高一数学必修1第一章: 集合概念

合集下载

高中数学必修1-第一章-集合与函数概念-知识点

高中数学必修1-第一章-集合与函数概念-知识点

第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z有理数集 Q实数集 R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的A⊆(或B⊇A)子集。

记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。

⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(2).“包含”关系(2)—真子集A⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果集合B如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B “元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

新高一数学必修一知识点梳理

新高一数学必修一知识点梳理

第一章〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.【1.1.2】集合间的基本关系(6)子集、真子集、集合相等【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义【2.2.2】对数函数及其性质(5)对数函数〖2.3〗幂函数(1)幂函数的定义一般地,函数y=x a叫做幂函数,其中x为自变量,a 是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.〖补充知识〗二次函数(1)二次函数解析式的三种形式(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.第三章函数的应用一、方程的根与函数的零点。

高一数学必修一之集合

高一数学必修一之集合

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示一、集合与元素的概念1.集合:(1)概念:一般地,某些确定的对象集在一起就成为一个集合,简称集;通常用大写字母A、B、C...表示。

其中的对象可以是一些数、一些点、一些图形、一些整式、一些物体、一些人等等万事万物,每一组的对象或某些指定的对象集在一起就成为一个集合。

(2)集合的两个特性:整体性和确定性在指定一个集合时,必须有明确的标准,这就构成了集合的确定性;所有符合标准的元素的全体构成集合的整体性。

[例题] 下列各项中,不可以组成集合的是( C )A.所有的正数 B.等于2的数 C.接近于0的数 D.不等于0的偶数2.元素:(1)概念:集合中的每一个对象叫做集合中的一个元素,通常用小写字母a,b,c...表示。

对于尚未确定的集合而言,元素具有任意性。

(2)元素的三个特性(属性)对于一个给定的集合它的元素具有三个特性:确定性、互异性和无序性:①元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于(∈)或不属于(∉)。

②元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

③元素的无序性: 集合中元素的位置是可以改变的,并且改变位置不影响集合(排名不分先后)。

至此,我们也就可以把集合定义为:由一些确定的、互异的对象构成的一个全体就叫集合(简称集)[例题] 若集合M = {a,b,c}中的元素是△ABC的三边长,则△ABC一定不是( D )A.锐角三角形B.直角三角形 C.钝角三角形D.等腰三角形二、集合的分类(一)按集合中元素的多少来分:①有限集——元素个数是有限个(其中包括空集、单元素集)②无限集——元素个数是无限个③空集——不含有任何元素(即元素个数为0属于有限集):空集记作∅或{ }注意{∅}表示含有空集的单元素集合,并非空集,空集为集合中的元素。

(二)按元素的属性来分:①数集——元素全部由数组成;②点集——元素全部由点组成,如角平分线;③解集——由方程或方程组、不等式或不等式组的解构成的集合;(其中一部分属于数集如自变量或应变量的值,一部分属于点集或序数对)。

人教版高中数学必修一第一章知识点

人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

高一数学必修1-2知识点总结

高一数学必修1-2知识点总结

高中数学必修1知识点总结 第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)空集的特性①空集是不含任何元素的集合.②空集是任何集合的子集,是任何非空集合的真子集.③空集单独使用时当集合的,但是放在集合里面又可以当元素使用,如{Φ}【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A =A ∅=B A ⊇ B B ⊇Φ=A C U UA C U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f 叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b<≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系. 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤; (2)存在0x I∈,使得0()f x M=.那么,我们称M是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作m x f =)(min .【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.若0)0(≠f ,则0=x 必不在)(x f 的定义域上③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符表示;当n 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关.(0,)+∞上p,q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =xxxxx x(q)0x xfxfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =. 高中数学必修1知识点总结第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

人教版高一数学必修一-第一章-知识点与习题讲解

人教版高一数学必修一-第一章-知识点与习题讲解

必修1第一章集合与函数基础知识点整理第1讲 §1。

1。

1 集合的含义与表示¤知识要点:1。

把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3。

通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。

4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数。

解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B 。

解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈。

【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合。

高一数学必修一必修二知识点

高一数学必修一必修二知识点

精品文档.必修1知识点第一章、集合与函数概念 §1.1.1、集合1、集合三要素:确定性、互异性、无序性。

2、常见集合:正整数集合:*N 或+N ; 整数集合:Z ;有理数集合:Q ; 实数集合:R . 3、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆. 2、如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 空集是任何非空集合的真子集. 4、如果集合A 中含有n 个元素,则集合A 有n 2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集:{|,}UC A x x U x U =∈∉且 §1.2.1、函数的概念1、一个函数的构成要素为:定义域、对应关系、值域.2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1.换元法2.配凑法3.待定系数法4.方程组法 §1.3.1、单调性与最大(小)值注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…五个步骤:取值,作差,化简,定号,小结 §1.3.2、奇偶性1、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数§2.1.1、指数与指数幂的运算1、一般地,如果a x n =,那么x 叫做a 的n 次方根。

高一数学必修1第一章知识点总结

高一数学必修1第一章知识点总结
二.函数的性质 1.函数的单调性(局部性质) (1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任 意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在 区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数
关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
时,都
有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为
y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在
这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右
是上升的,减函数的图象从左到右是下降的.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字 母无关);②定义域一致 (两点必须同时具备) (见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐 标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A) 的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以

高一数学必修一第一章

高一数学必修一第一章
记 作 C U A { x |x U ,且 x A }
.
14
补集可用Venn图表示为:
U A
CUA
.
15
.
16
一般地,我们有:
设A、B是非空数集,如果按照某种确定的 应关系f,使对于集合A中的任意一个数x,在 集合B中都有唯一确定的数f(x)和它对应,那么称 f:A→B为从集合A到集合B的一个函数 ,记作:
第一章 集合与函数概 念
1.1 集合
.
1
一.集合的含义
⑴1到20以内的所有质数; ⑵我国从1991到2003年的13年内所发射的所有
人造卫星; ⑶金星汽车厂2003年生产的所有汽车;
一般地,我们把研究对象统称为元素,把一 些元素组成的总体叫做集合(简称集).
.
2
2.集合中元素具的有几个特征
⑴确定性-因集合是由一些元素组成的总体,当 然,我们所说的“一些元素”是确定的.
(4) 如果f(x)是由几个数学式子构成时, 那么函数的定义域是使各部分式子都有 意义的实数集合。
.
21
1.3.1 函数的最大(小)值
.
22
1.最大值
一般地,设函数y=f(x)的定义域 为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值
2、函数最大(小)值应该是所有函数值中最大(小)的, 即对于任意的x∈I,都有f(x)≤M(f(x)≥M).
.
25
(二)利用函数单调性判断函数的最大(小)值的
方法
1.利用二次函数的性质(配方法)求函数的最大(小)值 2. 利用图象求函数的最大(小)值 3.利用函数单调性的判断函数的最大(小)值

(完整版)高一数学必修一知识点汇总

(完整版)高一数学必修一知识点汇总

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。

1、高中数学必修一 第一章集合 【集合的概念】

1、高中数学必修一 第一章集合 【集合的概念】

1.1 集合的概念
三、集合的表示方法: 1、列举法:将所有元素一一列举出来,并用大括号“= ”括起来 例如:小于10的所有自然数组成的集合 解:设小于10的所有自然数组成的集合为A,那么:
A= 0,1,2,3,4,5,6,7,8,9 2、描述法:设A是一个集合,我们把集合A中所有的具有共同特征P(x) 的元素x所组成的集合表示为:
1.1 集合的概念
一、基本概念 1、元素:我们把研究的对象统称为元素; 2、集合:由一些元素组成的总体叫做集合,简称集; 3、集合中元素的特点:(1)确定性 ,记作a∈A;如果a不是集合 A中的元素,那么就说a不属于集合A,记作a ∉A。
1.1 集合的概念
x∈A P(x) 例如:由大于10小于20的所有整数组成的集合B。 解:B= x∈Z 10<x<20
1.1 集合的概念
1.1 集合的概念
1.1 集合的概念
正整数
整数 0
有理数
负整数

分数

无理数
1.1 集合的概念

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.

高一数学必修1第一章集合定义

高一数学必修1第一章集合定义

(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.答案 D解析 ∵B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },A ={1,2,3,4,5},∴x =2,y =1;x =3,y =1,2;x =4,y =1,2,3;x =5,y =1,2,3,4.∴B ={(2,1},(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B 中所含元素的个数为10.10.如图所示,图中阴影部分(含边界)的点的坐标的集合表示为________.答案 {(x ,y )|-1≤x ≤3,且0≤y ≤3}解析 图中阴影部分点的横坐标-1≤x ≤3,纵坐标为0≤y ≤3,故用描述法可表示为⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤30≤y ≤3. 11.已知集合A ={x |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A . 解 ∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a ·12+2·1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13, ∴集合A ={-13,1}.三、探究与创新12.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.解 方法一 ∵A =B ,∴⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧a 2=b ,ab =1. 解方程组得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧ a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,∴a =-1,b =0,故a 2014+b 2014=1.方法二 由A =B ,可得⎩⎪⎨⎪⎧ 1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab , 即⎩⎪⎨⎪⎧ab (a 3-1)=0, ①(a -1)(a +b +1)=0. ② 因为集合中的元素互异,所以a ≠0,a ≠1.。

人教版高一数学必修一-第一章-知识点与习题讲解

人教版高一数学必修一-第一章-知识点与习题讲解

必修 1 第一章集合与函数基础知识点整理第 1 讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、 无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }” 括起来,基本形式为{a 1,a 2,a 3,,a n },适用于有限集或元素间存在规律的无限集. 描述法,即 用集合所含元素的共同特征来表示,基本形式为{x A |P (x )},既要关注代表元素 x ,也要把 握其属性P (x ) ,适用于无限集.3. 通常用大写拉丁字母 A ,B ,C ,表示集合. 要记住一些常见数集的表示,如自然数集N , 正整数集N *或N +,整数集 Z ,有理数集 Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号 、 表示,例如3N ,-2N . ¤例题精讲:【例 1】试分别用列举法和描述法表示下列集合: (1)由方程x (x 2 -2x -3)=0的所有实数根组成的集合;(2)大于 2且小于 7的整数. 解:(1)用描述法表示为:{x R |x (x 2 -2x -3)=0}; 用列举法表示为{0,-1,3}.(2)用描述法表示为:{x Z |2 x 7}; 用列举法表示为{3,4,5,6}.【例 2】用适当的符号填空:已知 A ={x |x =3k + 2,k Z }, B ={x | x = 6m -1,m Z },则有:17 A ; - 5 A ; 17 B . 解:由3k +2=17,解得k =5Z ,所以17A ;7 由3k +2=-5,解得k =7Z ,所以-5A ; 3 由6m -1=17,解得m =3Z ,所以17B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数y = x + 3与y = -2x + 6的图象的交点组成的集合;(2)二次函数 y =x 2 - 4的函数值组成的集合;(3)反比例函数 y = 2 的自变量的值组成的集合. x2){y |y =x 2 -4}={y | y -4}. 2(3){x |y = 2}={x |x 0}.x点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4} , 也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同, 分析时一定要细心.*【例4】已知集合A = {a | x +a =1有唯一实数解},试用列举法表示集合 A . 解:化方程 x +a =1为:x 2 - x - (a + 2) = 0 .应分以下三种情况:x 2 - 2 ⑴方程有等根且不是2:由 △=0,得a = - 9 ,此时的解为x = 1 ,合.42 ⑵方程有一解为 2 ,而另一解不是- 2 :将 x = 2 代入得 a =- 2 ,此时另一解 x =1-2, 合.}={(1,4)}.解:(1){(x , y )|y =x +3y = -2x + 6⑶方程有一解为- 2 ,而另一解不是 2 :将x=- 2 代入得a= 2 ,此时另一解为x=2+1,合.综上可知,A={-9,- 2, 2}.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第 2 讲§1.1.2 集合间的基本关系¤知识要点:1.一般地,对于两个集合A、B ,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset ),记作A B(或B A),读作“A含于B”(或“B包含A”).2.如果集合A是集合B的子集(A B),且集合B 是集合A的子集(B A),即集合A 与集合B的元素是一样的,因此集合A与集合B相等,记作A=B.3.如果集合A B,但存在元素x B,且x A,则称集合A 是集合B 的真子集(proper subset),记作A B(或B A).4.不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集.5.性质:A A;若A B,B C,则A C;若A I B= A,则A B;若A U B= A,则B A.¤例题精讲:【例1】用适当的符号填空:(1){菱形}{平行四边形};{等腰三角形}{等边三角形}.(2){x R|x2+2=0};0 {0};{0};N {0}.解:(1),;(2)=,∈,,.【例2】设集合A = {x | x = n ,n Z}, B = {x | x = n + 1 ,n Z},则下列图形能表示A与B关系的 A B B A A B A B是().A .B .C. D .解:简单列举两个集合的一些元素,A = {, - 3-1,-1,0,1,1,3,},B ={,-3,-1,1,3,},易知B A,故答案选A.另解:由B ={x | x = 2n +1 , n Z},易知B A,故答案选A.【例3】若集合M =x|x2+x-6=0,N=x|ax-1=0,且N M,求实数a的值. 解:由x2+x-6=0x=2或-3,因此,M = 2, -3.(i)若a=0时,得N=,此时,N M;(ii)若a0 时,得N = {}. 若N M,满足= 2或= -3,解得a= 或a= - .a aa 23 故所求实数a的值为0或1或-1.23 点评:在考察“ A B”这一关系时,不要忘记“ ” ,因为A=时存在A B. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A={a,a+b,a+2b},B={a,ax,ax2}. 若A=B,求实数x的值.解:若a+ax2-2ax=0, 所以a(x-1)2=0,即a=0 或x=1.a +2b =ax2 当a=0 时,集合B中的元素均为0 ,故舍去;当x=1 时,集合B2中的元素均相同,故舍去.若a +b =ax 2ax2-ax-a=0.a +2b =ax因为a≠0,所以2x2-x-1=0, 即(x-1)(2x+1)=0. 又x≠1,所以只有x =-1.经检验,此时A=B成立. 综上所述x=-1.2 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第 3 讲§1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(union set )由属于集合A且属于集合B的元素所组成的集合,称为集合A与B的交集(intersection set)对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集(complementary set)记号A U B (读作“A并B”)A I B (读作“A交B”)ðU A (读作“A的补集”)符号A U B={x|x A,或x B}A I B ={x|x A,且x B}ðA ={x|x U,且x A}图形表示U A¤例题精讲:【例1解:在数轴上表示出集合A、B,如右图所示:BA I B={x|3x5},A A BC (A U B)={x| x-1,或x9}-1 3 5 9 x4【例2】设A ={x Z | | x | 6}, B =1, 2,3, C =3,4,5,6,求: (1)A I(B I C ); (2)A Ið(B U C ).解:Q A =-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6.(1)又Q B I C =3,∴ A I ( B I C ) = 3; (2)又Q B U C =1,2,3,4,5,6,∴ A I C (B U C )=-6,-5,-4,-3,-2,-1,0.例3】已知集合A = {x | - 2 x 4} , B = {x | x m } ,且A I B = A ,求实数m 的取值范围. 解:由A I B = A ,可得A B . 在数轴上表示集合A 与集合 B ,如右图所示: B A由图形可知, m 4. 4-2m x 4 m x点评:研究不等式所表示的集合问题,常常由集合之 间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集U ={x |x 10,且x N *},A ={2,4,5,8},B ={1,3,5,8},求C (A U B ),C (A I B ), (C U A )I (C U B ), (C U A ) U (C U B ) ,并比较它们的关系. 解:由A U B ={1,2,3,4,5,8},则C U (A U B )={6,7,9}. 由A I B ={5,8},则C U (A I B )={1,2,3,4,6,7,9} 由C U A ={1,3,6,7,9},C U B ={2,4,6,7,9}, 则(C U A )I (C U B )={6,7,9}, (C U A )U(C U B )={1,2,3,4,6,7,9}. 由计算结果可以知道,(C U A )U(C U B ) =C U (A I B ),(C U A )I(C U B ) =C U (A U B ). 另解:作出 Venn 图,如右图所示,由图形可以直接观察出来结果. 点评:可用 Venn 图研究(CA )U(CB ) =C (A I B ) 与(C A )I(C B ) =C (A U B ) ,在理解的 基础记住此结论,有助于今后迅速解决一些集合问题.¤知识要点:Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图 形,我们还可以发现一些集合性质: C U (A I B ) = (C U A ) U (C U B ) , C U (A U B ) = (C U A ) I (C U B ) .2. 集合元素个数公式:n (A U B ) =n (A )+n (B )-n (A I B ).3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查 创新思维.¤例题精讲:【例 1】设集合A =-4,2a -1,a 2,B =9,a -5,1-a,若A I B =9,求实数a 的值. 解:由于A =-4,2a -1,a 2,B =9,a -5,1-a ,且A I B =9 ,则有:当2a -1=9时, 解得a =5,此时A ={-4, 9, 25},B ={9, 0, -4},不合题意,故舍去; 当 a 2=9 时,解得 a =3或-3 .a =3时, A ={-4,5,9}, B ={9,-2,-2},不合题意,故舍去; a =-3,A ={-4, -7, 9},B ={9, -8, 4} ,合题意. 所以, a =-3.【例2】设集合A ={x |(x -3)(x -a )=0,a R },B ={x |(x -4)(x -1)=0},求A U B , A I B .(教 材 P 14 B 组题 2 ) 解:B ={1,4}.当a =3时,A ={3},则A U B ={1,3,4},A I B =; 当a = 1时, A = {1,3} ,则A U B = {1,3,4}, A I B ={1}; 当a = 4时, A = {3, 4} ,则A U B = {1,3,4}, A I B ={4}; 当a 3且a 1且a 4时,A ={3,a },则A U B ={1,3,4,a },A I B =. 点评:集合 A 含有参数 a ,需要对参数 a 进行分情况讨论. 罗列参数 a 的各种情况时, 需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x|x2+4x=0},B ={x|x2+2(a+1)x+a2-1=0,a R},若A I B=B,求实数a的值.解:先化简集合A={-4,0}. 由A I B=B,则B A,可知集合B可为,或为{0},或{-4},或{-4,0}.(i)若B=,则=4(a+1)2-4(a2-1)0,解得a<-1;(ii)若0 B,代入得a2-1=0a=1或a=-1,当a =1 时,B=A,符合题意;当a = -1时,B={0} A,也符合题意.(iii)若-4B,代入得a2-8a + 7 = 0 a=7或a=1,当a =1时,已经讨论,符合题意;当a=7时,B={-12,-4},不符合题意.综上可得,a=1或a≤-1.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A与B,若定义A-B={x|x A,且x B},当集合A={x|x8,x N*},集合B = {x | x(x - 2)(x - 5)(x - 6) = 0}时,有A - B = . (由教材P12 补集定义“集合A相对于全集U的补集为C U A={x| x U,且x A}”而拓展)解:根据题意可知,A={1,2,3,4,5,6,7,8},B={0,2,5,6} 由定义A-B={x| x A,且x B},则A-B={1,3,4,7,8}.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素. 如果再给定全集U,则A-B也相当于A I (C U B).¤知识要点:1.设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function),记作y = f(x),x A.其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{ f (x) | x A}叫值域(range).2.设a、b是两个实数,且a<b,则:{x|a≤x≤b}=[a,b] 叫闭区间;{x|a<x<b}=(a,b) 叫开区间;6{x |a ≤x <b }=[a ,b ) , {x |a <x ≤b }=(a ,b ],都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{x | x a } = (a , +) , {x | x a }=[a ,+),{x | x b }=(-,b ),{x |x b }=(-,b ],R =(-,+).3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分 别相同时,函数才是同一函数.¤例题精讲:(2)由,解得 x 3且 x 9,3x -1-2所以原函数定义域为[3,9)U(9,+).【例 2】求下列函数的定义域与值域:(1) y = 3x + 25- 4x解:(1)要使函数有意义,则5-4x 0,解得x 5. 所以原函数的定义域是{x | x 5}.3x + 2 1 12 x + 8 1 3(4 x - 5) + 23 3 23 3 3 3 y = = = =- + - +0=- ,所以值域为{y | y - }.5- 4x 4 5-4x 4 5- 4x 4 5- 4x444(2) y = -x 2+ x + 2 = -(x - 1)2+ 9. 所以原函数的定义域是 R ,值域是(-,9]. 24 4【例3】已知函数 f (1-x )=x . 求:(1) f (2)的值; (2) f (x )的表达式1 + x解:( 1)由1-x =2,解得x =-1,所以 f (2)=-1.1 + x3 32)设1+x =t ,解得x =1+t ,所以 f (t )=1+t ,即 f (x )=1+x. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函 数的研究,常常需要结合换元法、特值代入、方程思想等.2【例 4】已知函数 f (x )=x ,x R .1 + x 21)求 f (x )+ f (1)的值;(2)计算:x(2)原式= f (1)+(f (2)+ f (12))+(f (3)+ f (13))+(f (4)+ f (14))=12+3=72 点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的 关键.¤知识要点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象, 反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看 出函数值).例 1 】求下列函数的定义域: ( 1 ) y =x +12-1;(2) x -3 y = 3 x -1-2.解:( 1)由 x +2 -10,解得x -1且x -3, 所以原函数定义域为(-,-3)U(-3,-1)U(-1,+).解:( 1)由 f (x )+ f (1)=x 2x 2x2 1 + x 21 + x 21+x2+= 1 + x 1 + x 1 + x=1.2) y = - x + x + 2.f (1)+ f (2)+ f (3)+ f (4)+2.分段函数的表示法与意义(一个函数,不同范围的x,对应法则不同).3.一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f : A→ B 为从集合A 到集合B的一个映射(mapping).记作“ f : A→ B”.判别一个对应是否映射的关键:A中任意,B中唯一;对应法则f. ¤例题精讲:【例1】如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是______________ ,这个函数的定义域为______ .解:盒子的高为x,长、宽为a-2x,所以体积为V=x(a-2 x)2. 又由a-2 x0 ,解得x a.2所以,体积V以x为自变量的函数式是V =x(a-2x)2,定义域为{x|0x a}.【例2】已知f(x)= x+2x+2 x(-,1),求f [f(0)]的值.x3+ x-3x(1,+)解:∵ 0(-,1),∴ f(0)= 3 2.又∵ 3 2 >1 ,∴ f(32)=(3 2)3+(3 2)-3=2+1=5,即f[f(0)]= 5.【例3】画出下列函数的图象:(1)y=|x-2|; (教材P26 练习题3)(2) y =| x-1|+|2x+4|.解:( 1)由绝对值的概念,有y =| x - 2 |= x - 2, x2.2 -x, x 2 所以,函数y=| x - 2 |的图象如右图所示.3x+3, x 1(2)y =|x-1|+|2x+4|=x+5, -2x 1,-3 x- 3, x -2所以,函数y=|x -1|+|2x+4|的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数f(x)=[x]的函数值表示不超过x的最大整数,例如[-3.5]=-4,[2.1]=2,当x(-2.5,3]时,写出f(x)的解析式,并作出函数的图象.-3, -2.5 x -2-2, -2 x -1-1, -1x0 解:f(x)=0, 0x 11, 1x 2函数图象如右:2, 2 x 33, x = 3点评:解题关键是理解符号m的概念,抓住分段函数的对应函数式.8域 I 内的某个区间 D 内的任意两个自变量 x 1 , x 2 ,当 x 1<x 2 时, 都有 f (x 1)<f (x 2),那么就说 f (x )在区间 D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数 f (x )在某个区间 D 上是增函数或减函数,就 说 f (x )在这一区间上具有(严格的)单调性,区间 D 叫 f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图 1),减函数的图象 从左向右是下降的(如右图 2). 由此,可以直观观察函数图象上升与下降的变化趋势,得 到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1 、x 2 ∈给定区间,且 x 1<x 2;→计算 f (x 1 )-f (x 2 ) →判断符 号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数 f (x )= 2x 在区间(0,1)上的单调性.x - 1解:任取x 1, x 2 ∈(0,1),且x 1 x 2 . 则 f (x 1)- f (x 2)= 2x 1 - 2x 2 = 2(x 2-x 1) .x - 1 x -1 (x -1)(x -1) 由于0x x 1,x -10,x -10,x -x0,故 f (x )-f (x )0,即 f (x ) f (x ).所以,函数 f (x )= 2 x 在(0,1)上是减函数.x -1【例2】求二次函数 f (x )=ax 2+bx +c (a 0)的单调区间及单调性. 解:设任意x ,x R ,且x x . 则f (x )- f (x )=(ax 2+bx +c )-(ax 2+bx +c )=a (x 2-x 2)+b (x -x ) =(x -x )[a (x +x )+b ]. 若 a 0 ,当x x -时,有x -x 0 , x +x - ,即a (x +x )+b 0 ,从而122 a12 12a12f (x 1)-f (x 2)0,即 f (x 1)f (x 2 ) ,所以 f (x )在(-,- b]上单调递增. 同理可得 f (x )在[- b ,+) 2a 2a上单调递减.【例 3】求下列函数的单调区间: (1)y =|x -1|+|2x +4|;(2)y =-x 2 +2|x |+3.3x +3, x1解:(1)y =|x -1|+|2x +4|=x +5, -2x 1,其图象如右. -3 x - 3, x -2由图可知,函数在[-2,+)上是增函数,在(-,-2]上是减函数.(2)y =-x2+2|x|+3=-x +2x +3, x 0,其图象如右.- x - 2x + 3, x 0由图可知,函数在(-,-1]、[0,1]上是增函数,在[-1,0]、[1,+) 上是减函数. 点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第 2 小题也可以由偶函数的对称性,先作 y 轴右侧的图象,并把 y 轴右侧的图象对折 到左侧,得到 f (| x |) 的图象. 由图象研究单调性,关键在于正确作出函数图象.1.定义最大值:设函数y = f (x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f (x) ≤M;存在x0∈I,使得f(x0) = M. 那么,称M是函数y = f (x)的最大值(Maximum Value). 仿照最大值定义,可以给出最小值(Minimum Value)的定义.2.配方法:研究二次函数y=ax2+bx+c (a0) 的最大(小)值,先配方成y=a(x+ b )2+4ac-b后,当a0时,函数取最小值为4ac-b;当a0时,函数取最大值2a4a4a4ac - b24a3.单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数y= 6的最大值.x+x+1解:配方为y= 6,由(x+1)2+33,得068.y=1)2 +3 (x+2)+4 4 0(x+1)2 +38(x+24 24 所以函数的最大值为8.【例2】某商人如果将进货单价为8 元的商品按每件10 元售出时,每天可售出100 件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10 件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x元,则提高了(x-10)元,减少了10g(x-10)件,所赚得的利润为y = (x -8)g[100-10g(x -10)].即y=-10x2+280x-1600=-10(x-14)2+360. 当x=14时,y =360. 所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360 元. 【例3】求函数y = 2x + x - 1的最小值.解:此函数的定义域为1, +) ,且函数在定义域上是增函数,所以当x =1时,y min =2+ 1-1 = 2 ,函数的最小值为2.点评:形如y = ax + b cx+d的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令x-1=t,则t0 ,x=t2+1 ,所以y=2t2+t+2=2(t+1)2+15,在t0时是增函数,当t =0时,y =2,故48函数的最小值为2.【例4】求下列函数的最大值和最小值:53(1)y=3-2x-x , x[-2,2]; (2)y=|x+1|-|x-2|. 解:( 1)二次函数y =3-2x-x2的对称轴为x =-b,即x=-1.2a画出函数的图象,由图可知,当x=-1时,y max=4;当x = 23时,y min10所以函数y =3-2x -x 2, x [-5,3]的最大值为 4,最小值为- 9 . 3(x 2)(2) y =|x +1|-|x -2|=2x -1 (-1 x 2).-3 ( x -1)作出函数的图象,由图可知, y [-3,3]. 所以函数的最大值为 3, 最小值为-3. 点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图 象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函 数的图象注意分段作出.¤知识要点:1. 定义:一般地,对于函数 f (x )定义域内的任意一个x ,都有 f (- x ) = f (x ) ,那么函数 f (x )叫偶函数(even function ). 如果对于函数定义域内的任意一个 x ,都有 f (-x ) =-f (x ) ),那么 函数 f (x )叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函 数图象关于 y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判 别 f (-x )与 f (x )的关系.¤例题精讲:【例 1】判别下列函数的奇偶性:(1) f (x )=x 3-1; (2) f (x )=|x -1|+|x +1|;(3) f (x )=x 2-x 3.x 解:( 1)原函数定义域为{x | x 0} ,对于定义域的每一个 x ,都有 f (-x )=(-x )3- 1=-(x 3- 1)=-f (x ), 所以为奇函数.- xx(2)原函数定义域为 R ,对于定义域的每一个 x ,都有 f (-x )=|-x -1|+|-x +1|=|x -1|+|x +1|= f (x ) ,所以为偶函数. (3) 由于 f (-x )=x 2+x 3f (x ),所以原函数为非奇非偶函数. 【例2】已知 f (x )是奇函数,g (x )是偶函数,且 f (x )-g (x )=1 ,求 f (x )、g (x ).x +1 解:∵ f (x )是奇函数,g (x )是偶函数,∴ f (-x )=-f (x ),g (-x )=g (x ).两式相减,解得 f (x )= x ;两式相加,解得 g (x )= 1x 2 - 1 x 2 - 1则f ( x ) -g ( x ) =1x +1 f (-x )-g (-x ) = 1-x +1即f (x )-g (x )=x1+1-f (x )-g (x )=1 -x +1。

高一上数学集合的概念

高一上数学集合的概念

高一上数学集合的概念【实用版】目录1.集合的定义与表示方法2.集合的元素特性3.集合的分类4.集合的运算5.集合的应用正文1.集合的定义与表示方法集合是数学中的一个基本概念,它是由一些确定的、互不相同的元素所组成的整体。

集合可以用大写字母表示,例如 A、B 等。

集合的元素则用小写字母表示,例如 a、b 等。

集合的定义可以表述为:{a, b, c,...} 或者写作 A = {a, b, c,...}。

2.集合的元素特性集合的元素具有以下特性:(1)确定性:集合中的元素是确定的,不会随意改变。

(2)互异性:集合中的元素互不相同,没有重复的元素。

(3)无序性:集合中的元素没有固定的顺序。

3.集合的分类集合可以按照元素的性质进行分类,常见的分类有:(1)自然数集合:由 0 和正整数组成的集合,表示为 N。

(2)整数集合:由 0、正整数、负整数组成的集合,表示为 Z。

(3)有理数集合:由所有可以表示为两个整数比的数组成的集合,表示为 Q。

(4)实数集合:由所有有理数和无理数组成的集合,表示为 R。

4.集合的运算集合的运算包括并集、交集、补集、子集等。

(1)并集:两个集合的所有元素组成的集合,表示为 A ∪ B。

(2)交集:两个集合共有的元素组成的集合,表示为 A ∩ B。

(3)补集:一个集合的所有元素不属于另一个集合,表示为 A" 或C(A)。

(4)子集:一个集合的所有元素都属于另一个集合,表示为 A B。

5.集合的应用集合在数学中有广泛的应用,例如在数论、代数、几何等领域。

同时,集合的概念也被广泛应用到计算机科学、信息理论等领域。

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。

2、空集的含义:不含任何元素的集合叫做空集,记为Ø。

3、集合中元素的三个特性:确定性、互异性、无序性。

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。

集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。

例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。

4、元素与集合之间只能用“∈”或“∉”符号连接。

5、集合的分类:(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合。

6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。

在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。

二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1第一章:集合概念
集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队
员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。

u 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集N*或N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x&Icirc;R| x-3&gt;2} ,{x|
x-3&gt;2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集含有有限个元素的集合
(2) 无限集含有无限个元素的集合
(3) 空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:
有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B (5&ge;5,且5&le;5,则5=5)
实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

A&Iacute;A
②真子集:如果A&Iacute;B,且A&sup1; B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A&Iacute;B, B&Iacute;C ,那么A&Iacute;C
④如果A&Iacute;B 同时B&Iacute;A 那么A=B
3. 不含任何元素的集合叫做空集,记为&Phi;
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的
门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

u 有n个元素的集合,含有2n个子集,2n-1个真子集
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

三、集合的运算
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事
教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

相关文档
最新文档