如何解二元一次方程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意一个一元二次方程ax^2+bx+c=0(a≠0)均可配成

(x+b/2a)^2=b^2-4ac/4a^2,因为a≠0,由平方根的意义可知,b^2-4ac

的符号可决定一元二次方程根的情况.

b^2-4ac叫做一元二次方程ax^2+bx+c=0(a≠0)的根的判别式,用“△”表示(读做delta),即△=b^2-4ac.

根的情况判别

1 一元二次方程ax^2+bx+c=0(a≠0)的根的情况判别

(1)当△>0时,方程有两个不相等的实数根;

(2)当△=0时,方程有两个相等的实数根;

(3)当△<0时,方程没有实数根.

(1)和(2)合起来:当△≥0时,方程有两实数根.

上面结论反过来也成立.可以具体表示为:

在一元二次方程ax^2+bx+c=0(a≠0)中,

①当方程有两个不相等的实数根时,△>0;

②当方程有两个相等的实数根时,△=0;

③当方程没有实数根时,△<0。

注意根的判别式是△=b^2-4ac,而不是△=sqrt(b^2-4ac) 。(sqrt 指根号)

一元二次方程求根公式:

当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a

当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]}/2a(i是虚数单位) 一元二次方程配方法:

ax^2+bx+c=0(a,b,c是常数)

x^2+bx/a+c/a=0

(x+b/2a)^2=(b^2-4ac)/4a^2

x+b/2a=±(b^2-4ac)^(1/2)/2a

x=[-b±(b^2-4ac)^(1/2)]/2a

判别式的应用

2 一元二次方程的判别式的应用

(1)不解方程,判别一元二次方程根的情况.

它有三种不同层次的类型:

①系数都为数字;

②系数中含有字母;

③系数中的字母人为地给出了一定的条件.

(2)根据一元二次方程根的情况,确定方程中字母的取值范围或字母间关系.

(3)应用判别式证明方程根的情况(有实根、无实根、有两不等实根、有两相等实根)

应用

① 解一元二次方程,判断根的情况。

② 根据方程根的情况,确定待定系数的取值范围。

③ 证明字母系数方程有实数根或无实数根。

④ 应用根的判别式判断三角形的形状。

⑤ 判断当字母的值为何值时,二次三项是完全平方式

⑥ 可以判断抛物线与直线有无公共点

联立方程。

⑦ 可以判断抛物线与x轴有几个交点

抛物线y=ax^2+bx+c与x轴的交点(1)当y=0时,即有ax^2+bx+c=0,要求x的值,需解一元二次方程ax^2+bx+c=0。可见,抛物线y=ax^2+bx+c 与x轴的交点的个数是由对应的一元二次方程ax^2+bx+c=0的根的情况确定的,而决定一元二次方程ax^2+bx+c=0的根的情况的,是它的判别式的符号,因此抛物线与x轴的交点有如下三种情形:

1)当Δ>0时,抛物线与x轴有两个交点,若此时一元二次方程

ax^2+bx+c=0的两根为x1、x2,则抛物线与x轴的两个交点坐标为(x1,0)(x2,0)。

2)当Δ=0时,抛物线与x轴有唯一交点,此时的交点就是抛物线的顶点,其坐标是(-b/2a,0)。

3)当Δ<0时,抛物线与x轴没有交点。

⑧ 利用根的判别式解有关抛物线(Δ>0)与x轴两交点间的距离的问题.

⑨当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

相关文档
最新文档