曲线拟合的最小二乘法

合集下载

2.6-曲线拟合的最小二乘法

2.6-曲线拟合的最小二乘法
果较好,而在远离节点的地方,由Runge现象知道,有时效果 会很差。
第2页,共29页。
由观测得到的实验数据不可避免地带有误差,甚至是
较大的误差,此时要求近似函数P(x)过全部已知点,
相当于保留全部数据误差,所以使用插值法不合理。 对逼近函数P(x)不必要求过给定的点,只要求总体上
尽可能小,即要求P(x)尽可能反映给定数据点的总体 趋势,在某种意义(要求或标准)下与函数最“逼近”。
第1页,共29页。
问题
数值计算中经常要计算函数值,如计算机中计算基本 初等函数及其他特殊函数;(连续情形)
当函数只在有限点集上给定函数值,要在包含该点集
的区间上用公式给出函数的简单表达式.(离散情形)
这些都涉及到在已知区间上用简单函数逼近已 知复杂函数或未知函数的问题,这就是函数逼
近问题
插值方法就是一种逼近,要求在给定的节点处P(x) 与 f (x)相等(甚至导数值相等),因此在节点附近,逼近效
(1
,n
)
a1
(
f
,
1
)
(n
,
n
)
an
( f ,n )
称为法方程. 但是0 (x), ,n (x)在C[a, b]上线性无关,
不能保证其系数矩阵非奇异.
例如,0 sin x,1 sin 2x, x [0, 2 ], xk k , k 0,1, 2.
G
(0 ,0 )
(1
,
t 9 10 11 12 13 14 15 16
y 10.0 10.2 10.3 10.4 10.5 10.5 10.5 10.6
0
0
2
2
0
5
8
0
第20页,共29页。

第3章曲线拟合的最小二乘法计算方法

第3章曲线拟合的最小二乘法计算方法

最小二乘拟合,特别是多项式拟合,是最流行的数据处理 方法之一.它常用于把实验数据(离散的数据)归纳总结为经 验公式(连续的函数),以利于进一步的推演分析或应用.
1
结束
§3.2 线性拟合和二次拟合函数
1. 线性拟合
计 已知数据点为 ( xi , yi ), i 1,2,..., n
算 用直线 p( x) a bx作为近似曲线,均方误差为

i xi yi xi yi xi2 xi2yi xi3
xi4
0 3 5 15 9 45 27
81

1 5 2 10 25 50 125 625

2 6 1 6 36 36 216 1296

3 8 2 16 64 128 512 4096

4 10 4 40 100 400 1000 10000

Y ln y, A ln a Y A bx
8
i
xi
0
1
yi
Yi
15.3
2.7279
xi2
xiYi
1
2.7279
1
2
20.5
3.0204
4
6.0408

2
3
27.4
3.3105
9
9.9315

3
4
36.6
3.6000
16
14.4000

4
5
49.1
3.8939
25
19.4695

5
6
65.6
4
例1 设5组数据如下表,用一多项式对其进行拟合。
x 3 5 6 8 10

计算方法 第三章曲线拟合的最小二乘法20191103

计算方法 第三章曲线拟合的最小二乘法20191103

§2 多项式拟合函数
例3.1 根据如下离散数据拟合曲线并估计误差
x 1 23 4 6 7 8 y 2 36 7 5 3 2
解: step1: 描点
7
*
step2: 从图形可以看出拟
6 5
*
合曲线为一条抛物线:
4
y c0 c1 x c2 x2
3 2 1
* *
* * *
step3: 根据基函数给出法

18
定理 法方程的解是存在且唯一的。
证: 法方程组的系数矩阵为
(0 ,0 ) (1 ,0 )
G
(0
,1
)
(1 ,1 )
(0 ,n ) (1 ,n )
(n ,0 )
(
n
,
1
)
(n ,n )
因为0( x),1( x), ...,n( x)在[a, b]上线性无关,
所以 G 0,故法方程 GC F 的解存在且唯一。
第三章 曲线拟合的最小二乘法
2
最小二乘拟合曲线
第三章 曲线拟合的最小二乘
2021/6/21

3
三次样条函数插值曲线
第三章 曲线拟合的最小二乘
2021/6/21

4
Lagrange插值曲线
第三章 曲线拟合的最小二乘
2021/6/21

5
一、数据拟合的最小二乘法的思想
已知离散数据: ( xi , yi ), i=0,1,2,…,m ,假设我们用函
便得到最小二乘拟合曲线
n
* ( x) a*j j ( x) j0
为了便于求解,我们再对法方程组的导出作进一步分析。
第三章 曲线拟合的最小二乘

曲线拟合的最小二乘法实验

曲线拟合的最小二乘法实验

Lab04.曲线拟合的最小二乘法实验【实验目的和要求】1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;2.掌握函数ployfit和函数lsqcurvefit功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。

【实验内容】1.在Matlab命令窗口,用help命令查询函数polyfit和函数lsqcurvefit 功能和使用方法。

2.用多项式y=x3-6x2+5x-3,产生一组数据(xi,yi)(i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)均匀分布随机数),然后对xi和添加了随机干扰的yi用Matlab提供的函数ployfit用3次多项式拟合,将结果与原系数比较。

再作2或4次多项式拟合,分析所得结果。

3.用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为,其中V0是电容器的初始电压,τ是充电常数。

对于下面的一组t,v数据,用Matlab提供的函数lsqcurvefit确定V0和τ。

t(秒) 0.5 1 2 3 4 5 7 9v(伏) 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 【实验仪器与软件】1.CPU主频在1GHz以上,内存在128Mb以上的PC;2.Matlab 6.0及以上版本。

实验讲评:实验成绩:评阅教师:200 年月日问题及算法分析:1、利用help命令,在MATLAB中查找polyfit和lsqcurvefit函数的用法。

2、在一组数据(xi,yi)(i=1,2,…,n)上,对yi上添加随机干扰,运用多项式拟合函数,对数据进行拟合(分别用2次,3次,4次拟合),分析拟合的效果。

3、根据t和V的关系画散点图,再根据给定的函数运用最小二乘拟合函数,确定其相应参数。

第一题:(1)>> help polyfitPOLYFIT Fit polynomial to data.P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) ofdegree N that fits the data Y best in a least-squares sense. P is arow vector of length N+1 containing the polynomial coefficients indescending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and astructure S for use with POLYVAL to obtain error estimates forpredictions. S contains fields for the triangular factor (R) from a QRdecomposition of the Vandermonde matrix of X, the degrees of freedom(df), and the norm of the residuals (normr). If the data Y are random,an estimate of the covariance matrix of P is(Rinv*Rinv')*normr^2/df,where Rinv is the inverse of R.[P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial inXHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). Thiscentering and scaling transformation improves the numerical propertiesof both the polynomial and the fitting algorithm.Warning messages result if N is >= length(X), if X has repeated, ornearly repeated, points, or if X might need centering and scaling.Class support for inputs X,Y:float: double, singleSee also poly, polyval, roots.Reference page in Help browserdoc polyfit>>(2)>> help lsqcurvefitLSQCURVEFIT solves non-linear least squares problems.LSQCURVEFIT attempts to solve problems of the form:min sum {(FUN(X,XDATA)-YDATA).^2} where X, XDATA, YDATA and the valuesX returned by FUN can be vectors ormatrices.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA) starts at X0 and finds coefficients Xto best fit the nonlinear functions in FUN to the data YDATA (in theleast-squares sense). FUN accepts inputs X and XDATA and returns avector (or matrix) of function values F, where F is the same size asYDATA, evaluated at X and XDATA. NOTE: FUN should returnFUN(X,XDATA)and not the sum-of-squares sum((FUN(X,XDATA)-YDATA).^2).((FUN(X,XDATA)-YDATA) is squared and summed implicitly in thealgorithm.)X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB) defines a set of lower andupper bounds on the design variables, X, so that the solution is in therange LB <= X <= UB. Use empty matrices for LB and UB if no boundsexist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf ifX(i) is unbounded above.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB,OPTIONS) minimizes with thedefault parameters replaced by values in the structure OPTIONS, anargument created with the OPTIMSET function. See OPTIMSET for details.Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType,LevenbergMarquardt, MaxFunEvals, MaxIter, DiffMinChange andDiffMaxChange, LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG,OutputFcn, and TypicalX. Use the Jacobian option to specify that FUNalso returns a second output argument J that is the Jacobian matrix atthe point X. If FUN returns a vector F of m components when X has length n, then J is an m-by-n matrix where J(i,j) is the partialderivative of F(i) with respect to x(j). (Note that the Jacobian J isthe transpose of the gradient of F.)[X,RESNORM]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returns the valueof thesquared 2-norm of the residual at X: sum {(FUN(X,XDATA)-YDATA).^2}.[X,RESNORM,RESIDUAL]=LSQCURVEFIT(FUN,X0,...) returns the value of residual,FUN(X,XDATA)-YDATA, at the solution X.[X,RESNORM,RESIDUAL,EXITFLAG]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returnsan EXITFLAG that describes the exit condition of LSQCURVEFIT. Possiblevalues of EXITFLAG and the corresponding exit conditions are1 LSQCURVEFIT converged to a solution X.2 Change in X smaller than the specified tolerance.3 Change in the residual smaller than the specified tolerance.4 Magnitude of search direction smaller than the specified tolerance.0 Maximum number of function evaluations or of iterations reached.-1 Algorithm terminated by the output function.-2 Bounds are inconsistent.-4 Line search cannot sufficiently decrease the residual alongthecurrent search direction.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT]=LSQCURVEFIT(FUN,X0,XDATA,YDATA ,...)returns a structure OUTPUT with the number of iterations taken inOUTPUT.iterations, the number of function evaluations inOUTPUT.funcCount,the algorithm used in OUTPUT.algorithm, the number of CG iterations (ifused) in OUTPUT.cgiterations, the first-order optimality (if used)inOUTPUT.firstorderopt, and the exit message in OUTPUT.message.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA]=LSQCURVEFIT(FUN,X0,XDAT A,YDATA,...)returns the set of Lagrangian multipliers, LAMBDA, at the solution:LAMBDA.lower for LB and LAMBDA.upper for UB.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN]=LSQCURVEFIT(FU N,X0,XDATA,YDATA,...)returns the Jacobian of FUN at X.ExamplesFUN can be specified using @:xdata = [5;4;6]; % example xdataydata = 3*sin([5;4;6])+6; % example ydatax = lsqcurvefit(@myfun, [2 7], xdata, ydata)where myfun is a MATLAB function such as:function F = myfun(x,xdata)F = x(1)*sin(xdata)+x(2);FUN can also be an anonymous function:x = lsqcurvefit(@(x,xdata) x(1)*sin(xdata)+x(2),[2 7],xdata,ydata)If FUN is parameterized, you can use anonymous functions to capture theproblem-dependent parameters. Suppose you want to solve the curve-fittingproblem given in the function myfun, which is parameterized by its secondargument c. Here myfun is an M-file function such asfunction F = myfun(x,xdata,c)F = x(1)*exp(c*xdata)+x(2);To solve the curve-fitting problem for a specific value of c, first assignthe value to c. Then create a two-argument anonymous function that capturesthat value of c and calls myfun with three arguments. Finally, pass thisanonymous function to LSQCURVEFIT:xdata = [3; 1; 4]; % example xdataydata = 6*exp(-1.5*xdata)+3; % example ydatac = -1.5; % define parameterx = lsqcurvefit(@(x,xdata) myfun(x,xdata,c),[5;1],xdata,ydata) See also optimset, lsqnonlin, fsolve, @, inline.Reference page in Help browserdoc lsqcurvefit>>第二题:1 三次线性拟合clear allx=0:0.5:5;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,3);b=polyval(a,x);plot(x,y,'*',x,b),aa =1.0121 -6.1033 5.1933 -2.4782② 二次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,2);b=polyval(a,x);plot(x,y,'*',x,b),aa =23.9982 -232.0179 367.9756③ 四次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for j=1:length(y)y1(j)=y1(j)+rand;enda=polyfit(x,y1,4);b=polyval(a,x);plot(x,y,'*',x,b),aa =-0.0001 1.0038 -6.0561 5.2890 -2.8249 >>第三题:1 拟合曲线为:f(x)=定义函数:function f=fun(a,x)f=a(1)-(a(1)-a(2))*exp(-a(3)*x);主程序:clear allclcx=[0.5 1 2 3 4 5 7 9];y=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];a0=[1 1 1];a=lsqcurvefit('fun',a0,x,y);y1=a(1)-(a(1)-a(2))*exp(-a(3)*x);plot(x,y,'r*',x,y1,'b')V1=a(2)tei=1/a(3)Optimization terminated: relative function value changing by less than OPTIONS.TolFun.。

最小二乘法与曲线拟合(共24张PPT)

最小二乘法与曲线拟合(共24张PPT)

j 1
n
aNj
xj
bN
j1
2a1k
a2k
aNk
(
Ax
b)
Q
故 x1
Q
x2
Q
2
AT
(
Ax
b)
2(
AT
Ax
AT b )
xn

Q 0
(k 1,2,, n)

ATxAk x
AT b
〔*〕
因为rankA=n,故由引理2知,上式有唯一解。设
解为x1=a1, x2=a2,…, xn=an,记为点P0(a1,a2,…,an),
或写为
其矩阵形式为
a11x1 a12x2 a1n xn b1 a21x1 a22x2 a2n xn b2
aN1x1 aN 2 x2 aNn xn bN
n
aij x j bi ( j 1,2,, N )
j 1
Ax b
当方程组的系数矩阵与增广矩阵的秩不相等时, 方程组无解,此时方程组称为矛盾方程组。对于 rankA=n〔A的秩为n〕的矛盾方程组〔N>n〕,我 们寻求其最小二乘意义下的解。
从给定的一组试验数据出发,寻求函数的一个近似表 达式y= (x),要求近似表达式能够反映数据的根本趋势 而又不一定过全部的点(xi,yi),这就是曲线拟合问题,函 数的近似表达式y= (x)称为拟合曲线。本章介绍用最小 二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组
一、矛盾方程组的定义
设线性方程组
3.最小二乘法解矛盾方程组
计算步骤:
〔1〕判断方程组的秩是否满足rankA=n?
〔2〕写出正那么方程组;
〔3〕求解正那么方程组,其解就是矛盾方程组 的最小二乘解。

最小二乘法拟合曲线求最大值

最小二乘法拟合曲线求最大值

最小二乘法拟合曲线求最大值
最小二乘法是一种拟合曲线的方法,它是通过优化平方误差最小化来找到拟合曲线的参数。

最小二乘法可以用来拟合各种类型的曲线,包括直线、多项式、指数和对数函数等。

如果要找到拟合曲线的最大值,可以通过以下步骤进行:
1. 根据数据点的坐标,使用最小二乘法找到最佳拟合曲线的参数。

这可以通过使用线性回归或多项式回归的方法来实现。

2. 使用找到的曲线参数,求曲线的导数。

导数表示曲线在每个点上的斜率。

3. 找到导数等于零的点。

这些点可能是拟合曲线的极值点,包括最大值和最小值。

4. 比较这些极值点的函数值,找到最大值。

需要注意的是,最小二乘法本身不能直接找到曲线的最大值,它只能通过拟合曲线函数的参数来间接推断最大值所在的位置。

因此,在找到最佳拟合曲线的参数后,还需要进行额外的导数计算和极值点分析才能找到实际的最大值点。

此外,如果数据点中存在噪声或异常值,最小二乘法可能会受到影响,导致拟合曲线得到的最大值并不准确。

在实际应用中,可能需要使用其他方法来处理这些问题。

excel拟合曲线用的最小二乘法

excel拟合曲线用的最小二乘法

Excel拟合曲线用的最小二乘法1. 介绍Excel作为一款常用的办公软件,被广泛应用于数据分析和处理,而拟合曲线是数据分析中常用的方法之一。

拟合曲线用的最小二乘法是一种常见的拟合方法,通过最小化数据点与拟合曲线之间的距离来找到最佳拟合曲线,从而对数据进行预测和分析。

在本文中,我将从深度和广度的角度来探讨Excel拟合曲线用的最小二乘法,带你深入探索这一主题。

2. 最小二乘法的原理在Excel中进行曲线拟合时,最小二乘法是一种常用的拟合方法。

其原理是通过最小化残差平方和来找到最佳拟合曲线。

残差是指每个数据点到拟合曲线的垂直距离,最小二乘法通过调整拟合曲线的参数,使得残差平方和最小化,从而得到最佳拟合曲线。

在Excel中,可以利用内置函数或插件来实现最小二乘法的曲线拟合,对于不同类型的曲线拟合,可以选择不同的拟合函数进行拟合。

3. Excel中的拟合曲线在Excel中进行拟合曲线时,首先需要将数据导入Excel,然后利用内置的数据分析工具或者插件来进行曲线拟合。

通过选择拟合函数、调整参数等操作,可以得到拟合曲线的相关信息,如拟合优度、参数估计值等。

可以根据拟合曲线的结果来对数据进行预测和分析,从而得到对应的结论和见解。

4. 个人观点与理解对于Excel拟合曲线用的最小二乘法,我认为这是一种简单而有效的数据分析方法。

它能够快速对数据进行拟合,并得到拟合曲线的相关信息,对于数据的预测和分析具有一定的帮助。

然而,也需要注意到拟合曲线并不一定能够准确描述数据的真实情况,需要结合实际背景和专业知识进行分析和判断。

在使用最小二乘法进行曲线拟合时,需要注意数据的可靠性和拟合结果的可信度,以避免出现不准确的结论和偏差的情况。

5. 总结通过本文的探讨,我们对Excel拟合曲线用的最小二乘法有了更深入的了解。

最小二乘法的原理、Excel中的实际操作以及个人观点与理解都得到了充分的展示和探讨。

在实际应用中,需要结合具体情况和专业知识来灵活运用最小二乘法进行曲线拟合,从而得到准确的分析和预测结果。

最小二乘拟合法公式

最小二乘拟合法公式

最小二乘拟合法公式最小二乘拟合法是一种常用的数学方法,用于找到一条直线或曲线来近似拟合给定的数据点集。

该方法通过最小化数据点到拟合线的距离的平方和,来确定最佳拟合线的参数。

最小二乘拟合法的公式可以表示为:y = a + bx其中,y是因变量,x是自变量,a和b是拟合线的参数。

最小二乘拟合法的目标是找到最佳的参数a和b,使得拟合线与数据点的距离的平方和最小。

为了求解最小二乘拟合法的参数,需要先计算数据点的均值。

然后,通过计算协方差和方差来得到参数a和b的估计值。

在计算过程中,需要使用以下公式:b = Σ((xi - x_mean) * (yi - y_mean)) / Σ((xi - x_mean)^2)a = y_mean -b * x_mean其中,xi和yi是数据点的坐标,x_mean和y_mean是数据点的均值。

最小二乘拟合法的步骤如下:1. 输入数据点集,包括自变量x和因变量y。

2. 计算x和y的均值。

3. 根据公式计算b的值。

4. 根据公式计算a的值。

5. 得到拟合线的参数a和b。

6. 可以使用拟合线的参数来预测新的数据点。

最小二乘拟合法是一种广泛应用于各个领域的数学方法。

它可以用于拟合直线、曲线和多项式等形式的函数。

在实际应用中,最小二乘拟合法可以用于解决各种问题。

例如,在经济学中,可以使用最小二乘拟合法来拟合经济模型和预测经济趋势。

在物理学中,可以使用最小二乘拟合法来拟合实验数据和研究物理现象。

在工程学中,可以使用最小二乘拟合法来拟合曲线和评估工程设计。

最小二乘拟合法在实际应用中具有很高的准确性和可靠性。

通过最小化数据点到拟合线的距离的平方和,可以得到最佳的拟合结果。

然而,需要注意的是,最小二乘拟合法只能得到最佳拟合结果,而不能保证拟合线与所有数据点完全吻合。

最小二乘拟合法是一种常用的数学方法,用于找到一条直线或曲线来近似拟合给定的数据点集。

通过最小化数据点到拟合线的距离的平方和,可以确定最佳的拟合线的参数。

曲线最小二乘法拟合

曲线最小二乘法拟合

最小二乘法拟合曲线算法1、概述给定数据点P(x i ,y i ),其中i=1,2,…,n 。

求近似曲线y= φ(x)。

并且使得近似曲线与y=f(x)的偏差最小。

近似曲线在点pi 处的偏差δi = φ(x i )-y ,i=1,2,...,n 。

按偏差平方和最小的原则选取拟合曲线,这种方法为最小二乘法,偏差平方和公式为:min σ2 = (φ(x i −y i ))2ni =1n i =12、推导过程1)设拟合多项式为:y = a 0+ a 1x +⋯+a k x k2)各点到这条曲线的距离之和,即偏差平方如下:R 2= [y i −(a 0+ a 1x +⋯+a k x k )]2ni =13)多项式系数为学习对象,为了求得符合条件的系数值,对上面等式的a i 分别求导,得:−2 y i − a 0+ a 1x +⋯+a k x k =0ni=1−2 y i − a 0+ a 1x +⋯+a k x k x =0ni=1……−2 y i − a 0+ a 1x +⋯+a k x k x k =0ni=14)将等式移项化简,得:a 0+ a 1x +⋯+a k x k = y i ni =1n i =1a 0+ a 1x +⋯+a k x k x = y i x ni =1n i =1……a 0+ a 1x +⋯+a k x k x k = y i x k ni =1n i =15)依上式得矩阵为:x i0 ni=1⋯x i kni=1⋮⋱⋮x i k ni=1⋯x i2kni=1a0⋮a k=y i x i0ni=1⋮y i x i kni=1上边等式左边为1+K阶对称矩阵,解此矩阵方程即可得到曲线系数a k6)对于AX=B,A为对称矩阵,对称矩阵可以分解为一个下三角矩阵、一个上三角矩阵(下三角矩阵的转置)和一个对角线矩阵相乘。

即A=LDL T所以AX=LDL T X=B,令DL T X=Y -> LY=B,其中L为下三角矩阵,且已知,可求出Y。

曲线拟合的最小二乘法

曲线拟合的最小二乘法

一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。

设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。

这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。

这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。

如下为一个曲线拟合示意图。

清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。

曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。

若令(1-1)则为残向量(残差)。

“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。

计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。

)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。

百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。

什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。

回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。

最小二乘法拟合指数曲线

最小二乘法拟合指数曲线

最小二乘法拟合指数曲线在数学建模和数据分析中,最小二乘法是一种常用的数学方法,它常被用来求解拟合问题。

拟合问题的目标是找到一条曲线,使其与给定的数据点最为接近。

对于指数曲线的拟合,最小二乘法同样可以发挥作用。

首先,我们需要明确指数曲线的函数形式。

指数曲线一般可以用以下公式表示:y=ae^(bx),其中a和b都是常数,e是自然对数的底。

其次,最小二乘法的关键思想是找到使得拟合曲线与实际数据点之间的误差最小的参数值。

对于指数曲线的拟合,我们可以将误差定义为实际数据点与拟合曲线之间的垂直距离,即残差。

最小二乘法的目标是最小化所有数据点的残差的平方和。

为了求解最小二乘曲线拟合问题,我们首先需要构建残差函数。

对于给定的数据点(xi,yi),我们可以计算出对应的拟合值fi=ae^(bxi),然后计算残差ei=yi-fi。

然后我们需要最小化所有残差的平方和。

可以通过对残差函数进行求导,令导数为0,得到使得残差函数最小的参数值。

解得的参数值即为最小二乘法拟合指数曲线所需要的参数。

利用这些参数,我们可以得到拟合的指数曲线方程,并利用该方程进行预测和分析。

最后,我们需要评估拟合结果的好坏程度。

常用的评估指标包括平均绝对误差(MAE)、均方根误差(RMSE)等。

这些指标可以帮助我们了解拟合结果与实际数据之间的偏差程度,以及拟合模型的预测准确性。

综上所述,最小二乘法是一种有效的拟合方法,可以用于拟合指数曲线。

通过构建残差函数并最小化残差的平方和,我们可以求解出使得拟合曲线与实际数据点最为接近的参数值。

然后利用这些参数,我们可以得到拟合的指数曲线方程,并进行进一步的分析和预测。

当然,我们也需要在评估拟合结果时使用合适的指标来判断拟合的好坏程度。

通过合理地运用最小二乘法,我们可以更好地理解和应用指数曲线拟合问题。

数值分析论文--曲线拟合的最小二乘法

数值分析论文--曲线拟合的最小二乘法

曲线拟合的最小二乘法姓名:学号:专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是y的误差。

设 x 和 y 的函数关系由理论公式y=f(x;c1,c2,……cm)(0-0-1)给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。

对于每组观测数据(xi,yi)i=1,2,……,N。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取 m 组测量值代入式(0-0-1),便得到方程组yi = f (x ;c1 ,c2 ,……cm)(0-0-2)式中 i=1,2,……,m.求 m 个方程的联立解即得 m 个参数的数值。

显然N<m 时,参数不能确定。

y 2 y 在 N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则 y 的观测值 yi 围绕着期望值 <f (x ;c1,c2,……cm)> 摆 动,其分布为正态分布,则 yi 的概率密度为p y i1 exp,式中i是分布的标准误差。

为简便起见,下面用 C 代表(c1,c2,……cm )。

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合(LeastSquaresCurveFitting,简称LSCF)是采用数学统计技术进行多元函数拟合所用的一种技术。

它可以快速、准确地根据已经给定的实验数据拟合出一条实验曲线,从而给出诸如拟合函数的系数值等信息。

因此,最小二乘法曲线拟合在各种科学、工程实验中有着广泛的应用。

最小二乘法曲线拟合的原理很简单,它是基于“最小化误差”的概念,即拟合出来的曲线应尽可能接近给定的实验数据,使实验数据与拟合函数之间的差距最小。

这就要求我们求出实验数据与拟合函数之间的差距,这一差距被称为拟合误差,也称为“残差”。

最小二乘法曲线拟合的基本思想就是使残差的平方和(即拟合误差的平方和)取得最小值,从而实现拟合函数接近实验数据的目的。

最小二乘法曲线拟合的求解流程主要是:首先确定拟合函数的形式,然后利用已经给定的实验数据,建立最小二乘拟合问题,即求解各系数的拟合关系,然后利用几何极值法或矩阵方法求解给定拟合函数的拟合系数值,最后就可以得到拟合函数的数学公式及其系数值了。

最小二乘法曲线拟合由于给出的实验数据精度不同和系数组合不同,可以曲线拟合许多不同的函数形式,数学模型复杂度从一次函数到高阶复合函数都可以拟合。

例如,它可以拟合出多项式函数、指数函数、对数函数、三次样条函数、双曲线函数等。

由于最小二乘法曲线拟合能够实现快速、准确地根据实验数据拟合出实验曲线,因此它在科学、工程实验中有着广泛的应用。

例如可以用它来估计经济预期的变化趋势,也可以用于关键的工艺参数的优化设计,也可以用于机械性能的预测,还可以应用于心理研究中,帮助心理学家了解人类心理活动的变化规律。

最小二乘法曲线拟合的最大优点在于曲线拟合的精度较高,可以得到较为精确的拟合结果,模型的复杂度也很强,可以拟合许多不同的函数形式,但其缺点也是与优点相对应的,可能会使拟合结果产生畸变,拟合精度也会受到实验数据的精度的影响。

综上,最小二乘法曲线拟合是一种重要的数学统计技术,它能够根据已经给定的实验数据拟合出接近实验数据的函数,广泛应用于科学、工程实验,从而可以深入探究实验过程背后的规律,帮助人们更好地理解实验结果,是科学研究中不可缺少的一种技术。

最小二乘法多项式曲线拟合原理与实现

最小二乘法多项式曲线拟合原理与实现

最小二乘法多项式曲线拟合原理与实现一、引言最小二乘法多项式曲线拟合是一种常用的数据拟合方法,它可以通过一组离散的数据点来拟合出一个多项式函数,从而达到对数据进行预测和分析的目的。

本文将详细介绍最小二乘法多项式曲线拟合的原理与实现。

二、最小二乘法最小二乘法是一种数学优化方法,它可以通过最小化误差平方和来求解未知参数。

在多项式曲线拟合中,我们需要求解多项式函数中各个系数的值,使得该函数与给定数据点之间的误差平方和最小。

三、多项式曲线拟合多项式曲线拟合是指通过一组离散的数据点来拟合出一个多项式函数,该函数能够较好地描述这些数据点之间的关系。

在实际应用中,我们通常使用低阶的多项式函数来进行拟合,例如一次、二次或三次多项式函数。

四、最小二乘法多项式曲线拟合原理假设我们有n个离散的数据点(x1,y1),(x2,y2),...,(xn,yn),其中xi表示自变量,yi表示因变量。

我们希望通过这些数据点来拟合出一个m次多项式函数y=f(x),其中m为多项式的阶数。

我们可以将多项式函数表示为如下形式:f(x)=a0+a1x+a2x^2+...+amxm其中a0,a1,...,am为待求解的系数。

我们需要通过最小二乘法来求解这些系数的值。

首先,我们需要定义误差平方和E(a0,a1,...,am):E(a0,a1,...,am)=∑i=1n(yi−f(xi))^2然后,我们需要求解使得误差平方和最小的系数值。

为了方便计算,我们可以将误差平方和展开:E(a0,a1,...,am)=∑i=1n(yi−a0−a1xi−a2xi^2−...−amxm)^2接下来,我们需要对误差平方和进行求导,并令导数等于零,从而得到使得误差平方和最小的系数值。

具体来说,我们需要分别对每个系数进行求导:∂E/∂a0=−2∑i=1n(yi−a0−a1xi−a2xi^2−...−amxm)∂E/∂a1=−2∑i=1n(xi(yi−a0−a1xi−a2xi^2−...−amxm))...∂E/∂am=−2∑i=1n(xmi(yi−a0−a1xi−a2xi^2−...−amxm))然后,我们将每个导数等于零,得到一个线性方程组:∑j=0maijaj=∑i=1nyi×xi^j其中aij表示第j个系数的第i次幂。

最小二乘法曲线拟合_原理及matlab实现

最小二乘法曲线拟合_原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。

x 必须是单调的。

矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 函数逼近与曲线拟合一、问题的提出:函数逼近是指“对函数类A 中给定的函数)(x f ,记作A x f ∈)(,要求在另一类简的便于计算的函数类B 中求函数A x p ∈)(,使 )(x p 与)(x f 的误差在某中度量意义下最小”。

函数类A 通常是区间],[b a 上的连续函数,记作],[b a C ,称为连续函数空间,而函数类B 通常为n 次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。

主要内容有:(1)最佳一致逼近多项式(2)最佳平方逼近多项式(3)曲线拟合的最小二乘法二、实验要求:1、构造正交多项式;2、构造最佳一致逼近;3、构造最佳平方逼近多项式;4、构造最小二乘法进行曲线拟合;5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差;6、探讨新的方法比较结果。

三、实验目的和意义:1、学习并掌握正交多项式的MATLAB 编程;2、学习并掌握最佳一致逼近的MATLAB 实验及精度比较;3、学习并掌握最佳平方逼近多项式的MATLAB 实验及精度比较;4、掌握曲线拟合的最小二乘法;5、最小二乘法也可用于求解超定线形代数方程组;6、 探索拟合函数的选择与拟合精度之间的关系;四、 算法步骤:1、正交多项式序列的生成{n ϕ(x )}∞0:设n ϕ(x )是],[b a 上首项系数a ≠n 0的n 次多项式,)(x ρ为],[b a 上权函数,如果多项式序列{n ϕ(x )}∞0满足关系式⎩⎨⎧=>≠==⎰.,0,,0)()()()(),(k j A k j x d x x x kk j bak j ϕϕρϕϕ则称多项式序列{n ϕ(x )}∞0为在],[b a 上带权)(x ρ正交,称n ϕ(x )为],[b a 上带权)(x ρ 的n 次正交多项式。

1)输入函数)(x ρ和数据b a ,;2)分别求))(),(()),(,(x x x x j j j n ϕϕϕ的内积; 3)按公式①)())(),(())(,()(,1)(10x x x x x x x x j n j j jj n nn ϕϕϕϕϕϕ∑-=-==计算)(x n ϕ,生成正交多项式;流程图:开始否是结束2、 最佳一致逼近多项式],[)(b a C x f ∈,若存在n n H x P ∈)(*使得n n E P f =∆),(*,则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。

现在我们所求的是最佳一次逼近多项式x x P 101)(αα+=,其中)()()(21x f ab b f a f '=--=α ①2)()(2)()(220x a a b a f b f x f a f +--+=α ② 1)输入函数)(x f 和数据b a ,; 2)计算1α和)(x f '; 3)求2x 和)(2x f ; 4)按公式②,计算0α; 5)生成最佳一次逼近多项式;流程图:3、最佳平方逼近多项式对],[)(b a C x f ∈及],[b a C 中的一个子集)}(),...,(),({10x x x span n ϕϕϕϕ=,若存在.)(*ϕ∈x S 使||.)]()()[(min||)()(||min ||)()(2)(22)(22*dx x S x f x x S x f x S x f bax S x S ⎰-=-=-∈∈ρϕϕ则称)(*x S 是)(x f 在子集],[b a C ⊂ϕ中的最佳平方逼近函数。

若取],1,0[)(,1)(,)(C x f x x x kk ∈≡=ρϕ则要在n H 中求n 次最佳平方逼近多项式,...)(**1*0*nn x a x a a x s +++=此时,11))(),((1++==⎰+j k dx xx x jk k j ϕϕk k k d dx x x f x x f ≡=⎰10)())(),((ϕ若用H 表示),...,,1(nn x x G G =对应的矩阵,既⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)12/(1)2/(1)1/(1)2/(13/12/1)1/(12/11),(),(),(),(),(),(),(),(),(11110101000n n n n n H n n n n n n n ΛM M MΛΛΛM O M M ΛΛϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ称为希尔伯特距阵,记,),...,,(,),...,,(1010Tn T n d d d d a a a a ==则d Ha =的解),...,1,0(*n k a a kk ==即为所求。

平方误差为))(),((||)(||||)(||0*2222x f x a x f x k nk k ϕδ∑=-=;1)输入函数)(x f 和数据b a ,;2)求Tn d d d d ),...,,(10=;3)解方程组 d Ha =,解出 Tn a a a a ),...,,(10=;4)生成最佳平方逼近多项式;流程图:4、曲线拟合的最小二乘法由已知的离散数据点选择与实验点误差最小的曲线)(...)()()(1100x a x a x a x S n n ϕϕϕ+++= 称为曲线拟合的最小二乘法。

若记 ),()()(),(0i k i jmi ik j x x x ϕϕωϕϕ∑==k i k i mi i k d x x f x f ≡=∑=)()()(),(0ϕωϕ上式可改写为),...,1,0(;),(n k d a k j noj j k-=∑=ϕϕ这个方程成为法方程,可写成距阵形式.d Ga =其中,),...,,(,),...,,(1010Tn T n d d d d a a a a ==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=),(),(),()(),(),(),(),(),(101110101000n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕΛM M M ΛΛ。

它的平方误差为:.)]()([)(||||222iimi ix f x S x -=∑=ωδ1) 按照最小二乘法的性质构造Gram 矩阵G ,并求解Ga=d ;构造的时候首先构造一个零矩阵A ;2)然后开始构造Gram 矩阵(在下面程序里我们把克莱姆矩阵用A 来表示)3)然后求列矩阵b ,因为Aa=b ,所以求 a=A\b ;(d 就是列矩阵b ); 4)然后找对应数据的最小二乘拟合方程和画出它的图像;5)在m 文件里制好以上规定的程序后,在matlab 的命令窗口 输入数组x 和数组y 及所选择的拟合多项式次数 m ,然后执行就可以得到曲线二乘拟合方程和它的图像。

流程图:五、Matlab 程序源代码:1、正交多项式序列的生成function gouzaozhengjiaoduoxiangshi 数值例题:1)当区间为]1,1[-,权函数1)(≡x ρ时,由,...},...,,1{nx x 正交化得到的多项式就成为勒让德多项式,它的表达式为1)(0=x P , })1{(!21)(2nnn nn x dxd n x P -=; 递推公式为,...),2,1(),()()12()()1(11=-+=+-+n x nP x xP n x P n n n n 由x x P x P ==)(,1)(10,利用(1)就可推出,8/)33035()(,2/)35()(,2/)13()(2443322+-=-=-=x x x p x x x P x x P…y 12)当权函数21)(x x -=ρ,区间为]1,1[-时,由序列,...},...,,1{nx x 正交化得到的多项式就是切比雪夫多项式,它可表示为.1||),arccos cos()(≤=x x n x T n 若令θcos =x ,则.0,cos )(πθθ≤≤=n x T n递推关系.)(,1)(,...),2,1(,)(2)(1011x x T x T n T x xT x T n n n ===-=-+ 可推出,188)(,34)(),12(2443322+-=-=-=x x x T x x x T x x T2、 最佳一致逼近多项式function yicibijin数值例题:(1)求21)(x x f +=在[0,1]上的最佳一次逼近多项式 ;结果为:x x P 414.0955.0)(1+=;误差限为.045.0|)(1|max 1210≤-+≤≤x P x x3、最佳平方逼近多项式function pingfang● 数值例题:设21)(x x f +=,求]1,0[上的一次最佳平方逼近多项式;结果为:x x S 426.0934.0)(*1+=,0026.0||)(||22=x δ;4、曲线拟合的最小二乘法:function p=nihe(x,y,m)● 数值实例:例1:下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度数据表 ,按照数据找出任意次曲线拟合方程和它的图像.(2006年10月26~11月26)解:x=1:30y=[9 10 11 12 13 14 13 12 11 9 10 11 12 13 14 12 11 10 9 8 7 8 9 11 8 7 6 5 3 1]m=9;(m是任意真整数,但是不要取的太大)运行p=nihe(x,y,m)结果为:p =图形为:或者任意取部分数据也可得到相应得多项式和它的图像m=15时x=1:30y=[9 10 11 12 13 14 13 12 11 9 10 11 12 13 14 12 11 10 9 8 7 8 9 11 8 7 6 5 3 1]运行p=nihe(x,y,m)结果为:p =图形为:如果:m=3x=1:30y=[9 10 11 12 13 14 13 12 11 9 10 11 12 13 14 12 11 10 9 8 7 8 9 11 8 7 6 5 3 1]运行p=nihe(x,y,m)结果为:p =图形为:如果写M文件的时候我们把想得到的多项式的次数直接定义为(m=length(x))跟X的数量一样取得最小二乘法的曲线拟合方程,这样上术问题中的m=30,这时候它的程序代码为:f unction p=nn(x,y)赋值x,y :x=1:30y=[9 10 11 12 13 14 13 12 11 9 10 11 12 13 14 12 11 10 9 8 7 8 9 11 8 7 6 5 3 1];运行p=nn(x,y)解为:p =图像为:结果分析:以上结果可以看到用最小二乘拟合来求解问题时,有时候他的结果很接近实际情况,有时候跟实际情况里的太远,因为所求得多项式次数太小时数据点之间差别很大.次数最大是误差最小但是有时后不符合实际情况,所以用最小二乘法时次数要取合适一点.或采用:function p=duoxiangxi(x,y,m)数值例题:(1)合成纤维抽丝工段中第一导丝盘的速度对丝的质量有很大的影响,第一丝盘的速度和电流周波有重要关系。

相关文档
最新文档