=(5a﹣3b) +A,则9.(2016春?岱岳区期末)设(5a+3b)=(12ab.C.15ab DA.30ab B.60ab.【分析】已知等式两边利⽤完全平⽅公式展开,移项合并即可确定出A22A3b)3b)+=(5a﹣【解答】解:∵(5a+22)=60ab.+3b﹣5a+3b(=5a+3b+5a﹣3b)(5a∴A=(5a+3b)﹣(5a﹣3b)B 故选【点评】此题考查了完全平⽅公式,熟练掌握公式是解本题的关键.222 +y)﹣y)的值为(=49,xy=2,则x春10.(2016?宝应县期末)⼰知(x51D.45 C.47 A.53 B.原式利⽤完全平⽅公式变形,将已知等式代⼊计算即可求出值.【分析】2,=49,xy=12【解答】解:∵(x﹣y)222+2xy=494=53x﹣y).∴x++y(= 故选:A.【点评】此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键.⼆.选择题(共10⼩题)2254 b.)?(﹣8ab=)40a5a201611.(?临夏州)计算:(﹣【分析】直接利⽤单项式乘以单项式运算法则求出答案.2542 b?(﹣8ab=40a)5a【解答】解:(﹣.)25.故答案为:40ab 【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.16mm.3m=,则=28?4?2⽩云区校级⼆模)若?2016(.12.162m3m,再利⽤同底数幂的乘法运算法则=2?2?【分析】直接利⽤幂的乘⽅运算法则得出22 即可得出关于m的等式,求出m 的值即可.16mm 8,解:∵【解答】2?4=2?163m2m =2,∴2?2?2 ,1+5m=16∴.解得:m=3 .故答案为:3正确应⽤运算法则是解题此题主要考查了同底数幂的乘法运算以及幂的乘⽅运算,【点评】关键.yx =.?8201613.(?泰州⼀模)若x+3y=0,则213yy3,接下来再依据同2=2的形式,然后再依据幂的乘⽅公式可知8先将【分析】8变形为代⼊计算即可.+3y=0底数幂的乘法计算,最后将x0x+3yx3yxy=1.=2?8 =2=2?2【解答】解:2故答案为1.【点评】本题主要考查的是同底数幂的乘法、幂的乘⽅、零指数幂的性质,熟练掌握相关知识是解题的关键.2+bx+c,则代数式9a﹣3b+c的值为0)2016?河北模拟)已知(x﹣1)(x+3=ax.14.(【分析】已知等式左边利⽤多项式乘以多项式法则计算,利⽤多项式相等的条件求出a,b,c的值,即可求出原式的值.22+bx+c,x+2x﹣3=ax 【解答】解:已知等式整理得:∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.22=4,则ab的值为.b)=7,(a﹣b)(15.2016?富顺县校级模拟)已知(a+ ab【分析】分别展开两个式⼦,然后相减,即可求出的值.222222 =4=a,﹣2ab)+=ab+2ab+)=7,(a﹣bbb解:【解答】(a+22,a﹣b))则(a+b=4ab=3﹣(.ab=.故答案为:本题主要考查完全平⽅公式,熟记公式的⼏个变形公式对解题⼤有帮助.【点评】22.6﹣4m+的值为5m(16.2016?曲靖模拟)若(﹣2)=3,则m 【分析】原式配⽅变形后,将已知等式代⼊计算即可求出值.22)=3,m【解答】解:∵(﹣22,2=52=32m2=44m∴原式=m﹣++(﹣)++5故答案为:此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键.【点评】.东明县⼆模)观察下列各式及其展开式:.(201617222 2ab+b)+=ab+(a32332﹣﹣3abb(a+b)+=a3ab4232443﹣4ab(a+b)b=ab﹣4a6ab++545432235﹣5a﹣b+10a5abbb﹣(a+b)=a10a…b+1045.的展开式第三项的系数是请你猜想(a﹣b)根据各式与展开式系数规律,确定出所求展开式第三项系数即可.【分析】,,1,15,620【解答】解:根据题意得:第五个式⼦系数为1,6,15,,,1,21,71,7,21,35,35第六个式⼦系数为1,28,8,28,,56,70,56,第七个式⼦系数。

北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)

北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)

《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。

北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题北师大版七年级下册数学第一章测试题一.选择题(共10小题)1.计算(-x^2y)^2的结果是()A。

x^4y^2B。

-x^4y^2C。

x^2y^2D。

-x^2y^22.下列计算正确的是()A。

(-x^3)^2 = x^6B。

(-3x^2)^2 = 9x^4C。

(-x)^2 = x^2D。

x^8 ÷ x^4 = x^43.计算(2x+1)(x-1)-(x^2+x-2)的结果,与下列哪一个式子相同?()A。

x^2-2x+1B。

x^2-2x-3C。

x^2+x-3D。

x^2-34.若x^2+4x-4=0,则3(x-2)^2-6(x+1)(x-1)的值为()A。

-6B。

6C。

18D。

305.已知(x-2015)^2+(x-2017)^2=34,则(x-2016)^2的值是()A。

4B。

8C。

12D。

166.已知a-b=3,则代数式a^2-b^2-6b的值为()A。

3B。

6C。

9D。

127.已知正数x满足x^2+6x=62,则x+的值是()A。

8B。

4C。

-1+√17D。

-1-√178.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角线剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A。

abB。

(a+b)^2C。

(a-b)^2D。

a^2-b^29.设(5a+3b)^2=(5a-3b)^2+A,则A=A。

30abB。

60abC。

15abD。

12ab10.已知(x-y)^2=49,xy=2,则x^2+y^2的值为()A。

53B。

45C。

47D。

51二.选择题(共10小题)11.计算:(-5a^4)•(-8ab^2)=40a^5b^2.12.若2•4m•8m=216,则m=3/2.13.若x+3y=0,则2x•8y=-48xy.14.已知(x-1)(x+3)=ax^2+bx+c,则代数式9a-3b+c的值为12.15.已知(a+b)^2=7,(a-b)^2=4,则ab的值为-3/2.16.若(m-2)^2=3,则m^2-4m+6的值为7.17.观察下列各式及其展开式:a+b)^2=a^2+2ab+b^2a+b)^3=a^3-3a^2b+3ab^2-b^3a+b)^4=a^4-4a^3b+6a^2b^2-4ab^3+b^4a+b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5…请你猜想(a-b)^10的展开式第三项的系数是120.分析】直接计算即可得出结果,注意符号的变化和运算顺序.解答】解:(﹣2)2+2×(﹣3)+2016=4+(﹣6)+2016=2014.故选:D.点评】此题考查了加减乘方运算的综合运用能力,需要注意计算顺序和符号变化.3.(2016•泰安)已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值是()A.﹣3B.﹣2C.0D.1分析】根据已知条件,化简3(2+x)(2﹣x)﹣(x﹣3)2,然后代入2x2﹣3x=2计算即可.解答】解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=12﹣3x2﹣x2﹣6x﹣x2+6x﹣9=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣5x2﹣6=﹣5×2﹣6=﹣16.故选:B.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.4.(2016•南京)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.分析】根据已知条件,可以列出方程组,然后解方程求出ab和a2+b2的值.解答】解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.5.(2016•南昌)已知x﹣=3,求x2+和x4+的值.分析】根据已知条件,可以求出x的值,然后代入计算x2+和x4+的值.解答】解:由x﹣=3,得x=1/3.因此,x2+=(1/3)2=1/9,x4+=(1/3)4=1/81.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意代入计算的过程和细节.6.(2016•南京)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,求多项式A.分析】根据已知条件,可以列出关于A的方程,然后解方程求出多项式A.解答】解:将A﹣(x﹣2)2=x(x+7)两边同时加上(x﹣2)2,得A=x(x+7)+(x﹣2)2.因此,多项式A=x2+7x+x2﹣4x+4=x2+3x+4.故选:A.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.7.(2016•南昌)已知a+b=5,ab=6,求下列各式的值:1)a2+b22)(a﹣b)2.分析】根据已知条件,可以列出方程组,然后解方程求出a和b的值,代入计算各式的值.解答】解:由a+b=5,ab=6,得a=2,b=3或a=3,b=2.1)当a=2,b=3时,a2+b2=22+32=13;当a=3,b=2时,a2+b2=32+22=13.2)当a=2,b=3时,(a﹣b)2=(2﹣3)2=1;当a=3,b=2时,(a﹣b)2=(3﹣2)2=1.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程以及代入计算的细节.8.(2016•南昌)已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.分析】根据已知条件,可以化简出题目中的式子,然后代入计算即可.解答】解:将[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y化简得y2﹣x2÷xy.由(x﹣y)2=9,得x﹣y=3或x﹣y=﹣3.当x﹣y=3时,解得x=2,y=﹣1,因此y2﹣x2÷xy=1/2;当x﹣y=﹣3时,解得x=﹣1,y=2,因此y2﹣x2÷xy=﹣1/2.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.9.(2016•南昌)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.分析】根据完全平方式的定义,可以列出方程,然后解方程求出k的值.解答】解:由4a2﹣(k﹣1)a+9是一个关于a的完全平方式,得k2﹣4×4×9(﹣1)=0.因此,k2﹣144=0,解得k=﹣12或k=12.故选:D.点评】此题考查了完全平方式的定义和解方程的能力,需要注意列方程和解方程的过程.10.(2016•南昌)若ax=2,ay=3,则a3x2y=______.分析】根据已知条件,可以将a3x2y化简为ax×ay×ax×ay×ax,然后代入计算即可.解答】解:a3x2y=ax×ay×ax×ay×ax=2×3×2×3×2=72.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.二.填空题(共10小题)18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.解:k=12或k=﹣12.19.若ax=2,ay=3,则a3x2y=______.解:a3x2y=72.20.我国南宋数学家XXX用三角形解释二项和的乘方规律,称之为“XXX三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是______.解:(x﹣)2016展开式中含x2014项的系数是2015×(﹣1)×(﹣2)×…×(﹣2013)=2015×2013!/2!=﹣xxxxxxxx00.21.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.解:(x﹣1)(x﹣2)﹣(x+1)2=(x2﹣3x+2)﹣(x2﹣2x+1)=﹣x+1,其中x=2.22.(1)计算:(﹣2)2+2×(﹣3)+2016.(2)化简:(m+1)2﹣(m﹣2)(m+2).解:(1)(﹣2)2+2×(﹣3)+2016=2014.2)(m+1)2﹣(m﹣2)(m+2)=m2+2m+1﹣(m2﹣4)=6m+5.23.已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣16.24.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.解:(2a+b)(2a﹣b)﹣a(8a﹣2ab)=4a2﹣b2﹣8a2+2ab2=﹣4a2+2ab2﹣b2=﹣20,其中a=﹣1/2,b=2.25.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.26.已知x﹣=3,求x2+和x4+的值.解:由x﹣=3,得x=1/3.即(x﹣2016+1)2+(x﹣2016﹣1)2=34。

七年级下册数学第一单元练习题(北师大版)精选全文

七年级下册数学第一单元练习题(北师大版)精选全文

精选全文完整版(可编辑修改)七年级下册数学第一单元练习题(北师大版)一.选择题(共8小题,每小题3分)1.下列运算中正确的是()A.a2+a3=a5B.a2•a4=a8C.(a2)3=a6D.(3a)2=9 2.下列各数(﹣2)0,﹣(﹣2),(﹣2)2,﹣(﹣2)2中,负数的个数为()A.1个B.2个C.3个D.4个3.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣64.若a•2•23=28,则a等于()A.4B.8C.16D.325.若(7×106)(5×105)(2×10)=a×10n,则a,n的值分别为()A.a=7,n=11B.a=5,n=12C.a=7,n=13D.a=2,n=136.已知3m=4,3n=5,33m﹣2n的值为()A.39B.2C.D.7.若a=355,b=444,c=533,则a,b,c的大小关系是()A.b>c>a B.b>a>c C.c>a>b D.a<b<c8.已知2a=3,2b=6,2c=12,则a,b,c的关系为①b=a+1,②c1/ 32 / 3=a +2,③a +c =2b ,其中正确的个数有( )A .0个B .1个C .2个D .3个二.填空题(共5小题,每小题4分)9.计算:()﹣2= .10.已知a m =2,b m =6,则(ab )m = .11.已知:2x +3y =3,计算:4x •8y 的值= .12.若a =(﹣)﹣2,b =(﹣1)﹣1,c =(﹣)0,则a 、b 、c 三个数中最大的数是 .13.已知m =,n =,那么2016m ﹣n = .三.解答题(共4小题)14.计算(30分)(1)(−10)2+(−10)0+10−2×(−102)(2)13×(32−3−2)(3)(m −n )3∙(n −m )∙(n −m )2(4)2x 5∙x 2−x 9÷x 2+(2x 2)3∙x(5)x 12÷[(−x 3)2∙(−x 2)3] (6)(318)12×(825)11×(−2)315.(8分)(1)若4m =3,16n =11,求43m -2n 的值.(2)已知x a+b =3,x a =6,求x b 的值16.(8分)(1)已知a m=2,a n=3.求a m+n的值;(2)已知n为正整数,且x2n=3.求(x3n)2﹣(x2)2n的值.17.(10分)先阅读下列材料,再解答后面的问题.一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4),类似的有log39=2,log327=3等.(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)根据幂的运算法则:a m•a n=a m+n以及对数的含义猜想一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).3/ 3。

北师大版七下数学第一章各节练习题含答案

北师大版七下数学第一章各节练习题含答案

北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。

13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。

三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。

北师大数学七年级下册第一章知识点及习题

北师大数学七年级下册第一章知识点及习题

第一章:整式的运算一, 概念1, 整式:单项式和多项式统称为整式.2, 单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

(单独的字母;单独的数字;数字与字母的乘积) 3, 多项式:几个单项式的和叫做多项式。

多项式含加减运算。

代数式:用运算符导(指加, 减, 乘, 除, 乘方, 开方)把数或表示数的字母连接而成的式子叫做代数式。

数的一切运算规律也适用于代数式。

单独的一个数或者一个字母也是代数式乘方:求n 个相同因数乘积的运算叫做乘方幂:假如把a^n 看作乘方的结果,则读作a 的n 次幂二, 公式, 法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(留意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a-==≠(底倒,指反) (7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):例如:229x +mxy+4y 是一个完全平方和公式,则m =;是一个完全平方差公式,则m =;是一个完全平方公式,则m =;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第一单元习题一, 填空1, 代数式4xy 3是__项式,次数是__2, 代数式x x a x a 5154323+-是__项式,次数是__ 3, (2x 2y+3xy 2)-(6x 2y -3xy 2)=________________4, 43)()(b a b a -⋅-=__________________5, (3x+7y)·(3x -7y)=________________6, (x+2)2-(x+1)(x -1)=______________7, ⑴, 251010-⨯=; ⑵, =⋅32a a ; ⑶, ()=535;二, 选择题(2×4=8)1, 下列计算正确的是 () A, 2a-a=2 B, x 3+x 3=x 6 C, 3m 2+2n=5m 2n D, 2t 2+t 2=3t 22, 下列语句中错误的是 ( ) A, 数字 0 也是单项式 B, 单项式 a 的系数与次数都是 1 C, 21x 2 y 2是二次单项式 C, -32ab 的系数是 -32 3, 下列计算正确的是 ()A, (-a 5)5=-a 25 B, (4x 2)3=4x 6 C, y 2·y 3-y 6=0 D, (ab 2c)3=ab 2c 3 4, (x+5)(x-3)等于 ( )A, x 2 -15 B, x 2 + 15 C, x 2 + 2x -15 D, x 2 - 2x - 15 5, 下列计算正确的是( )A, 422a a a =+ B, 632a a a =⋅ C, ()532a a = D, ()()123223a a a =⋅ 6, 下列计算正确的是( )A, ()623mn mn =;B, ()24222n m m n =;C, ()422293n m mn =-;D, ()51052n m n m =- 7, 8m 可以写成( )A, 42m m ⋅ B, 44m m + C, ()42m D, ()44m8, 计算()()1 52+--x x x 的结果,正确的是( ) A, 54+x B, 542+-x x C, 54--x D, 542+-x x 三, 计算 2, xy y xy y x 322122⋅⎪⎭⎫ ⎝⎛+- 3, (3a+2b )2-b 2 4, 用完全平方公式计算20012 5, 用平方差公式计算2004×19966, (3x+9)(6x+8) 7, (a-b+2)(a-b-2) 8, ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+5353b a b a 9, (3mn+1)(3mn-1)-8m 2n 2 10, (2x 2)3-6x 3(x 3+2x 2+x)11, 已知8b a =+,5ab -=,求下列各式的值。

七年级数学下册第一章试题

七年级数学下册第一章试题

第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。

初一数学下学期第一章试题及答案

初一数学下学期第一章试题及答案

初一数学下学期第一章试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是负数的相反数?A. 5B. -5C. 0D. -32. 一个数的绝对值是其自身,这个数是:A. 正数B. 负数C. 非负数D. 非正数3. 如果a > 0,b < 0,那么a + b:A. 一定大于0B. 一定小于0C. 可能大于0,也可能小于0D. 无法确定4. 计算下列算式的结果:2^3 + 3^2 - 4 * 5 =A. 1B. 2C. 3D. 45. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 无法确定6. 以下哪个选项是正确的不等式?A. 2 > 3B. 2 < 3C. 2 = 3D. 2 ≥ 37. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 无法确定8. 以下哪个选项是正确的等式?A. 2 + 3 = 5B. 2 * 3 = 6C. 2 / 3 = 0.6D. 2 - 3 = -19. 计算下列算式的结果:(3 - 2) * (4 + 5) =A. 5B. 6C. 9D. 1010. 一个数的倒数是其自身,这个数是:A. 1B. -1C. 0D. 无法确定二、填空题(每题3分,共30分)1. 一个数的相反数是其自身的______倍。

2. 如果一个数的绝对值是5,那么这个数可以是______或______。

3. 一个数的平方是16,这个数是______或______。

4. 一个数的立方是8,这个数是______。

5. 计算下列算式的结果:(-2)^3 = ______。

6. 计算下列算式的结果:(-3) * (-4) = ______。

7. 计算下列算式的结果:5 / (-2) = ______。

8. 计算下列算式的结果:(-6) + 4 = ______。

9. 计算下列算式的结果:3^2 - 2^2 = ______。

10. 计算下列算式的结果:4 * (-2) + 3 = ______。

七下第一章测试题及答案

七下第一章测试题及答案

七下第一章测试题及答案一、选择题(每题2分,共20分)1. 下列关于地球形状的描述,正确的是:A. 地球是一个完美的球体B. 地球是一个两极稍扁,赤道略鼓的不规则球体C. 地球是一个正方体D. 地球是一个圆柱体答案:B2. 地球的赤道周长约为:A. 4万千米B. 2万千米C. 1万千米D. 0.4万千米答案:A3. 地球的表面积约为:A. 5.1亿平方千米B. 1.49亿平方千米C. 1.49亿平方米D. 5.1亿平方米答案:B4. 地球的平均半径约为:A. 6371千米B. 6378千米C. 6371米D. 6378米答案:A5. 地球的极半径比赤道半径短:A. 21千米B. 21米C. 21厘米D. 21毫米答案:A6. 地球的自转周期是:A. 24小时B. 12小时C. 1天D. 1年答案:A7. 地球的公转周期是:A. 24小时B. 12小时C. 1天D. 1年答案:D8. 地球自转产生的地理现象是:A. 昼夜交替B. 季节变化C. 潮汐现象D. 地壳运动答案:A9. 地球公转产生的地理现象是:A. 昼夜交替B. 季节变化C. 潮汐现象D. 地壳运动答案:B10. 地球的赤道半径比极半径长:A. 21千米B. 21米C. 21厘米D. 21毫米答案:A二、填空题(每题2分,共20分)1. 地球的形状是______。

答案:两极稍扁,赤道略鼓的不规则球体2. 地球的赤道周长约为______千米。

答案:4万3. 地球的表面积约为______亿平方千米。

答案:5.14. 地球的平均半径约为______千米。

答案:63715. 地球的自转周期是______小时。

答案:246. 地球的公转周期是______年。

答案:17. 地球自转产生的地理现象是______。

答案:昼夜交替8. 地球公转产生的地理现象是______。

答案:季节变化9. 地球的极半径比赤道半径短______千米。

答案:2110. 地球的赤道半径比极半径长______千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下第一单元检测题
姓名: 分数:
一、填空题
1.-2
32y x 的系数是_____,次数是_____. 2.多项式-3x 2y 2+6xyz +3xy 2-7是_____次_____项式,其中最高次项为_____.
3.在代数式4
,3x a ,y +2,-5m 中_____为单项式,_____为多项式. 4.三个连续奇数,中间一个是n ,第一个是_____,第三个是_____,这三个数的和为_____.
5.(-x 2)(-x )2·(-x )3=_____.
6.( )3=-(7×7×7)(m ·m ·m )
7.( )2=x 2-2
1x +_____. 8.(-102)÷50÷(2×10)0-(0.5)-2=_____.
9.(a -b )2=(a +b )2+_____.
10.化简:4(a +b )+2(a +b )-5(a +b )=_____.
11.x +y =-3,则3
2-2x -2y =_____. 12.若3x =12,3y =4,则27x -y =_____.
13.[4(x +y )2-x -y ]÷(x +y )=_____.
14.已知(9n )2=38,则n =_____.
15.(x +2)(3x -a )的一次项系数为-5,则a =_____.
16.( )÷(-6a n +2b n )=4a n -2b n -1-2b n -2.
17.用小数表示6.8×10-4=_____.
18.0.0000057用科学记数法表示为_____.
19.计算:[(-2)2+(-2)6]×2-2=_____.
20.[-a 2(b 4)3]2=_____.
二、选择题
21.下列计算错误的是( )
A.4x 2·5x 2=20x 4
B.5y 3·3y 4=15y 12
C.(ab 2)3=a 3b 6
D.(-2a 2)2=4a 4
22.若a +b =-1,则a 2+b 2+2ab 的值为( )
A.1
B.-1
C.3
D.-3
23.若0.5a 2b y 与3
4a x b 的和仍是单项式,则正确的是( ) A.x =2,y =0 B.x =-2,y =0 C.x =-2,y =1
D.x =2,y =1 24.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )
A.小于6
B.等于6
C.不大于6
D.不小于6
25.下列选项正确的是( )
A.5ab -(-2ab )=7ab
B.-x -x =0
C.x -(m +n -x )=-m -n
D.多项式a 2-21a +41是由a 2,21a ,4
1三项组成的 26.下列计算正确的是( ) A.(-1)0=-1 B.(-1)-1=1 C.2a -
3=321a D.(-a 3)÷(-a )7=41a 27.(5×3-30÷2)0=( )
A.0
B.1
C.无意义
D.15
28.下列多项式属于完全平方式的是( )
A.x 2-2x +4
B.x 2+x +41
C.x 2-xy +y 2
D.4x 2-4x -1
29.长方形一边长为2a +b ,另一边比它大a -b ,则长方形周长为( )
A.10a +2b
B.5a +b
C.7a +b
D.10a -b
30.下列计算正确的是( )
A.10a 10÷5a 5=2a 2
B.x 2n +3÷x n -2=x n +1
C.(a -b )2÷(b -a )=a -b
D.-5a 4b 3c ÷10a 3b 3=-
2
1ac 三、解答题
31.3b -2a 2-(-4a +a 2+3b )+a 2
32.(a +b -c )(a -b -c )
33.(2x +y -z )2
34.(x -3y )(x +3y )-(x -3y )2
35.101×99
36.1122-113×111
37.992
38.21x -2(x -31y 2)+(-23x +31y 2),其中x =-1,y =2
1. 39.已知A =-4a 3-3+2a 2+5a ,B =3a 3-a -a 2,求:A -2B .
40.已知x +y =7,xy =2,求①2x 2+2y 2的值;②(x -y )2的值.
41.一个正方形的边长增加3 cm ,它的面积就增加39 cm 2,求这个正方形的边长.
四、计算
1.用乘法公式计算:1432×153
1. 2.-12x 3y 4÷(-3x 2y 3)·(-3
1xy ). 3.(x -2)2(x +2)2·(x 2+4)2.
4.(5x +3y )(3y -5x )-(4x -y )(4y +x )
五、解方程(组)
1.(3x +2)(x -1)=3(x -1)(x +1).
2.⎪⎩
⎪⎨⎧=--+=--+23),)(()3()2(22y x y x y x y x 六、比较
比较下面算式结果的大小(在横线上选填“>”“<”“=”)
42+32 2×4×3
(-2)2+12 2×(-2)×1
62+72 2×6×7
22+22 2×2×2
通过观察、归纳,写出能反映这种规律的一般结论,并加以证明.
七、求值题
1.已知(x -y )2=36625,x +y =6
7,求xy 的值.
2.已知a -b =2,b -c =-3,c -d =5,求代数式(a -c )(b -d )÷(a -d )的值.
八、证明
当x,y为实数,且x+y=1时,x3+y3-xy的值是非负数.
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档