(完整版)高中数学完整讲义——排列与组合5.排列组合问题的常见模型1(可编辑修改word版)

合集下载

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

1思维的开掘 能力的飞跃1.基本计数原理⑴加法原理 分类计数原理:做一件事,完成它有n 类方法,在第一类方法中有1m 种不同的方法,在第二类方法中有2m 种方法,……,在第n 类方法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.⑴乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.⑴加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.〔其中被取的对象叫做元素〕排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.知识内容排列组合问题的常见模型12 思维的开掘 能力的飞跃⑴组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C mn 表示. 组合数公式:(1)(2)(1)!C !!()!mn n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.〔规定0C 1n =〕⑴排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题〔分成几堆,无序〕.有等分、不等分、部分等分之别.一般地平均分成n 堆〔组〕,必须除以n !,如果有m 堆〔组〕元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ⑴元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ⑴位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;⑴间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,防止“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:⑴对特殊元素进行优先安排;⑴理解题意后进行合理和准确分类,分类后要验证是否不重不漏;⑴对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑴顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑴对于正面考虑太复杂的问题,可以考虑反面.⑴对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑴其中甲、乙两人不相邻有多少种不同的排法?⑴其中甲、乙两人不站排头和排尾有多少种不同的排法?⑴其中甲不站排头,且乙不站排尾有多少种不同的排法?3思维的开掘能力的飞跃【例3】7名同学排队照相.⑴假设分成两排照,前排3人,后排4人,有多少种不同的排法?⑵假设排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶假设排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷假设排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例4】6个队员排成一排,⑴共有多少种不同的排法?⑴假设甲必须站在排头,有多少种不同的排法?⑶假设甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】ABCDE五个字母排成一排,假设ABC的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法〔用数字作答〕.【例6】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个〔用数字作答〕.4 思维的开掘能力的飞跃5思维的开掘 能力的飞跃【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有〔 〕A .1440种B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,假设其他人的相对顺序不变,则不同调整方法的总数是〔 〕A .2283C AB .2686C A C .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有〔 〕A .1440种B .960种C .720种D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是〔 〕A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.6 思维的开掘 能力的飞跃【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法〔用数字作答〕.【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【例14】 3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种〔结果用数值表示〕.【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有〔 〕种.A .288B .576C .864D .11527思维的开掘 能力的飞跃【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排〔字母和数字均不能重复〕.每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.〔用数字作答〕【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排〔字母和数字均不能重复〕.每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.〔用数字作答〕【例19】6个人坐在一排10个座位上,问 ⑴ 空位不相邻的坐法有多少种?⑵ 4个空位只有3个相邻的坐法有多少种?⑶ 4个空位至多有2个相邻的坐法有多少种?【例20】 3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A .360B .288C .216D .968 思维的开掘 能力的飞跃【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有〔 〕A .2283C AB .2686C A C .2286C AD .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有〔 〕A .36种B .108种C .216种D .432种数字问题【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑴可能组成多少个四位奇数?⑴可能组成多少个四位偶数?⑴可能组成多少个自然数?【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数?9思维的开掘 能力的飞跃【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个?【例28】 用0129,,,,这十个数字组成无重复数字的四位数,假设千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个〔用数学作答〕.【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这810 思维的开掘 能力的飞跃 张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种.432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有〔 〕 A .1344种 B .1248种 C .1056种 D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种〔用数字作答〕.【例33】 用1,2,3,4,5,6组成六位数〔没有重复数字〕,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________〔用数字作答〕.【例34】 用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有〔 〕A .48个B .36个C .24个D .18个【例35】 从1238910,,,,,这6个数中,取出两个,使其和为偶数,则共可得到 个这样的不同偶数?高中数学讲义 11思维的开掘 能力的飞跃【例36】 求无重复数字的六位数中,能被3整除的数有______个.【例37】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个〔用数学作答〕.【例38】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔 〕A .300B .216C .180D .162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔 〕A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一起的有几个?⑴⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?高中数学讲义 12 思维的开掘 能力的飞跃⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数?【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种〔用数字作答〕.【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有〔 〕个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430高中数学讲义 13 思维的开掘 能力的飞跃【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个?【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?。

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。

下面介绍一些常见的排列组合问题的解题方法和策略。

1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。

6.2排列与组合(学生版) 讲义-2021-2022学年人教A版(2019)高中数学选择性必修第三册

6.2排列与组合(学生版) 讲义-2021-2022学年人教A版(2019)高中数学选择性必修第三册

排列与组合一排列概念的理解1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.根据排列的定义,两个排列相同的充要条件:(1)两个排列的元素_完全相同;(2)元素的排列顺序也相同.注意点:(1)要求m≤n.(2)按照一定顺序排列,顺序不同,排列不同.二画树状图写排列利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.三简单的排列问题要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.四排列数公式1.排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.2.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!(n,m∈N*,m≤n).3.全排列:把n个不同的元素全部取出的一个排列,叫做n个元素的一个全排列.正整数1到n的连乘积,叫做n的阶乘,用n!表示,于是,n个元素的全排列数公式可以写成A n n=n(n-1)(n-2)×…×2×1=n!.规定:0!=1.注意点:(1)乘积是m个连续正整数的乘积;(2)第一个数最大,是A的下标n;(3)第m个数最小,是n-m+1.五利用排列数公式化简与证明排列数公式的阶乘形式主要用于与排列数有关的证明、解方程和不等式等问题,具体应用时注意阶乘的性质,提取公因式,可以简化计算.六排列数公式的简单应用对于简单的排列问题可直接代入排列数公式,也可以用树状图法.情况较多的情形,可以进行分类后进行.七元素的“在”与“不在”问题解决排列应用题,常用的思考方法有直接法和间接法.排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个“位子”上或某个“位子”不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊“位子”.八“相邻”与“不相邻”问题处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.九定序问题在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻).解决这类问题的基本方法有两个:(1)整体法,即若有(m+n)个元素排成一列,其中m个元素之间的先后顺序确定不变,将这(m+n)个元素排成一列,有A m+nm+n种不同的排法;然后任取一个排列,固定其他n个元素的位置不动,把这m个元素交换顺序,有A m m种排法,其中只有一个排列是我们需要的,因此共有A m+nm+nA m m种满足条件的不同排法;(2)插空法,即m个元素之间的先后顺序确定不变,因此先排这m个元素,只有一种排法,然后把剩下的n个元素分类或分步插入由以上m个元素形成的空中.十组合概念的理解组合:一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.注意点:(1)组合中取出的元素没有顺序;(2)两个组合相同的充要条件是其中的元素完全相同.十一利用组合数公式化简、求值与证明(1)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.(2)组合数公式:C m n=A m nA m m=n n-1n-2…n-m+1m!或C m n=n!m!n-m!(n,m∈N*,且m≤n).(3)规定:C0n=1.注意点:(1)m≤n,m,n∈N*;(2)C m n=A m nA m m=n n-1n-2…[n-m-1]m!常用于计算;(3)C m n=n!m!n-m!常用于证明.(1)两个组合数公式在使用中的用途有所区别.(2)在解有关组合数的方程或不等式时,必须注意隐含条件,即C m n中的n为正整数,m为自然数,且n≥m.因此求出方程或不等式的解后,要进行检验,将不符合的解舍去.十二简单的组合问题解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.十三组合数的性质1组合数的性质1:C m n=C n-mn.注意点:(1)体现了“取法”与“剩法”是一一对应的思想;(2)两边下标相同,上标之和等于下标.十四组合数的性质2组合数的性质2:C m n+1=C m n+C m-1n.注意点:(1)下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;(2)体现了“含”与“不含”的分类思想.性质2常用于有关组合数式子的化简或组合数恒等式的证明.应用时要注意公式的正用、逆=C m n+1-用和变形用.正用是将一个组合数拆成两个,逆用则是“合二为一”,使用变形C m-1nC m n,为某些项前后抵消提供了方便,在解题中要注意灵活应用.十五组合数在实际问题中的简单应用在求与两个基本原理的应用有关的问题时,即分类与分步的运用,在分类与分步时,一定要注意有无重复和遗漏.十六有限制条件的排列、组合问题有限制条件的抽(选)取问题,主要有两类(1)“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数.(2)“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.十七多面手问题解决多面手问题时,依据多面手参加的人数和从事的工作进行分类,将问题细化为较小的问题后再处理.十八分组、分配问题角度1不同元素分组、分配问题“分组”与“分配”问题的解法(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.角度2相同元素分配问题反思感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1种方法.可描述为(n-1)个空中插n-1入(m-1)块隔板.考点一 排列的概念【例1】(2021年广东汕头)(1)下列问题是排列问题的是( )A .从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B .10个人互相通信一次,共写了多少封信?C .平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?(2)从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为( )A .2B .3C .4D .5【练1】(2020·新疆)已知2132n A =,则n =( )A .11B .12C .13D .14考点二 排列数 【例2】(2020·全国高二单元测试)对于满足13n ≥的正整数n ,(5)(6)(12)n n n --⋅⋅⋅-=( )A .712n A -B .75n A -C .85n A -D .125n A -【练2】(2020·江西九江一中)5人随机排成一排,其中甲、乙不相邻的概率为( )A .15B .25C .35D .45考点三 排队问题【例3】(2021·全国高二练习)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,女生必须站在一起;(4)全体排成一排,男生互不相邻;(5)全体排成一排,其中甲不站最左边,也不站最右边;(6)全体排成一排,其中甲不站最左边,乙不站最右边.【练3】(2020·江苏高二期中)由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是( )A.36B.72C.600D.480考点四数字问题【例4】(2020·浙江省东阳中学)由0,1,2,3,4,5共6个不同数字组成的6位数,要求0不能在个位数,奇数恰好有2个相邻,则组成这样不同的6位数的个数是( )A.144B.216C.288D.432考点五组合的概念【例5】(2020·广东湛江高二单元测试)给出下列问题:①有10个车站,共需要准备多少种车票?②有10个车站,共有多少中不同的票价?③平面内有10个点,共可作出多少条不同的有向线段?④有10个同学,假期约定每两人通电话一次,共需通话多少次?⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?以上问题中,属于组合问题的是_________(填写问题序号).【练5】下列问题不是组合问题的是 ( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C .集合{a 1,a 2,a 3,…,a n }的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?考点六 组合数【例6】(2020·陕西高二期末)若()6671*n n n C C C n +-=∈Ν,则n 等于( )A .11B .12C .13D .14【练6】(2020·山东菏泽·高二期末)已知4m ≥,3441m m m C C C +-+=( )A .1B .mC .1m +D .0考点七 组合应用 【例7】(2020·江苏金湖中学)一个口袋内有3个不同的红球,4个不同的白球(1)从中任取3个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于6分的取法有多少种?【练7】(2020·北京朝阳·高二期末)从3名男生和4名女生中各选2人组成一队参加数学建模比赛,则不同的选法种数是( )A.12B.18C.35D.36考点八全排列【例8】(2020·全国专题练习)在新冠肺炎疫情防控期间,某记者要去武汉4个方舱医院采访,则不同的采访顺序有( )A.4种B.12种C.18种D.24种【练8】(2020·中山大学附属中学高二期中)一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为( )A.4B.44C.24D.48考点九相邻问题【例9】(2021·河北张家口市)某班优秀学习小组有甲、乙、丙、丁、戊共5人,他们排成一排照相,则甲、乙二人相邻的排法种数为( )A.24B.36C.48D.60【练9】(2020·沙坪坝区·重庆八中)小涛、小江、小玉与本校的另外2名同学一同参加《中国诗词大会》的决赛,5人坐成一排,若小涛与小江、小玉都相邻,则不同坐法的总数为( )A.6B.12C.18D.24考点十 不相邻问题【例10】(2020·河北石家庄市·石家庄二中高二期中)省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有( )种安排方式. A .12 B .24 C .36 D .48【练10】(2020·全国)六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .14考点十一 分组分配【例11】(2020·全国)疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种 B .90种C .150种D .240种【练11】(2020·全国)将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法.考点十二 几何问题【例12】(2020·全国)如图,MON 的边OM 上有四点1A 、2A 、3A 、4A ,ON 上有三点1B 、2B 、3B ,则以O 、1A 、2A 、3A 、4A 、1B 、2B 、3B 中三点为顶点的三角形的个数为( )A .30B .42C .54D .56【练12】(2021·全国)直线x m =,y x =将圆面224x y +≤分成若干块,现有5种颜色给这若干块涂色,且任意两块不同色,则所有可能的涂色种数是( ) A .20 B .60C .120D .240考点十三 方程不等式问题【例13】(2020·全国)方程10x y z ++=的正整数解的个数__________.【练13】(2021·太原市)不定方程12x y z ++=的非负整数解的个数为( ) A .55 B .60C .91D .540考点十四 数字问题【例14】(2020·南通西藏民族中学)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( ) A .6种 B .9种C .10种D .15种【练14】已知集合{}A a b c d =,,,,从集合A 中任取2个元素组成集合B ,则集合B 中含有元素b 的概率为( )A.16B.13C.12D.1课后练习1.(2021高二下·天津期中)用1,2,3,4,5,6组成没有重复数字的五位数,要求偶数不能相邻,则这样的五位数有()个A.120B.216C.222D.2522.(2021高二下·临沂期末)若A n3=8C n2,则n=()A.4B.5C.6D.73.(2021高二下·梅州期末)在象棋比赛中,参赛的任意两位选手都比赛一场,其中胜者得2分,负者得0分,平局各得1分.现有四名学生分别统计全部选手的总得分为55分,56分,57分,58分,但其中只有一名学生的统计结果是正确的,则参赛选手共有()A.6位B.7位C.8位D.9位4.(2021高三上·运城开学考)某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是()A.90B.216C.144D.2405.(2020高二上·昌平期末)某社区5名工作人员要到4个小区进行“爱分类”活动的宣传,要求每名工作人员只去一个小区,每个小区至少去一名工作人员,则不同的安排方法共有种.6.(2021·富平模拟)2021年是中国共产党百年华诞.某学校社团将举办庆祝中国共产党成立100周年革命歌曲展演.现从《歌唱祖国》、《英雄赞歌》、《唱支山歌给党听》、《毛主席派人来》4首独唱歌曲和《没有共产党就没有新中国》、《我和我的祖国》2首合唱歌曲中共选出4首歌曲安排演出,要求最后一首歌曲必须是合唱,则不同的安排方法共有种.7.(2021高二下·郑州期末)2021年7月1日是中国共产党成立100周年纪念日,2021年也是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注,作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成个不同的六位数.8.(2021·三明模拟)设n∈N且n<5,若62021+n能被5整除,则n等于.9.(2021高二下·江苏期中)用0,1,2,3,4,5这六个数字:(最后运算结果请以数字作答)(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的四位数?(3)能组成多少个无重复数字且比1230大的四位数?)m(m∈N∗)的展开式中,第三项系数是10.(2021高二下·郑州期末)在二项式(x2+2√x.倒数第三项系数的18(1)求m的值;(2)求展开式中所有的有理项.精讲答案【例1】 【答案】(1)B(2)B【解析】(1)排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序相关的,其他问题都与顺序无关,所以选B. (2)排列与顺序有关,故②④⑤是排列. 【练1】 【答案】B【解析】∵2132n A =,∴(1)132n n -=,整理,得,21320n n --=;解得12n =,或11n =- (不合题意,舍去);∴n 的值为12. 故选:B. 【例2】 【答案】C【解析】根据排列数定义,要确定元素总数和选取个数,元素总数为5n -,选取个数为(5)(12)18n n ---+=,85(5)(6)(12)n n n n A ---⋅⋅⋅-=.故选:C .【练2】 【答案】C【解析】将5人随机排成一列,共有55120A =种排列方法;当甲、乙不相邻时,先将5人中除甲、乙之外的3人排成一列,然后将甲、乙插入,故共有323461272A A =⨯=种排列方法,则5人随机排成一排,其中甲、乙不相邻的概率为7231205P ==. 故选:C. 【例3】【答案】(1)2520;(2)5040;(3)576;(4)1440;(5)3600;(6)3720.【解析】(1)从7人中选5人排列,共有57765432520A =⨯⨯⨯⨯=(种).(2)分两步完成,先选3人站前排,有37A 种方法,余下4人站后排,有44A 种方法,按照分步乘法计数原理计算可得一共有347476543215040A A ⋅=⨯⨯⨯⨯⨯⨯=(种).(3)捆绑法,将女生看成一个整体,进行全排列,有44A 种,再与3名男生进行全排列有44A 种,共有4444576A A ⨯=(种).(4)插空法,先排女生,再在空位中插入男生,故有43451440A A ⨯=(种). (5)先排甲,有5种方法,其余6人有66A 种排列方法,共有6653600A ⨯=(种).(6) 7名学生全排列,有77A 种方法,其中甲在最左边时,有66A 种方法,乙在最右边时,有66A 种方法,其中都包含了甲在最左边且乙在最右边的情形,有55A 种方法,故共有76576523720A A A -⨯+= (种).【练3】 【答案】D【解析】根据题意将2,4,5,6进行全排列,再将1,3插空得到4245480A A ⨯=个.故选:D .【例4】 【答案】B【解析】先从3个奇数中选出2个捆绑内部全排共有236A =种排法,再把捆绑的2个奇数看成一个整体,因为这个整体与剩下的一个奇数不相邻,将2个非0偶数全排有222A =种选法, 奇数插空全排有236A =种选法,最后把0插空,0不能在两端,有3种排法,可组成这样不同的6位的个数为6263216⨯⨯⨯=种排法, 故选:B【例5】 【答案】②④【解析】①有10个车站,共需要准备多少种车票?相当于从10个不同元素任取2个按一定顺序排列起来,属于排列问题;②有10个车站,共有多少中不同的票价?相当于从10个不同元素任取2个并成一组,属于组合问题;③平面内有10个点,共可作出多少条不同的有向线段?相当于从10个不同元素任取2个按一定顺序排列起来,属于排列问题;④有10个同学,假期约定每两人通电话一次,共需通话多少次?相当于从10个不同元素任取2个并成一组,属于组合问题;⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?相当于从10个不同元素任取2个按一定顺序排列起来,属于排列问题;以上问题中,属于排列问题的是②④. 【练5】 【答案】 D【解析】 组合问题与次序无关,排列问题与次序有关,D 项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D. 【例6】 【答案】B【解析】根据题意,6671n n n C C C +-=变形可得,6671n n n C C C +=+;由组合性质可得,6771n n n C C C ++=,即6711n n C C ++=,则可得到16712n n +=+⇒=.故选:B.【练6】 【答案】D【解析】3443444411110m m m m m m m m C C C C C C C C ++++=--++-==.故选:D【例7】【答案】(1) 13;(2) 22.【解析】(1 )从中任取3个球,红球的个数不比白球少的取法:红球3个,红球2个和白球1个.当取红球3个时,取法有1种;当取红球2个和白球1个时,.取法有213412C C =种.根据分类计数原理,红球的个数不少于白球的个数的取法有11213+=种. (2 )使总分不少于6分情况有两种:红球2个和白球2个,红球3个和白球1个.第一种,红球2个和白球2个,取法有223418C C =种; 第二种,红球3个和白球1个,取法有31344C C =种,根据分类计数原理,使总分不少于6分的取法有18422+=种. 【练7】 【答案】B【解析】先从3名男生中选出2人有233C =种,再从4名女生中选出2人有246C =种,所以共有1863=⨯种,故选:B【例8】 【答案】D【解析】由题意可得不同的采访顺序有4424A =种,故选:D.【练8】 【答案】C【解析】一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为44=432124A ⨯⨯⨯=.故选:C 【例9】 【答案】C【解析】先安排甲、乙相邻,有22A 种排法,再把甲、乙看作一个元素,与其余三个人全排列,故有排法种数为424248A A ⨯=.故选:C【练9】 【答案】B【解析】解:将小涛与小江、小玉捆绑在一起,与其他两个人全排列,其中小涛位于小江、小玉之间,按照分步乘法计算原理可得323212A A ⋅=故选:B【例10】 【答案】B【解析】6间空教室,有3个空教室不使用,故可把作为检查项目的教室插入3个不使用的教室之间,故所有不同的安排方式的总数为3424A =.故选:B.【练10】 【答案】C【解析】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法,此时故共有1412224323+=84C A C A A 种排法. 故概率6672841360P A +==. 故选:C. 【例11】【答案】C【解析】5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;分为1,2,2时安排有1223542322C C C A A ;分为1,1,3时安排有1133543322C C C A A 所以一共有12211333542543332222150C C C C C C A A A A +=故选:C 【练11】 【答案】360【解析】先把书分成三组,把这三组分给甲、乙、丙3名学生.先选1本,有16C 种选法;再从余下的5本中选2本,有25C 种选法;最后余下3本全选,有33C 种选法.故共有12365360C C C ⋅⋅=种选法.由于甲、乙、丙是不同的3人,还应考虑再分配,故共有3360360A =种分配方法.故答案为: 360.【例12】 【答案】B【解析】利用间接法,先在8个点中任取3个点,再减去三点共线的情况,因此,符合条件的三角形的个数为33384542C C C --=.故选:B.【练12】 【答案】D【解析】当2m ≤-或2m ≥时,圆面224x y +≤被分成2块, 此时不同的涂色方法有5420⨯=种,当22m -<≤-或22m ≤<时,圆面224x y +≤被分成3块, 此时不同的涂色方法有54360⨯⨯=种, 当22m -<<时,圆面224x y +≤被分成4块, 此时不同的涂色方法有5432120⨯⨯⨯=种, 所有可能的涂色种数是240. 故选:D 【例13】 【答案】36【解析】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球.隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【练13】【答案】C【解析】不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.【例14】 【答案】C【解析】在这六个数字中任取三个求和,则和的最小值为1236++=,和的最大值为45615++=,所以当从1,2,3,4,5,6中任取三个数相加时,则不同结果有10种.故选:C. 【练14】 【答案】C【解析】A 中任取2个元素组成集合B ,则B 的情况有{}{}{}{}{}{}123456,,,,,,,,,,,B a b B a c B a d B b c B b d B c d ======,共6个,其中符合情况的集合为145,,B B B 共3个,故集合B 中含有元素b 的概率为3162P ==故选:C练习答案1. 【答案】 D【考点】排列、组合及简单计数问题 【解析】解:由题意知,分两种情况:①五位数是由2个偶数,3个奇数组成,共有A 33C 32A 42=216个; ②五位数是由3个偶数,2个奇数组成,共有C 32A 22A 33=36个;则这样的五位数一共有216+36=252个故答案为:D【分析】由排列与组合,结合题意,直接求解即可2.【答案】C【考点】排列及排列数公式,组合及组合数公式【解析】由题意知:n!3!=8⋅n!2!(n−2)!,即(n−2)!=24=4!,可得n−2=4,∴n=6.故答案为:C【分析】利用排列组合数计算公式,即可得出答案。

排列组合中的常见模型

排列组合中的常见模型

排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。

例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。

例如:在10件产品中,有7件合格品,3件次品。

从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。

3310785N C C =-=(种)3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。

但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。

例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。

解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。

所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。

例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。

高三数学精品课件:排列与组合

高三数学精品课件:排列与组合

[主干知识·自主梳理] 重温教材 自查自纠
小题诊断
法一:可分两种情况:第一种情况,只有 1 位女生入选,不 5同.的(2选01法8·高有考C全21C国24=卷1Ⅰ2(种)从);2 第位二女种生情,况4 位,男有生2中位选女3生人入参选加, 科不技同比的赛选法,有且 至C22少C14有=41(种位).女 生 入 选 , 则 不 同 的 选 法 共 有 _根__据1_6_分__类_种加.法(计用数数原字理填知写答 ,至案少) 有 1 位女生入选的不同的选 法有 16 种. 法二:从 6 人中任选 3 人,不同的选法有 C36=20(种),从 6 人中任选 3 人都是男生,不同的选法有 C34=4(种),所以至少 有 1 位女生入选的不同的选法有 20-4=16(种).
生组成的田径运动队中选出 4 人参加比赛,要求男、女生都有,
则男生甲与女生乙至少有 1 人入选的方法种数为( )
A.85
B.86
C.91
D.90
思路分析:可采用直接法求解,也可用间接法求解,注意题目
中“至少”的含义.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理] 重温教材 自查自纠
易混淆排列与组合问题,区分的关键是看选出的元素 是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
考点二 组合应用题 (核心考点——合作探究)
解析:法一:(直接法)由题意,可分 3 类情况: 第 1 类,若男生甲入选,女生乙不入选,则方法种数为 C31C24+ C32C14+C33=31; 第 2 类,若男生甲不入选,女生乙入选,则方法种数为 C41C23+ C42C13+C34=34; 第 3 类,若男生甲入选,女生乙入选,则方法种数为 C23+C14C13 +C24=21. 所以男生甲与女生乙至少有 1 人入选的方法种数为 31+34+21 =86.

高中数学排列组合

高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.

高考数学复习考点知识专题讲解课件51---排列与组合

高考数学复习考点知识专题讲解课件51---排列与组合
返回导航
新高考 大一轮复习 · 数学 (2)(2020·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给 6 位“萌 娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由
于 Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪 同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两
解析:设 5 名同学也用 A,B,C,D,E 来表示,若恰有一人坐对与自己车票相 符的坐法,设 E 同学坐在自己的座位上,则其他四位都不坐自己的座位,则有 BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共 9 种坐法,则恰有一人坐对与自己车票相符座位的坐法有 9×5=45(种). 答案:45
返回导航
新高考 大一轮复习 · 数学 3.排列数、组合数的公式及性质
返回导航
新高考 大一轮复习 · 数学
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)所有元素完全相同的两个排列为相同排列.( × ) (2)一个组合中取出的元素讲究元素的先后顺序.( × ) (3)两个组合相同的充要条件是其中的元素完全相同.( √ ) (4)(n+1)!-n!=n·n!.( √ ) (5)若组合式 Cxn=Cmn ,则 x=m 成立.( × ) (6)kCnk=nCkn--11.( √ )
返回导航
新高考 大一轮复习 · 数学
6.寒假里 5 名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排 A, B,C,D,E 五个座位(一排共五个座位),上车后五人在这五个座位上随意坐, 则恰有一人坐对与自己车票相符座位的坐法有________种.(用数字作答)
返回导航

排列组合讲义

排列组合讲义

排列组合讲义(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用!n n ++⋅=m n +- )1(n m ++ n m ⨯⨯ =r 002412n n n nC C C -+=+++=.解决排列组合一般思路1.审题要清常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

三.不相邻问题插空策略1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4431. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法2. 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法五.重排问题求幂策略1.把6名实习生分配到7个车间实习,共有多少种不同的分法2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为3、某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略1. 8人围桌而坐,共有多少种坐法A B C D E AE H G F2. 6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略1. 8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法后 排八.排列组合混合问题先选后排策略允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排一般地,元素分成多排的排列问题,可归结为一排考虑,再1.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.2.一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务, 每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种九.小集团问题先整体后局部策略1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5两个奇数之间,这样的五位数有多少个2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案一班二班三班四班六班七班2. 10个相同的球装5个盒中,每盒至少1个,有多少装法3. 100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略1.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和偶数,不同的取法有多少种2.我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种十二.平均分组问题除法策略解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策小集团排列问题中,先整体后局部,再结合其它策略进将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再1. 6本不同的书平均分成3堆,每堆2本共有多少分法2、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法3、 10名学生分成3组,其中一组4人, 另两组3人,但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______ 十三. 合理分类与分步策略1.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2 人唱歌2人伴舞的节目,有多少选派方法2.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有3. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略1. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不 能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有 多少种2.某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种十五.实际操作穷举策略1.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法3号盒 4号盒 5号盒平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。

最新高三数学(理)--排列与组合教学讲义ppt

最新高三数学(理)--排列与组合教学讲义ppt

4 4
种方法,再在女生之间及首尾空出的5个空位中任
选3个空位排男生,有A53种方法,故共有A44×A53=1440种.
第十章 第2讲
第23页
求排列应用题的主要方法 (1)对无限制条件的问题——直接法; (2)对有限制条件的问题,对于不同题型可采取直接法或间接 法,具体如下: ①每个元素都有附加条件——列表法或树图法; ②有特殊元素或特殊位置——优先排列法; ③有相邻元素(相邻排列)——捆绑法; ④有不相邻元素(间隔排列)——插空法.
位中,共有A
1 5
=5种插法,插入时需满足条件相邻数字的奇偶
性不同,1,2的排法由已排4个数的奇偶性确定.
∴不同的排法有8×5=40种,即这样的六位数有40个.
第十章 第2讲
第25页
例2 [2012·山东高考]现有16张不同的卡片,其中红色、
黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片
(2)(捆绑法)将女生看成一个整体,与3名男生在一起进行
全排列,有A
4 4
种方法,4×A44 =576种.
第十章 第2讲
第22页
奇思妙想:例题条件不变,求全体排成一排,男生互不相 邻的排法.
解:(插空法)男生不相邻,而女生不作要求,所以应先排
女生,有A
第十章 第2讲
第7页
课前自主导学
第十章 第2讲
第8页
1. 排列与排列数 (1)排列 从n个不同元素中取出m(m≤n)个元素,____________,叫 做从n个不同元素中取出m个元素的一个排列. (2)排列数 从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 的 __________ ______,叫做从n个不同元素中取出m个元素的排列数,记作 ________.

高中:排列组合讲义

高中:排列组合讲义

排列组合基本知识点:1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事。

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

高中数学排列组合知识讲解

高中数学排列组合知识讲解

精品文档模块九排列与组合、二项式定理第一部分:排列、组合一。

计数原理,m类,每一类的方法数分别是:N,N加法计数原理:如果完成一件事情可以分为21(又称分类计数原理)…..+N种方法。

N,…..N,则完成这件事情共有N+N+N+mm3321,N步,每一步的方法数分别是:N,乘法计数原理:如果完成一件事情须分为m21???? N(又称分类计数原理)NNN…..种方法。

,N…..N,则完成这件事情共有mm3321体现它贯穿于全章学习的始终,分类计数原理与分步计数原理是计数问题的基本原理,正确区分和使用两即把问题分类解决和分步解决。

了解决问题时将其分解的两种常用方法,完成.是“分类”完成,还是“分步”个原理是学好本章的关键,其核心是“完成一件事”二。

排列数、组合数的定义m A种排法。

n个元素中取出m个排成一列(即排入m个位置),共有①排列数:从nnm!A?n)=n特别的:-2)…(n-m+1).(n-1A (n nnm C种取法。

个元素中取出m个形成一个组合,共有②组合数:从n n!n n0m1??C1,C C特别地:= nnn!m(n?m)!:组合数的两个性质m?nm1mmm?+C.=C (1)C=C (2)C;1n?nnnn三。

解决排列、组合问题的四大原则及基本方法 1. 特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置.甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1范例)人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有(种B.89A.90种D.59种C.60种:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一解析22CC2种;③仅剩22天安排甲有种;②从剩下的4天中选天安排乙有5的天中任取45222260C·C?C·C种,即选C.种.由分步乘法计数原理可得一共有天安排丙有2542对有限制的元素和有限制的:评注特殊优先原则是解有限制的排列组合问题的总原则,位置一定要优先考虑. 2.先取后排原则精品文档.精品文档mmm C·A?A的精神实质,先组合后排列,从而避免了不必要的重该原则充分体现了nmn复与遗漏.范例将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有().A.12种B.24种C.36种D.48种2C再将这三组分配到三所学校组有种分法,将4名教师分成3解析:先分组再排列:42336C·A?3种不同分配方案.有种分法,由分步乘法计数原理知一共有A343若评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.3名教3所学校有种方法,再将剩下的1本例简单分步:先从4名教师中取3名教师分给A43种分配方案,则有明显重复(如:甲、乙、师分给3所学校有3种选择,则共有A·3?724丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.3.正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.范例在100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是()1233CC?AC3321CC?CCD.C.A.B.9969410094100946解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,333即从94件正品中取3件正品有种取法,所以满足条件的不同取法是,故选C.如CC?C1009494果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最12,即从6件次品中取1件确保了至少有1件次品,再从剩下的99易迷惑人的是B:CC699件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次12ABBA甲,因而重复.品为,正品为甲乙丙丁戊…则可以是甲,也可能是CCABCDEF699评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则.4.策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.①相邻问题捆绑法(整体法),不相邻问题插空法范例17人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解析:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

(完整版)排列组合经典课件

(完整版)排列组合经典课件
好的6个元素中间包含首尾两个空位共有
种 A64不同的方法 由分步计数原理,节目的 不同顺序共有A55 A64 种
元素不相邻问题可先把没有位置要求的元素 进行排队再相把不相独邻元独素插入独中间相和两端
练习题
某班新年联欢会原定的5个节目已排成节目单, 开演前又增加了两个新节目.如果将这两个新节 目插入原节目单中,且两个新节目不相邻,那么 不同插法的种数为( )
练习题
1. 同一寝室4人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种? (9)
2.给图中区域涂色,要求相邻区
域不同色,现有4种可选颜色,则
不同的着色方法有_7_2__种
3
14 2
5
练习题 我们班里有43位同学,从中任抽5人,正、 副班长、团支部书记至少有一人在内的 抽法有多少种?
练习题
5个男生3个女生排成一排,3个女生 要排在一起,有多少种不同的排法?
共有A
6 6
A
3 3
=4320种不同的排法.
三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共 有 A55 种,第二步将4舞蹈插入第一步排
十一.实际操作穷举策略
例15.设有编号1,2,3,4,5的五个球和编号1,2
3,4,5的五个盒子,现将5个球投入这五
个盒子内,要求每个盒子放一个球,并且
恰好有两个球的编号与盒子的编号相同,.
有多少投法
解:从5个球中取出2个与盒子对号有__C_52__种
还剩下3球3盒序号不能对应,利用实际
操作法,如果剩下3,4,5号球, 3,4,5号盒

(完整版)高中数学完整讲义——排列与组合5.排列组合问题常见模型1

(完整版)高中数学完整讲义——排列与组合5.排列组合问题常见模型1

高中数学讲义摆列组合问题的常有模型1知识内容1.基本计数原理⑴加法原理分数原理:做一件事,达成它有n 法,在第一法中有m1种不一样的方法,在第二法中有 m2种方法,⋯⋯,在第 n 法中有 m n种不一样的方法.那么达成件事共有N m1 m2 L m n种不一样的方法.又称加法原理.⑴乘法原理分步数原理:做一件事,达成它需要分红 n 个子步,做第一个步有 m1种不一样的方法,做第二个步有 m2种不同方法,⋯⋯,做第 n 个步有 m n种不同的方法.那么完成件事共有N m1 m2 L m n种不一样的方法.又称乘法原理.⑴加法原理与乘法原理的综合运用假如达成一件事的各样方法是互相独立的,那么计算达成这件事的方法数时,使用分类计数原理.假如达成一件事的各个步骤是互相联系的,即各个步骤都一定达成,这件事才告达成,那么计算达成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导摆列数、组合数公式的理论基础,也是求解摆列、组合问题的基本思想方法,这两个原理十分重要一定仔细学好,并正确地灵巧加以应用.2.摆列与组合⑴摆列:一般地,从n 个不一样的元素中任取m(m ≤ n) 个元素,依据必定的次序排成一列,叫做从n 个不一样元素中拿出m 个元素的一个摆列.(此中被取的对象叫做元素)摆列数:从 n 个不一样的元素中拿出m(m ≤ n) 个元素的所有摆列的个数,叫做从n个不一样元素中拿出m 个元素的摆列数,用符号 A m n表示.摆列数公式: A m n 全摆列:一般地,n的阶乘:正整数由n(n 1)(n 2) L (n m 1) , m,n N,而且 m ≤ n .n 个不一样元素所有拿出的一个摆列,叫做n 个不一样元素的一个全摆列.1到n的连乘积,叫作n的阶乘,用n! 表示.规定: 0! 1 .思想的挖掘能力的飞腾1高中数学讲义⑴组合:一般地,从 n 个不一样元素中,随意拿出 m ( m≤n)个元素并成一组,叫做从n 个元素中任取m个元素的一个组合.组合数:从 n 个不一样元素中,随意拿出m (m≤n)个元素的所有组合的个数,叫做从n 个不一样元素中,随意拿出 m 个元素的组合数,用符号C n m表示.组合数公式: C n m n( n1)(n 2)L( n m1)n!, m, n N ,而且m≤ n .m!m!( n m)!组合数的两个性质:性质1:C n m C n n m;性质 2:C n m1 C n m C n m 1.(规定 C n0 1 )⑴摆列组合综合问题解摆列组合问题,第一要用好两个计数原理和摆列组合的定义,即第一弄清是分类仍是分步,是排列仍是组合,同时要掌握一些常有种类的摆列组合问题的解法:1.特别元素、特别地点优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其余元素;地点优先法:先考虑有限制条件的地点的要求,再考虑其余地点;2.分类分步法:对于较复杂的摆列组合问题,常需要分类议论或分步计算,必定要做到分类明确,层次清楚,不重不漏.3.清除法,从整体中清除不切合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的摆列,能够先将相邻的元素“捆成一个”元素,与其余元素进行摆列,而后再给那“一捆元素”内部摆列.5.插空法:某些元素不相邻的摆列,能够先排其余元素,再让不相邻的元素插空.6.插板法:n个同样元素,分红 m( m≤ n) 组,每组起码一个的分组问题——把n个元素排成一排,从 n 1个空中选 m 1 个空,各插一个隔板,有C n m11.7.分组、分派法:分组问题(分红几堆,无序).有平分、不平分、部分平分之别.一般地均匀分红 n 堆(组),一定除以n !,假如有m 堆(组)元素个数相等,一定除以m !8.错位法:编号为 1 至n的n个小球放入编号为 1 到n的n个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不一样,这类摆列称为错位摆列,特别当n 2 ,3,4,5 时的错位数各为1,2,9,44.对于 5、6、7 个元素的错位摆列的计算,能够用剔除法转变为 2 个、 3 个、 4 个元素的错位摆列的问题.1.摆列与组合应用题,主要考察有附带条件的应用问题,解决此类问题往常有三种门路:⑴元素剖析法:以元素为主,应先知足特别元素的要求,再考虑其余元素;⑴地点剖析法:以地点为主考虑,即先知足特别地点的要求,再考虑其余地点;⑴间接法:先不考虑附带条件,计算出摆列或组合数,再减去不切合要求的摆列数或组合数.2思想的挖掘能力的飞腾高中数学讲义求解时应注意先把详细问题转变或归纳为摆列或组合问题;再经过剖析确立运用分类计数原理仍是分步计数原理;而后剖析题目条件,防止“选用”时重复和遗漏;最后列出式子计算作答.2.详细的解题策略有:⑴对特别元素进行优先安排;⑴理解题意后进行合理和正确分类,分类后要考证能否不重不漏;⑴对于抽出部分元素进行摆列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采纳捆绑法;对于元素间隔摆列的问题,采纳插空法或隔板法;⑴次序固定的问题用除法办理;分几排的问题能够转变为直排问题办理;⑴对于正面考虑太复杂的问题,能够考虑反面.⑴对于一些摆列数与组合数的问题,需要结构模型.典例剖析排队问题【例 1】三个女生和五个男生排成一排⑴ 假如女生一定全排在一同,可有多少种不一样的排法?⑵ 假如女生一定全分开,可有多少种不一样的排法?⑶ 假如两头都不可以排女生,可有多少种不一样的排法?【例 2】 6 个人站成一排:⑴此中甲、乙两人一定相邻有多少种不一样的排法?⑴此中甲、乙两人不相邻有多少种不一样的排法?⑴此中甲、乙两人不站排头和排尾有多少种不一样的排法?⑴此中甲不站排头,且乙不站排尾有多少种不一样的排法?思想的挖掘能力的飞腾3高中数学讲义【例 3】 7 名同学排队照相.⑴若分红两排照,前排 3 人,后排 4 人,有多少种不一样的排法?⑵若排成两排照,前排 3 人,后排 4 人,但此中甲一定在前排,乙一定在后排,有多少种不一样的排法?⑶ 若排成一排照,甲、乙、丙三人一定相邻,有多少种不一样的排法?⑷若排成一排照,7 人中有 4 名男生, 3 名女生,女生不可以相邻,有多少种不一样的排法?【例 4】 6 个队员排成一排,⑴共有多少种不一样的排法?⑴若甲一定站在排头,有多少种不一样的排法?⑶若甲不可以站排头,也不可以站排尾,问有多少种不一样的排法?【例 5】ABCDE 五个字母排成一排,若 ABC 的地点关系一定按 A 在前、 B 居中、 C 在后的原则,共有 _______种排法(用数字作答).【例 6】用 1 到 8 构成没有重复数字的八位数,要求 1 与 2 相邻, 3 与 4 相邻,5 与6 相邻,而7 与8 不相邻,这样的八位数共有___个(用数字作答).4思想的挖掘能力的飞腾高中数学讲义【例 7】记者要为5名志愿者和他们帮助的2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两头,不一样的排法共有()A .1440 种B. 960种C. 720种D. 480 种【例 8】12 名同学合影,站成前排 4 人后排 8 人,现拍照师要从后排 8人中抽 2 人调整到前排,若其余人的相对次序不变,则不一样调整方法的总数是()22B.2622D.22A .C C C A CA A A【例 9】记者要为5名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两头,不一样的排法共有()A . 1440 种B .960 种C.720 种 D .480 种【例 10】在数字 1,2 ,3与符号,五个元素的所有全摆列中,随意两个数字都不相邻的全摆列个数是()A .6B.12C.18D.24【例 11】计划展出 10 幅不一样的画,此中 1 幅水彩、 4 幅油画、 5 幅国画,排成一列陈设,要求同一品种的画一定连在一同,而且水彩画不放在两头,那么不一样的陈设方式有_____种.思想的挖掘能力的飞腾5高中数学讲义【例 12】 6 人站一排,甲不站在排头,乙不站在排尾,共有_________种不一样的排法(用数字作答).【例 13】一条长椅上有7 个座位, 4 人坐,要求 3 个空位中,有 2 个空位相邻,另一个空位与 2 个相邻位不相邻,共有几种坐法?【例 14】3位男生和3位女生共6位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A. 360B. 288C. 216D. 96【例 15】古代“五行”学说以为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不一样属性的物质随意排成一列,但摆列中属性相克的两种物质不相邻,则这样的摆列方法有种(结果用数值表示).【例 16】在1,2,3,4,5,6,7的任一摆列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的摆列方式共有()种.A. 288B. 576C. 864D. 11526思想的挖掘能力的飞腾高中数学讲义【例 17】从会合P ,Q ,R ,S 与 0 ,1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 中各任取2个元素排成一排(字母和数字均不可以重复).每排中字母 Q和数字0至多只好出现一个的不一样排法种数是_________.(用数字作答)【例 18】从会合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不可以重复).每排中字母 O,Q 和数字 0 至多只好出现一个的不一样排法种数是_________.(用数字作答)【例 19】6个人坐在一排10个座位上,问⑴空位不相邻的坐法有多少种?⑵ 4 个空位只有 3 个相邻的坐法有多少种?⑶ 4 个空位至多有 2 个相邻的坐法有多少种?【例 20】3位男生和3位女生共6位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A . 360B. 288C. 216D. 96思想的挖掘能力的飞腾7高中数学讲义【例 21】12名同学合影,站成了前排 4 人后排 8 人,现拍照师要从后排8 人中抽 2 人调整到前排,其余人的相对次序不变,则不一样调整的方法的总数有()2 A 2B.2A6C.2A2D.22A .C C C C A【例 22】两部不一样的长篇小说各由第一、二、三、四卷构成,每卷1本,共 8 本.将它们随意地排成一排,左侧 4 本恰巧都属于同一部小说的概率是_______.【例 23】2007年12月中旬,我国南方一些地域遭受历史稀有的雪灾,电煤库存吃紧.为了增援南方地域抗灾救灾,国家一致部署,加紧从北方采煤区调运电煤.某铁路货运站对 6 列电煤货运列车进行编组调动,决定将这 6 列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.假如甲所在小组 3 列列车先开出,那么这 6 列列车先后不一样的发车次序共有()A. 36种B.108种C. 216种D. 432种数字问题【例 24】给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能构成多少个四位数?⑴可能构成多少个四位奇数?⑴可能构成多少个四位偶数?⑴可能构成多少个自然数?【例 25】用 0 到 9 这 10 个数字,可构成多少个没有重复数字的四位偶数?8思想的挖掘能力的飞腾高中数学讲义【例 26】在1,3,5,7,9中任取3个数字,在0,2,4, 6,8 中任取两个数字,可构成多少个不一样的五位偶数.【例 27】用1,2,3,4,5排成一个数字不重复的五位数 a1,a2,a3,a4,a5,满足a1 a2,a2 a3,a3 a4,a4 a5的五位数有多少个?【例 28】用0,1,2,L,9这十个数字构成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例 29】用数字0,1,2,3,4,5,6构成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例 30】有4张分别标有数字1,2,3 ,4 的红色卡片和 4 张分别标有数字1,2,3,4 的蓝色卡片,从这8思想的挖掘能力的飞腾9张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法数一共有种.432;【例 31】有8张卡片分别标有数字1, 2 , 3, 4 , 5 , 6 , 7 , 8,从中拿出 6 张卡片排成 3行 2列,要求 3行中仅有中间行的两张卡片上的数字之和为 5 ,则不一样的排法共有()..A .1344种B .1248种C.1056种D.960种【例 32】有4张分别标有数字1,2,3,4的红色卡片和4 张分别标有数字 1,2 ,3,4的蓝色卡片,从这 8张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法共有 ____种(用数字作答).【例 33】用 1, 2, 3, 4, 5, 6 构成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不一样,且 1 和 2 相邻,这样的六位数的个数是__________ (用数字作答).【例 34】用数字1,2,3,4,5能够构成没有重复数字,而且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个【例 35】从1,2,3,8,9,10这6个数中,拿出两个,使其和为偶数,则共可获得个这样的不一样偶数?10思想的挖掘能力的飞腾【例 36】求无重复数字的六位数中,能被 3 整除的数有 ______个.【例 37】用数字0,1,2,3,4,5,6构成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例 38】从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,构成没有重复数字的四位数的个数为()A.300B. 216C.180D. 162【例 39】从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,构成没有重复数字的四位数的个数为()A.300B. 216C.180D.162【例 40】从1到9的九个数字中取三个偶数四个奇数,试问:⑴能构成多少个没有重复数字的七位数?此中随意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一同的有几个?⑴⑴中的七位数中,偶数排在一同、奇数也排在一同的有几个?思想的挖掘能力的飞腾11⑷ ⑴此中随意两偶数都不相邻的七位数有几个?【例 41】用0到9这九个数字.可构成多少个没有重复数字的四位偶数?【例 42】有4张分别标有数字1,2,3,4 的红色卡片和 4 张分别标有数字1,2 ,3,4 的蓝色卡片,从这8张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法共有 ______种(用数字作答).【例 43】在由数字1,2,3,4,5构成的所有没有重复数字的5 位数中,大于23145且小于 43521的数共有()个A. 56个B. 57个C. 58个D. 60个【例 44】由0,1,2,3,4这五个数字构成的无重复数字的四位偶数,按从小到大的次序排成一个数列 a n,则 a19_____.A . 2014B . 2034C. 1432D. 143012思想的挖掘能力的飞腾【例 45】从数字0、 1、 3、 5、 7 中拿出不一样的三个作系数,可构成多少个不一样的一元二次方程ax2bx c0 ,此中有实数根的有几个?【例 46】从 3 , 2 , 1,0 ,1,2 ,3 ,4 中任选三个不一样元素作为二次函数y ax2bx c 的系数,问能构成多少条图像为经过原点且极点在第一象限或第三象限的抛物线?思想的挖掘能力的飞腾13。

高中数学排列组合模型讲义

高中数学排列组合模型讲义

高中数学排列组合模型讲义定义:从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列。

记作:Km HY2.构成:{⎧⎪⎨⎪⎩原始的元素:n 个取出的元素:m 个【元素】 【位置】m 个元素按照一定的顺序排列【分步】 本质:【顺序】从n 个不同的元素中取出的m 个元素进行排列时顺序是固定的 【集合】有限集合K={}n a a a ......,21{},,|),......,,(.....21j i x x k x x x x K K K K j i i m m ≠≠∈=**=(1)(2)......(1)m mn k n n n n m A =*--*-+=【元素个数】⎪⎩⎪⎨⎧=⊇≥=n A card BA mn mB card )()(【数】m 个不同的元素【个数】从n 个不同的元素中取出m(n m ≤)个元素的所有不同元素的个数,叫做从n 个不同元素中取出m 个元素的排列数【K 集合中的两个元素】1.相邻 2.不相邻3.在特定的位置 4.不在特定的位置 【三个元素】1.相邻 2.不相邻3.在特定的位置4.不在特定的位置【四个元素】从a,b,c,d 四个元素中取出三个元素的排列共有34A 个,abc 是其中一个排列 【m 个元素】1.取出的m 个元素可以重复 2.取出的m 个元素不可以重复 【位置与元素】1.特定的元素排在特定的位置 2.特定的元素不排在特定的位置 3.分类【元素的个数】{【有限】有穷数列【无限】无穷数列【顺序】{组合数列【m 】{时,全排列时,选排列n m n m =<4.条件1.【定义】从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列2.【位置】元素相同,位置也相同,则是同一个排列;元素完全不同,或元素不完全相同,或元素相同,位置不同都不是同一个排列 5.性质【个数】)!(!m n n A mn -=【m=n 】!n A nn =11--=m n m n nA A排列模型一、 直线排列:元素不完全相同的直线排列⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⊃⊃⎢⎣⎡⊃⎢⎣⎡+-+-⊃→置特定元素必不在特定位特定元素必在特定位置元素顺序不固定元素顺序固定必不相邻模型)!元素顺序不固定()!元素顺序固定(必相邻模型排列数不重复排列m m m m n m m n m !11 模型个人,每个人至少一件映射个数为排列数为重复排列k n m ⊃→→ 元素不完全相同的直线排列走楼梯法排列数⊃→!!!!!321k m m m m n二、 环状排列⎢⎢⎢⎢⎢⎣⎡⎢⎢⎢⎣⎡⊃→长方形排列正多边形排列项圈排列排列数为无编号直线排列有编号 直线排列一、 不同元素的排列问题 (一) 不重复排列 1、 必相邻模型:站法?必须站在一起,有几种名女生站成一排,女生名男生和例、有)数为(元素进行排列,总排列对个元素顺序不固定个元素排列元素看成一个元素,解析:用捆绑法把)元素顺序不固定:()、()总排列数为(个元素顺序一定个元素排列一个元素,然后对元素捆绑在一起,看成解析:把)元素顺序固定:(、元素必相邻的排列数:个不同元素中,34!!11!!12!11!1)1(m m n m m m n m m m n m m n m m n m m n m m n +-∴+-+-+-∴+-+-2、 不相邻模型:有几种站法?女生和女生都不相邻,不相邻,有几种站法?名女生站成一排,女生名男生和例、有方法并按顺序排列,共有种个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序不固定:)、(顺序固定,即有个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序固定:、数:个元素必不相邻的排列个不同元素中,45121)1(m m m n m n m m m m n m n m m n +--+--3、特定元素必在特定位置站法?在两端,有几种不同的必须站中间,乙必须站个人站成一排,其中甲例、排列。

高中数学课件排列组合1 优选文档PPT

高中数学课件排列组合1 优选文档PPT
2.相同的排列? 不同的排列?
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
如果两个排列所含的元素不完全一样,那么就可以肯 定是不同的排列;如果两个排列所含的元素完全一样,但 摆的顺序不同,那么也是不同的排列.
Ⅰ. 复习与引入
3.排列数的定义
从n个不同元素中取出m(m≤n)个元素的所有排列的个 数,叫做从n个不同元素中取出m个元素的排列数, 记作
1.解方程: 3 . 2 排列定义? 判断是不是排列问题的标志?
排列的定义中包含两个基本内容:一是“取出元素”;
11C 24C 二是“按照一定顺序排列”.“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志.
x x1 排列定义? 判断是不是排列问题的标志?
例题:从四名同学a、b、c 、d中选出2名参加一项活动,求有多少种不同的选法.
Ⅱ. 讲授新课
例2 计算:(1)
解:(1)
(2)
(2)
Ⅱ. 讲授新课
例3 求证:
证明: 右边
左边, 所以原式得证.
Ⅲ. 课堂练习
1. A. 课本 P99 1-2(口答), 3-6(板演)
B. 补充练习: 排列定义? 判断是不是排列问题的标志?
1.解方程:

排列定义? 判断是不是排列问题的标志?
(1)从1,3,5,9中任取两个数相加,可 以得到多少个不同的和?组_合_问__题__6___
(2)从1,3,5,9中任取两个数相除,可 以得到多少个不同的商?排_列_问__题___10__
(3)10个同学毕业后互相通了一次信,一共
写了多少封信?
排__列_问__题__9_0_

高中数学排列组合题讲义和答案(分难易程度)

高中数学排列组合题讲义和答案(分难易程度)

选修2-3第一章第二节和第三节 排列组合一、排列.1. 排列定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2. 排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号表示.3. 排列数公式:注意: 规定0! = 1规定 二、组合.2. 组合定义:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2. 组合数公式:3. 两个公式:① ②①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C ,如果不取这一元素,则需从剩余n个元素中取出m 个元素,所以共有C 种,依分类原理有.三、排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.四、几个常用组合数公式m n A ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ!)!1(!n n n n -+=⋅111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 10==n n n C C )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--==Λ;m n n m n C C -=m n m n m n C C C 11+-=+1m n 111m n C C C --=⋅m n C 1-m n m n m n m n m n C C C 11+-=+n n nn n n C C C 2210=+++Λλ五、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型:①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有.⑦隔板法:常用于解正整数解组数的问题.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(线组合再排列);④间接法;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦ “小集团”排列问题中先整体后局部的策略;2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以. ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为 ③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为. 例题(简单)例1. 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C ΛΛΛkk n nn n k n kn A C C C Λ)1(-⋅rr A A /k kA m mA A ⋅m mrr A A A ⋅/不同的报名方法共有( )A.10种B.20种C.25种D.32种例2.用数字1,2,3,4,5可以组成的无重复数字的四位偶数的个数为( ) A.8 B.24 C.48 D.120例3. 6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有种站法.例题(稍难)例1. 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90例2. 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为 .例3. 将7个相同的小球放入4个不同的盒子中.(1)不出现空盒子时放入方式共有种.(2)可出现空盒时的放入方法共有种.例题(难)例1. 从0,1,2,3,4,5,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162例2. 用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.例题(很难)例1. 国家教育部为了发展贫困地区的教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有种不同的分派方法. 例2. 将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有种.例3. 将6名教师分到3所学校任教,一所1名,一所2名,一所3名,则有种不同的分法.例4. 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有种. 例5. 4个不同的小球放入编号为1,2,3,4的4个盒子中,恰好有1个空盒子的放法有种.例6. 如图所示的花圃中的5个区域中种入4种不同颜色的花,要求相邻区域不同色,有________种不同的种法.同步基础排列1.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A.48个B.36个C.24个D.18个2.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种3.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A.24种 B.36种 C.48种 D.72种4.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:如果A、B排序方式有( )A.192种B.144种C.96种D.72种5.某中学一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、英语、信息技术、体育、地理6节课,要求上午第一节课不排体育,数学必须排在上午,则不同排法共有( )A.600种B.480种C.408种D.384种6.5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答)7.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有________种(用数字作答).8.由0,1,2,3,4,5六个数字可以组成________个数字不重复含2,3且2,3相邻的四位数.9.用数字0、1、2、3、4、5组成没有重复数字的四位数,(1)可组成多少个不同的四位数?(2)可组成多少个四位偶数?(3)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?10.用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?组合1.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为( )A.50B.45 C.40 D.352.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A.70种 B.80种 C.100种 D.140种3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24 C.28 D.484.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A.10种 B.20种 C.36种 D.52种5.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法种数是( )A.15 B.45 C.60 D.756.从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有________个.(用数字作答)7.从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.8.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有________种.(以数字作答)9.有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.10.一个口袋里有4个不同的红球,6个不同的白球(球的大小均一样)(1)从中任取3个球,恰好为同色球的不同取法有多少种?(2)取得一个红球记为2分,一个白球记为1分.从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?过关训练1.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )A.24 B.48 C.120 D.72 2.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36 3.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( )A.120种 B.96种 C.60种 D.48种4.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种5.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.16种 B.36种 C.42种 D.60种6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有________种.7.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有________种.8.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)9.某小组学生举行毕业联欢会,人员到齐后大家彼此握手,其中有2名学生各握了3次手后提前离开,其他学生都彼此握了手.若知握手的总次数为83次,试问该小组共有多少名学生?10.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?自我超越1. 12名同学合影,站成了前排4人,后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同的调整方法的种数是( )A. 168B. 20 160C. 840D. 5602. 将4名司机和8名售票员分配到四辆公共汽车上,每辆车上分别有1名司机和2名售票员,则可能的分配方案种数是( )A. C28C26C24A44A44B. A28A26A24A44C. C28C26C24A44D. C28C26C243. 五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )A. C14C44种 B. C14A44种 C. C44种 D. A44种4. 从45名男生和15名女生中按分层抽样的方法,选出8人参加国庆活动.若此8人站在同一排,则不同的排法种数为( )A. C645C215B. C645C215A88C. C545C315D. C545C315A885. 某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有四名学生要求改修数学,但每班至多可再接收两名学生,那么不同的分配方案有( )A. 72种B. 54种C. 36种D. 18种6. 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答).7. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是________.8. (创新题)在一次文艺演出中,需要给舞台上方安装一排完全相同的彩灯15只,以不同的点亮方式增加舞台效果,设计要求如下:恰好有6只是关的,且相邻的灯不能同时被关掉,两端的灯必须点亮,则不同的点亮方式为________种.9. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).10. 将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).11. 现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A. 54B. 90C. 126D. 15212.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A.136B.19C.536D.1613. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A. 10种B.15种C. 20种D. 30种超级挑战1. 把1个圆分成4个扇形,依次记为D1,D2,D3,D4,每个扇形都可以用3种不同颜色中任何1种涂色,要求相邻的扇形颜色不同,则共有 种不同涂色方法.2. 某城市在中心广场建造一个花圃,花圃分为6个部分,如图,现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同颜样色的花,不同的栽种方法有3. 集合A ∪B ∪C={a 1,a 2,a 3,a 4,a 5},且A ∩B={ a 1,a 2},求,A ,B ,C 的所有可能组合的个数.4. 如图,ABCD 为海上的四个小岛,要建三座桥将这四个小岛连接起来,则不同的剑桥方案共有( ).A .8种 B.12种 C .16种 D .20种5. 甲、乙、丙、丁四个做互相传球练习,第一次传给除甲外其他三人中的一人,第二次由拿球者再传给其他三人中的一人,这样共传了4次,则第四次仍传回到甲的概率是( ).A.277B. 275C. 87D. 6421 6. 一楼梯共12级,每步可以向上跨1级或2级,共有 种上楼梯方法.。

高中数学-排列组合21种模型

高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学排列组合讲义

高中数学排列组合讲义

高中数学排列组合一.基础知识1.分类计数原理:完成一件事情有n 类方法,在第一类办法里有m 1种不同的方法,在第二类办法里有m 2种不同的方法......在第n 类办法中有m n 种不同的方法,那么完成这件事情共有N=m m m n +++...21种不同的方法。

2.分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法......做第n 步有m n 种不同的方法,那么完成这件事情共有N=m m m n ...21⨯⨯种不同的方法。

3.(1)排列:一般地,从n 个不同的元素中取出m (n m ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

(2)排列数:一般地,从n 个不同元素中取出m 个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列数,用符号A mn 表示(3))1...(2)(1(+---=m n n n n A mn )若m=n ,得123)...2)(1(!••--==n n n n A nn ,左边表示n 个不同元素全部取出的排列数,称为全排列数。

右边表示正整数1到n 的连乘积,称为n 的阶乘。

4.(1)组合:一般地,从n 个不同元素中取出m (n m ≤)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

(2)组合数:一般地,从n 个不同元素中取出m (n m ≤)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示 (3)组合数公式)!(!!m n m n AA C m mm n mn -==(4)常用性质:①C C mn n mn -= ②C C C m n mn mn 11-++=5.相邻问题(捆绑问题)n 个元素排列,其中的m 个元素要求相邻,把这m 个元素看成1个元素与其他n-m 个元素排列,在考虑这m 个元素自身的顺序即可,其结果是!)!1(m m n +- 6.相离问题(插空问题)n 个元素排列,其中的m 个元素要求彼此互不相邻,先排其余的n-m 个元素,这n-m 个元素的每相邻的两个元素之间都有一个空,再加上两端,共有n-m+1个空,从这n-m+1个空中选m 个空去排要求彼此互不相邻的m 个元素就可以了,其结果是A mm n m n 1)!(+--7.定位问题:(1)单定位:n 个元素排列,某个元素要求排在某个指定的位置上,等价于没有这个元素和没有这个位置,其结果是(n-1)!(2)复定位:n 个元素排列,k 个元素要求排在m 个指定的位置上,先从这m 个位置中选出k 个位置去排这k 个元素,再排其余n-k 个元素即可,其结果是)!(k n Ak m-8.平均分组问题:把n 个元素平均分成m 组,每组k (k=mn)个元素,共有不同的分法AC C C mmkkn kk n kn ...2--种9.)(......*222111)(N b C baC baC baC a C b a n n n n rrn r n n n n n nn n∈++++++=---+这个公式叫做二项式定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学讲义1思维的发掘 能力的飞跃 nn n知识内容1. 基本计数原理⑴加法原理分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 N = m 1 + m 2 + + m n 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个步骤有 m 2 种不同方法, ……, 做第 n 个步骤有 m n 种不同的方法. 那么完成这件事共有N = m 1 ⨯ m 2 ⨯ ⨯ m n 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取m (m ≤ n ) 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出m (m ≤ n ) 个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m 表示. 排列数公式: A m = n (n -1)(n - 2) (n - m + 1) , m , n ∈ N + ,并且m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1 到n 的连乘积,叫作n 的阶乘,用n ! 表示.规定: 0! = 1 .⑵组合:一般地,从 n 个不同元素中,任意取出 m (m ≤ n ) 个元素并成一组,叫做从 n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m (m ≤ n ) 个元素的所有组合的个数,叫做从n 个不同元素中, 任意取出m 个元素的组合数,用符号C m 表示. 组合数公式: C m = n (n - 1)(n - 2) (n - m + 1) = n ! , m , n ∈ N ,并且m ≤ n . n m ! m !(n - m )!+ 组合数的两个性质:性质 1: C m = C n -m ;性质 2: C m = C m + C m -1 .(规定C 0 = 1)n n n +1 n n n排列组合问题的常见模型 1高中数学讲义2 思维的发掘 能力的飞跃n -1 ⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1. 特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2. 分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确, 层次清楚,不重不漏. 3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列, 然后再给那“一捆元素”内部排列. 5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6. 插板法: n 个相同元素,分成m (m ≤ n ) 组,每组至少一个的分组问题——把n 个元素排成一排,从n - 1个空中选m - 1 个空,各插一个隔板,有C m -1 .7. 分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均 分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8. 错位法:编号为 1 至n 的n 个小球放入编号为 1 到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当n = 2 ,3,4,5 时的错位数各为 1,2,9,44.关于 5、6、7 个元素的错位排列的计算,可以用剔除法转化为 2 个、3 个、4 个元素的错位排列的问题.1. 排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2. 具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】 三个女生和五个男生排成一排高中数学讲义3思维的发掘 能力的飞跃⑴ 如果女生必须全排在一起,可有多少种不同的排法?⑵ 如果女生必须全分开,可有多少种不同的排法?⑶ 如果两端都不能排女生,可有多少种不同的排法?高中数学讲义【例2】 6 个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑵其中甲、乙两人不相邻有多少种不同的排法?⑶其中甲、乙两人不站排头和排尾有多少种不同的排法?⑷其中甲不站排头,且乙不站排尾有多少种不同的排法?【例3】7 名同学排队照相.⑴ 若分成两排照,前排3 人,后排4 人,有多少种不同的排法?⑵ 若排成两排照,前排3 人,后排4 人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶ 若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷ 若排成一排照,7 人中有 4 名男生,3 名女生,女生不能相邻,有多少种不同的排法?【例4】 6 个队员排成一排,⑴共有多少种不同的排法?4 思维的发掘能力的飞跃高中数学讲义5思维的发掘 能力的飞跃 ⑵若甲必须站在排头,有多少种不同的排法?高中数学讲义6 思维的发掘 能力的飞跃8 3 8 6 8 68 5 ⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】 ABCDE 五个字母排成一排,若 ABC 的位置关系必须按 A 在前、B 居中、C 在后的原则,共有种排法(用数字作答).【例6】 用 1 到 8 组成没有重复数字的八位数,要求 1 与 2 相邻,3 与 4 相邻,5 与6 相邻,而7 与8 不相邻,这样的八位数共有_ 个(用数字作答).【例7】 记者要为5 名志愿者和他们帮助的2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两端,不同的排法共有( )A .1440 种B . 960 种C . 720 种D . 480 种【例8】 12 名同学合影,站成前排 4 人后排8 人,现摄影师要从后排8 人中抽 2 人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是() A. C 2A 2 B. C 2A 6 C. C 2A 2 D. C 2A 2【例9】 记者要为 5 名志愿者和他们帮助的 2 位老人拍照,要求排成一排,2 位老人相邻但不排在两端,不同的排法共有( )A .1440 种B .960 种C .720 种D .480 种高中数学讲义7思维的发掘 能力的飞跃【例10】在数字1,2 ,3 与符号+ ,- 五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A . 6B .12C .18D . 24【例11】计划展出 10 幅不同的画,其中 1 幅水彩、4 幅油画、5 幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有 种.【例12】6 人站一排,甲不站在排头,乙不站在排尾,共有 种不同的排法(用数字作答).【例13】一条长椅上有 7 个座位,4 人坐,要求 3 个空位中,有 2 个空位相邻,另一个空位与 2 个相邻位不相邻,共有几种坐法?【例14】 3 位男生和3 位女生共6 位同学站成一排,若男生甲不站两端, 3 位女生中有且只有两位女生相邻,则不同排法的种数是() A . 360 B . 288 C . 216 D . 96高中数学讲义8 思维的发掘 能力的飞跃【例15】古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例16】在1,2 ,3,4 ,5 ,6 ,7 的任一排列 a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 ,a 7 中,使相邻两数都互质的排列方式共有()种. A . 288B . 576C . 864D .1152【例17】从集合{P ,Q ,R ,S } 与{0 ,1,2 ,3,4 ,5 ,6 ,7 ,8 ,9} 中各任取 2 个元素排成一排(字母和数字均不能重复). 每排中字母 Q 和数字 0 至多只能出现一个的不同排法种数是 .(用数字作答)【例18】从集合{O ,P ,Q ,R ,S } 与{0 ,1,2 ,3,4 ,5 ,6 ,7 ,8 ,9} 中各任取2 个元素排成一排(字母和数字均不能重复). 每排中字母 O ,Q 和数字 0 至多只能出现一个的不同排法种数是.(用数字作答)【例19】 6 个人坐在一排10 个座位上,问⑴ 空位不相邻的坐法有多少种?⑵ 4 个空位只有3 个相邻的坐法有多少种?7思维的发掘 能力的飞跃高中数学讲义 8 3 8 6 8 6 8 5⑶ 4 个空位至多有2 个相邻的坐法有多少种?【例20】 3 位男生和3 位女生共6 位同学站成一排,若男生甲不站两端, 3 位女生中有且只有两位女生相邻,则不同排法的种数是( )A . 360B . 288C . 216D . 96【例21】12 名同学合影,站成了前排 4 人后排 8 人,现摄影师要从后排 8 人中抽 2 人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有() A. C 2A 2 B. C 2A 6 C. C 2A 2 D. C 2A 2【例22】两部不同的长篇小说各由第一、二、三、四卷组成,每卷1 本,共8 本.将它们任意地排成一排,左边4 本恰好都属于同一部小说的概率是.【例23】 2007 年12 月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6 列电煤货运列车进行编组调度,决定将这6 列列车编成两组,每组3 列,且甲与乙两列列车不在同一小组.如果甲所在小组3 列列车先开出,那么这 6 列列车先后不同的发车顺序共有高中数学讲义()A.36 种B.108 种C.216 种D.432 种数字问题【例24】给定数字0 、1 、2 、3 、5 、9 ,每个数字最多用一次,⑴可能组成多少个四位数?⑵可能组成多少个四位奇数?⑶可能组成多少个四位偶数?⑷可能组成多少个自然数?【例25】用0 到9 这10 个数字,可组成多少个没有重复数字的四位偶数?【例26】在1,3,5,7,9 中任取3 个数字,在0,2,4,6,8 中任取两个数字,可组成多少个不同的五位偶数.【例27 】用1,2,3,4,5排成一个数字不重复的五位数a1 ,a2,a3,a4,a5,满足a 1 <a2,a2>a3,a3<a4,a4>a5的五位数有多少个?8 思维的发掘能力的飞跃【例28】用0,1,2, ,9这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2 ,则这样的四位数共有多少个?【例29】用数字0 ,1,2 ,3,4 ,5 ,6 组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例30】有4 张分别标有数字1,2 ,3,4 的红色卡片和4 张分别标有数字1,2 ,3,4 的蓝色卡片,从这8张卡片中取出4 张卡片排成一行.如果取出的4 张卡片所标数字之和等于10 ,则不同的排法数一共有种.432 ;【例31】有8 张卡片分别标有数字1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,从中取出6 张卡片排成3 行2 列,要求3 行中仅有中间行的两张卡片上的数字之和为5 ,则不同的排法共有()A.1344 种B.1248 种C.1056 种D.960 种【例32】有4 张分别标有数字1,2 ,3,4 的红色卡片和4 张分别标有数字1,2 ,3,4 的蓝色卡片,从这8 张卡片中取出4 张卡片排成一行.如果取出的4 张卡片所标数字之和等于10 ,则不同的排法共有种(用数字作答).【例33】用1,2,3,4,5,6 组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1 和2 相邻,这样的六位数的个数是(用数字作答).【例34】用数字1, 2, 3, 4, 5可以组成没有重复数字,并且比20000 大的五位偶数共有()A.48 个B.36 个C.24 个D.18 个【例35】从1,2 ,3,8 ,9 ,10 这6 个数中,取出两个,使其和为偶数,则共可得到个这样的不同偶数?【例36】求无重复数字的六位数中,能被3 整除的数有个.【例37】用数字0 ,1,2 ,3,4 ,5 ,6 组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例38】从0 ,1,2 ,3,4 ,5 这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162【例39】从0 ,1,2 ,3,4 ,5 这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162【例40】从1 到9 的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑵上述七位数中三个偶数排在一起的有几个?⑶⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】用0 到9 这九个数字.可组成多少个没有重复数字的四位偶数?【例42】有4 张分别标有数字1,2 ,3,4 的红色卡片和4 张分别标有数字1,2 ,3,4 的蓝色卡片,从这8张卡片中取出4 张卡片排成一行.如果取出的4 张卡片所标数字之和等于10 ,则不同的排法共有种(用数字作答).【例43】在由数字1,2,3,4,5组成的所有没有重复数字的5 位数中,大于23145且小于43521的数共有()个A.56 个B.57 个C.58 个D.60 个【例44】由0,1,2,3,4 这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{a n},则a19=.A.2014 B.2034 C.1432 D.1430【例45】从数字0、1、3、5、7 中取出不同的三个作系数,可组成多少个不同的一元二次方程ax2+bx +c = 0 ,其中有实数根的有几个?【例46】从{-3,- 2 ,-1,0 ,1,2 ,3,4}中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?。

相关文档
最新文档