有趣的斐波那契数列例子

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斐波那契数列

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……

这个数列从第三项开始,每一项都等于前两项之和。

斐波那契数列通项公式

通项公式

(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。)

注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)

通项公式的推导

斐波那契数列:1、1、2、3、5、8、13、21、……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(0) = 0,F(1)=1,F(n)=F(n-1)+F(n-2) (n≥2),

显然这是一个线性递推数列。

方法一:利用特征方程(线性代数解法)

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2,,X2=(1-√5)/2。

则F(n)=C1*X1^n + C2*X2^n。

∵F(1)=F(2)=1。

∴C1*X1 + C2*X2。

C1*X1^2 + C2*X2^2。

解得C1=1/√5,C2=-1/√5。

∴F(n)=(1/√5)*{[(1+√5)/2]^(n+1) - [(1-√5)/2]^(n+1)}(√5表示根号5)。

方法二:待定系数法构造等比数列1(初等待数解法)

设常数r,s。

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

则r+s=1,-rs=1。

n≥3时,有。

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]。

联立以上n-2个式子,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。

∵s=1-r,F(1)=F(2)=1。

上式可化简得:

F(n)=s^(n-1)+r*F(n-1) 。

那么:

F(n)=s^(n-1)+r*F(n-1)。

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。

=(s^n - r^n)/(s-r)。

r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2。

则F(n)=(1/√5)*{[(1+√5)/2]^(n+1) - [(1-√5)/2]^(n+1)}。

方法三:待定系数法构造等比数列2(初等待数解法)

已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。

解:设an-αa(n-1)=β(a(n-1)-αa(n-2))。

得α+β=1。

αβ=-1。

构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。

所以。

an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1 )`````````1。

an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1 )`````````2。

由式1,式2,可得。

an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。

an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。

将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。

与黄金分割的关系

有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n无穷大时(an-1)/an越来越逼近黄金分割数0.618。

1÷1=1,2÷1=2,3÷2=1.5,5÷3=1.666...,8÷5=1.6,…………,89÷55=1.6181818…,…………233÷144=1.618055…75025÷46368=1.6180339889…。..

越到后面,这些比值越接近黄金比.

证明:

a[n+2]=a[n+1]+a[n]。

两边同时除以a[n+1]得到:

a[n+2]/a[n+1]=1+a[n]/a[n+1]。

若a[n+1]/a[n]的极限存在,设其极限为x,

则lim[n->∞](a[n+2]/a[n+1])=lim[n->∞](a[n+1]/a[n])=x。

所以x=1+1/x。

即x²=x+1。

所以极限是黄金分割比。

奇妙的属性

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数。比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢?

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……

从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)

多了的一在哪?

如果你看到有这样一个题目:

某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故

作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、

相关文档
最新文档