高中数学必修一第一章---总复习课件
合集下载
高中数学课件-高一数学必修1总复习课件1
x
1、定义域 . 2、值域
k>0
k<0
(, 0)(0,+)
(, 0)(0,+)
3、单调性 递减(,0),(0,+) 递增(,0),(0,+)
4、图象
二次函数 y ax2 bx c
1、定义域 2、值域 3、单调性
4、图象
a>0
a<0
.
4ac b2
[
, )
4a
R.
4ac b2
(,
]
4a
(, b ]减, [- b ,)增
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
3.集合间的关系:
子集:AB任意x∈A x∈B.
真子集:AB x∈A,x∈B,但存在
x0∈B且x0A. 集合相等:A=B AB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
第一章 集合与函数概念 第二章 基本初等函数Ⅰ 第三章 函数应用
一、知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合
2、元素与集合的关系: 或 3、元素的特性:确定、互异、无序
例1:判断函数f(x)=1/x在区间(0,+∞)上
是增函数还是减函数?并证明你的结论。 减函数
证明:设x1,x2∈(0,+∞),且x1<x2,则
1、定义域 . 2、值域
k>0
k<0
(, 0)(0,+)
(, 0)(0,+)
3、单调性 递减(,0),(0,+) 递增(,0),(0,+)
4、图象
二次函数 y ax2 bx c
1、定义域 2、值域 3、单调性
4、图象
a>0
a<0
.
4ac b2
[
, )
4a
R.
4ac b2
(,
]
4a
(, b ]减, [- b ,)增
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
3.集合间的关系:
子集:AB任意x∈A x∈B.
真子集:AB x∈A,x∈B,但存在
x0∈B且x0A. 集合相等:A=B AB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
第一章 集合与函数概念 第二章 基本初等函数Ⅰ 第三章 函数应用
一、知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合
2、元素与集合的关系: 或 3、元素的特性:确定、互异、无序
例1:判断函数f(x)=1/x在区间(0,+∞)上
是增函数还是减函数?并证明你的结论。 减函数
证明:设x1,x2∈(0,+∞),且x1<x2,则
人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
(1)y=f(-x)的图象与y=f(x)的图象关于y轴对称; (2)y=-f(x)的图象与y=f(x)的图象关于x轴对称; (3)y=-f(-x)的图象与y=f(x)的图象关于原点对称; (4)奇函数的图象关于原点对称,偶函数的图象关于 y轴对称; (5)如果函数y=f(x)对定义域内的一切x值,都满足 f(a+x)=f(a-x),其中a是常数,那么函数y=f(x)的图象关
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).
人教高中数学必修一A版《充分条件与必要条件》集合与常用逻辑用语教学说课复习课件
课件 课件
课件 课件
课件
课件
1.记集合 A={x|p(x)},B={x|q(x)},若 p 是 q 的充分不必要条件,
则集合 A,B 的关系是什么?若 p 是 q 的必要不充分条件呢?
提示:若 p 是 q 的充分不必要条件,则 A B,若 p 是 q 的必要不充分 条件,则 B A.
栏目导航
2.记集合 M={x|p(x)},N={x|q(x)},若 M⊆N,则 p 是 q 的什么条 课件 课件 课件 课件 课件 课件 课件 课件
(2)若 p⇒q,但 q p,则称 p 是 q 的充分不必要条件.
(3)若 q⇒p,但 p q,则称 p 是 q 的必要不充分条件.
(4)若 p q,且 q p,则称 p 是 q 的既不充分也不必要条件.
栏目导航
思考 2:(1)若 p 是 q 的充要条件,则命题 p 和 q 是两个相互等价的命
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
充要条件的探求与证明
【例 3】 试证:一元二次方程 ax2+bx+c=0 有一正根和一负根的
充要条件是 ac<0.
[思路点拨] 从“充分性”和“必要性”两个方面来证明.
栏目导航
[证明] ①必要性:因为方程 ax2+bx+c=0 有一正根和一负根,所
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
高一数学必修1总复习课件
单调性的判定方法
导数法、定义法、图象法等。
单调性的应用
求极值、求最值、比较大小等。
02
三角函数
角的概念及度量
角的概念
角是由两条射线公共端点出发的 两条射线的位置关系所形成的, 分为平面角和球面角。
角的度量
角度的大小是用实数表示的,通 常使用度、弧度、密位等单位来 度量角的大小。
三角函数的定义
正弦函数
求和公式
Sn=a1*(1-q^n)/1-q,其中Sn是前n项和,a1是 第一项,q是公比
3
应用
利用求和公式可以计算等比数列的和,解决实际 问题
05
算法初步
算法的概念及程序框图
总结词
01
理解算法的概念和程序框图的绘制方法
算法的概念
02
算法是指一系列解决问题的清晰指令,它按照一定的顺序执行
,能够得到确定的结果。
值域的性质
闭区间、开区间、左开右闭、左闭右开等。
值域与定义域的关系
函数的值域总是定义域的子集。
函数的单调性
单调性的定义
如果对于任意$x_{1} < x_{2}$都有$f(x_{1}) leq f(x_{2})$或 $f(x_{1}) geq f(x_{2})$,则称函数在区间内单调递增或单调递减。
子集;不属于某个集合的元素组成的集合称为该集合的补集。
集合的运算
并集
两个集合中所有元素组 成的集合称为这两个集
合的并集。
交集
两个集合中共有的元素 组成的集合称为这两个
集合的交集。
差集
从第一个集合中去掉与 第二个集合共有的元素 组成的集合称为这两个
集合的差集。
集合运算的性质
结合律、交换律、分配 律等。
导数法、定义法、图象法等。
单调性的应用
求极值、求最值、比较大小等。
02
三角函数
角的概念及度量
角的概念
角是由两条射线公共端点出发的 两条射线的位置关系所形成的, 分为平面角和球面角。
角的度量
角度的大小是用实数表示的,通 常使用度、弧度、密位等单位来 度量角的大小。
三角函数的定义
正弦函数
求和公式
Sn=a1*(1-q^n)/1-q,其中Sn是前n项和,a1是 第一项,q是公比
3
应用
利用求和公式可以计算等比数列的和,解决实际 问题
05
算法初步
算法的概念及程序框图
总结词
01
理解算法的概念和程序框图的绘制方法
算法的概念
02
算法是指一系列解决问题的清晰指令,它按照一定的顺序执行
,能够得到确定的结果。
值域的性质
闭区间、开区间、左开右闭、左闭右开等。
值域与定义域的关系
函数的值域总是定义域的子集。
函数的单调性
单调性的定义
如果对于任意$x_{1} < x_{2}$都有$f(x_{1}) leq f(x_{2})$或 $f(x_{1}) geq f(x_{2})$,则称函数在区间内单调递增或单调递减。
子集;不属于某个集合的元素组成的集合称为该集合的补集。
集合的运算
并集
两个集合中所有元素组 成的集合称为这两个集
合的并集。
交集
两个集合中共有的元素 组成的集合称为这两个
集合的交集。
差集
从第一个集合中去掉与 第二个集合共有的元素 组成的集合称为这两个
集合的差集。
集合运算的性质
结合律、交换律、分配 律等。
最新高中数学必修课件-第一章---总复习
最新高中数学必修课件-第一章--总复习
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
1.集合的概念: 一般地,指定的某些对象的全体
称为集合,简称“集”. 集合中每个对象叫做这个集合的
最新高中数学必修课件-第一章--总复习
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就第一章--总复习
5.集合的表示方法: 描述法、列举法、图表法
6.集合的分类: 有限集、无限集
最新高中数学必修课件-第一章--总复习
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
1.集合的概念: 一般地,指定的某些对象的全体
称为集合,简称“集”. 集合中每个对象叫做这个集合的
最新高中数学必修课件-第一章--总复习
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就第一章--总复习
5.集合的表示方法: 描述法、列举法、图表法
6.集合的分类: 有限集、无限集
最新高中数学必修课件-第一章--总复习
高中数学必修一全册课件人教版(共99张PPT)
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
高中数学必修1总复习课件
A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
3.集合间的关系:
子集:AB任意x∈A x∈B.
真子集:AB x∈A,x∈B,但存在
x0∈B且x0A.
集合相等:A=B AB且BA.
空集:.
性质:①A,若A非空, 则A.
)
b2 3 2
)=a-2 + b ≥0,∴A≥B.
4
B
1
3.若0<a<1,则不等式(x-a)x-a<0的解集为
1
A.xa<x<a
1
B.xa<x<a
1
C.xx>a或x<a
2.交集: A B {x | x A,且x B}
A
B
A B
A
B
A B
3.全集: 一般地,如果一个集合含有我们所研究问题中涉及
的所有元素,那么就称这个集合为全集.用U表示
4.补集: UA={x|x U,且x A}
A U UA U
U
A
U
A
题型示例
考查集合的含义
例1 已知x {1, 2, x }, 则x 0或2
2
例2 A y y x , B x y x ,
2
求A B.
A [0, ), B R,
A B [0, ).
2
考查集合之间的关系
例3 设A x | x 2 x 6 0 , B x | mx 1 0 ,
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
高中数学必修1复习 PPT课件 图文
x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
人教A版高一数学必修一第一章综合复习 PPT课件 图文
必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )
A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.
高中数学新教材必修一第一章 《集合与常用逻辑用语》全套课件PPT
是不同的对象,相同的对象归入一个集合时,仅算一个元
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
新课引入
问题:
温故而知新
3.在初中我们学过哪些集合?
代数:整数的集合、实数的集合、有理数的集合、 不等式(如x-7>3)的解集等;
几何:点的集合等。 4.在初中,我们用集合描述过什么? 在初中几何中, 如线段AB的中垂线是……
圆是……。
学习新知
1、集合的含义:
(1)1~20以内的所有质数;
(2)我国从2000~2019年所发射的所有人造卫星;
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
记作:
规定:空集是任何集合的子集;
空集是任何非空集合的真子集。
例题示范
运用知识,注重规范
例1、写出集合{a, b}的所有子集,并指出哪些是它
的真子集. ,{a},{b},{a, b}
练习:课本第8页第1题
推广:设一个有限集A中的元素个数为n个,则集 合A的子集的个数为2n个。 其中真子集的个数为 2n-1 个, 非空子集的个数为 2n-1 个, 非空真子集的个数为 2n-2 个。
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
新课引入
问题:
温故而知新
3.在初中我们学过哪些集合?
代数:整数的集合、实数的集合、有理数的集合、 不等式(如x-7>3)的解集等;
几何:点的集合等。 4.在初中,我们用集合描述过什么? 在初中几何中, 如线段AB的中垂线是……
圆是……。
学习新知
1、集合的含义:
(1)1~20以内的所有质数;
(2)我国从2000~2019年所发射的所有人造卫星;
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
记作:
规定:空集是任何集合的子集;
空集是任何非空集合的真子集。
例题示范
运用知识,注重规范
例1、写出集合{a, b}的所有子集,并指出哪些是它
的真子集. ,{a},{b},{a, b}
练习:课本第8页第1题
推广:设一个有限集A中的元素个数为n个,则集 合A的子集的个数为2n个。 其中真子集的个数为 2n-1 个, 非空子集的个数为 2n-1 个, 非空真子集的个数为 2n-2 个。
新版高一数学必修第一册第一章全部课件
1.列举法
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B
高中数学必修一第一章知识点PPt
1.2 函数及其表示
1.2.2 映射概念与分段函数
映射:一般地,设A,B是非空的数集,如果按照某种确定 的对应关系f,使对于集合A中的任意一个数x,在集合B中 都有唯一确定的元素y与之对应,那么就称f:A→B为从集 合A到集合B的一个映射
分段函数:内容引入
例6:函数f
(x)
x
2 2x, x 1, x 2
判定奇偶性四法
(1)定义法:用定义来判断函数奇偶性是主要方法。首先求出函数的定义 域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后 根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。 (2)用必要条件:具有奇偶性函数的定义域必关于原点对称,这是函数具 有奇偶性的必要条件。 例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所 以这个函数不具有奇偶性。 (3)用对称性:若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的 图象关于y轴对称,则f(x)是偶函数。 (4)用函数运算:如果f(x)、g(x)是定义在D上的奇函数,那么在D上, f(x)+g(x)是奇函数,f(x)•g(x)是偶函数。简单地,“奇+奇=奇,奇×奇= 偶”。 类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。
1.2 函数及其表示
1.2.1 函数的概念
一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使
对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它
对应,那么就称f:A→B为从集合A到集合B的一个函数(function),
记作 y=f(x),x∈A
一一对应关系f (x) Nhomakorabeax
B集合
A B x x A,且x B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.集合的分类: 有限集、无限集
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
5.集堂
1.集合的概念:
一般地,指定的某些对象的全体 称为集合,简称“集”.
集合中每个对象叫做这个集合的 元素.
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就说a不属 于集合A,记作aA.
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
5.集堂
1.集合的概念:
一般地,指定的某些对象的全体 称为集合,简称“集”.
集合中每个对象叫做这个集合的 元素.
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就说a不属 于集合A,记作aA.