二元一次方程基本概念及基本解法讲解
二元一次方程的概念与解法
二元一次方程的概念与解法二元一次方程是数学中常见的问题类型,它由两个未知数和一次项构成。
解决这类方程需要运用代数的基础知识和解方程的技巧。
本文将介绍二元一次方程的概念以及一些解法方法。
一、二元一次方程的概念二元一次方程又称为二元一次方程组,可用以下形式表示:ax + by = cdx + ey = f其中,a、b、c、d、e、f为已知数,x、y为未知数。
二元一次方程是一类形式简单且较易解的方程,通常用代数的方法来解决。
解二元一次方程有两种方法:消元法和代入法。
二、消元法解二元一次方程消元法是常用的解二元一次方程的方法之一。
其基本思路是通过对方程组进行合理加减运算,将其中一个未知数消去,从而得到一个只含有另一个未知数的一元一次方程。
具体解法步骤如下:1. 根据方程组的特点,选择合适的乘法因子使得方程中的两个未知数的系数相等或互为相反数;2. 将两个方程的乘法因子应用到方程组的两个方程,并对两个方程进行相应的乘法运算;3. 将两个经过乘法运算的方程相加或相减,消去其中一个未知数;4. 解得消去后的一元一次方程,得到该未知数的值;5. 将求得的未知数的值代入方程组中的任意一个方程,求解另一个未知数。
消元法是一种简便且直观的解法,通过适当的运算可以得到方程组的解。
三、代入法解二元一次方程代入法是另一种解二元一次方程的常用方法。
它的基本思路是将一个方程中的一个未知数用另一个方程中的未知数表示,然后代入到另一个方程中,从而得到一个只含有一个未知数的一元一次方程。
具体解法步骤如下:1. 选择一个已知数比较方便求解的方程,将该方程中的一个未知数用另一个方程中的未知数表示;2. 将代入得到的新方程代入另一个方程,从而得到只含有一个未知数的一元一次方程;3. 解得一元一次方程,求得一个未知数的值;4. 将求得的未知数的值代入原来的方程,求解另一个未知数。
代入法在解一些特殊的二元一次方程时,往往能够更快地得到解。
四、总结二元一次方程是数学中常见的问题类型,解决这类方程需要运用代数的基础知识和解方程的技巧。
二元一次方程组及其解法
对二元一次方程组的理解应注意:
①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.
②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.
例8.解方程组
一、选择题
1.下列各式中,是二元一次方程的是()
A.4x-2π=5B.3x+5yC.2x-5y=0D.2x-5=y2
2.如果5x3m-2n-2yn-m+11=0是二元一次方程,则()
A.m=1,n=2B.m=2,n=1 C.m=-1,n=2D.m=3,n=4
3.如果是方程3x-ay=7的一个解,那么a=()
二元一次方程组及其解法
知识要点
1.二元一次方程
(1)概念:含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.
你能区分这些方程吗?(1)5x+3y=75;(2)3x+1=8x;(3)+y=2;(4)2xy=9.
对二元一次方程概念的理解应注意以下几点:
①等号两边的代数式是整式;
②在方程中“元”是指未知数,二元是指方程中含有两个未知数;
解法2:
由①设x=k,y=2k,z=7k,并代入②,得k=1.
把k=1,代入x=k,得x=1;
把k=1,代入y=2k,得y=2;
把k=1,代入z=7k,得z=7.
因此三元一次方程组的解为
小结:遇比例式找关系式,采用设元解法.
例4、解方程组
分析:
(word完整版)二元一次方程组的概念和解法-教师版
(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。
含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。
判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。
2。
二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。
二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
【例1】 下列各式是二元一次方程的是( )A 。
30x y z -+=B 。
30xy y x -+=C 。
12023x y -= D 。
210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。
2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。
【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。
【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
七年级下-二元一次方程组的定义及解法
二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
二元一次方程组及其解法
二元一次方程组及其解法提要二元一次方程组是一元一次方程知识的延续,与函数有着密切的联系,学习时应注意加强二元一次方程和二元一次方程组及它们解法的理解:消元是解方程组的基本思想,是将复杂问题简化的一种化归思想,其目的是将多元的方程组逐步转化为一元方程。
选择解法时要根据二元一次方程组的系数特点,确定是使用“代入法”还是使用“加减法”来消元。
知识全解一、二元一次方程的概念含有两个未知数(x和y),并且未知项的指数都是1,这样的方程被叫做二元一次方程。
二元一次方程的一般形式为ax+by=c(a≠0,b≠0).提示判断一个方程是不是二元一次方程,通常先把它化为ax+by=c的形式,再根据概念判断。
构成二元一次方程的条件:是方程,方程两边都是整式,含有两个未知数,含有未知数的项的次数都是1。
二.二元一次方程的解使二元一次方程左右两边的值相等的两个未知数的值,称为二元一次方程的一个解。
提示(1)所有二元一次方程都有无数多组解(2)求二元一次方程的一个解时,只要任给其中一个未知数的一个数值,并把它代入方程,解关于另一个未知数的一元一次方程即可确定原二元一次方程的一组解。
三.二元一次方程组的概念(1)把具有相同未知数的两个二元一次方程合在一起,就组成了二元一次方程组。
(2)二元一次方程组必须满足的三个条件:含有两个未知数;含未知数的项的次数都是1;整式方程组(含两个或两个以上的整式方程)。
(3)一般形式:提示(1)二元一次方程组不一定都是由两个二元一次方程组成的,方程的个数可超过2个,其中有的方程可以是一元一次方程。
(2)在方程组的各方程中,相同的字母必须代表同一数量,否则不能将两个方程组合在一起。
四、二元一次方程组的解一般的,使二元一次方程组中的两个方程的左右两边的值都相等的两个未知数的值,称为二元一次方程组的解。
二元一次方程组的解要用大括号“{”表示。
提示检验一对数是不是某个二元一次方程组的解时,可将这对数值分别代入方程组中的每一个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解。
《二元一次方程组》知识讲解及例题解析
《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。
二元一次方程(组)及其解法
二元一次方程(组)及其解法知识点总结一.二元一次方程(组)的相关概念1.二元一次方程:含有两个未知数并且未知项的次数是1的方程叫做二元一次方程。
2.二元一次方程组:二元一次方程组两个二元—次方程合在一起就组成了一个二元一次方程组。
3.二元一次方程的解集:(1)二元一次方程的解适合一个二元一次方程的每一对未知数的值.叫做这个二元一次方程的一个解。
(2)二元一次方程的解集对于任何一个二元一次方程,令其中一个未知数取任意二个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集。
4.二元一次方程组的解:二元一次方程组可化为使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解。
二.利用消元法解二元一次方程组解二元(三元)一次方程组的一般方法是代入消元法和加减消元法。
1.解法:(1)代入消元法是将方程组中的其中一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,消去另一个未知数,得到一个解。
代入消元法简称代入法。
(2)加减消元法利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫做加减消元法,简称加减法。
用加减法消元的一般步骤为:①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
第4讲 二元一次方程(组)的概念与解法(学生版)
第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
二元一次方程组的概念与解法
二元一次方程组的概念与解法二元一次方程组是初中数学中的重要内容,它由两个未知数和两个方程组成。
本文将介绍二元一次方程组的概念以及解法,帮助读者更深入地理解和掌握这一知识点。
一、概念二元一次方程组由两个未知数和两个一次方程组成。
通常的一种表示形式为:```{ax + by = c (式1){dx + ey = f (式2)```其中,a、b、c、d、e、f都是已知的实数系数,x和y是未知数。
二、解法解二元一次方程组有多种方法,下面将分别介绍三种常用的解法。
1. 代入法代入法是一种较为直观且易于理解的解法。
我们可以将其中一个方程中的一个未知数用另一个方程中的未知数表示,然后代入另一个方程中,从而得到一个只含有一个未知数的方程,进而求解。
以下是具体步骤:Step 1:选择一个方程,将其中一个未知数,如x,用另一个方程中的未知数y表示。
Step 2:将代入得到的式子代入另一个方程中,得到一个只含有一个未知数的方程。
Step 3:求解该方程,得到一个未知数的值。
Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。
Step 5:得到方程组的解。
2. 消元法消元法是一种常用的解法,它通过逐步消去一个未知数,从而实现解方程组的目的。
以下是具体步骤:Step 1:通过变换,使得两个方程的系数相等。
Step 2:将两个方程相减(或相加),得到一个只含有一个未知数的方程。
Step 3:求解该方程,得到一个未知数的值。
Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。
Step 5:得到方程组的解。
3. 矩阵法矩阵法是一种更为高级的解法,它将二元一次方程组表示为一个矩阵方程,并通过矩阵的性质进行求解。
以下是具体步骤:Step 1:将方程组的系数和常数构成一个矩阵。
Step 2:求解矩阵的逆矩阵。
Step 3:将逆矩阵与常数向量相乘,得到未知数向量。
Step 4:得到方程组的解。
通过以上三种方法,我们可以解决二元一次方程组的问题。
二元一次方程基本概念及基本解法讲解
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.练习1:已知下列方程,其中是二元一次方程的有________.(1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y+=.【变式1】下列方程中,属于二元一次方程的有( )A.71xy -=B.2131x y -=+C.4535x y x y -=-D. 231x y-= 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩.(2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.如:10x y +=的解可以是241,,869x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩等等练习2:二元一次方程x-2y =1有无数多个解,下列四组值中不是该方程解的是( )A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【变式2】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= .三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.练习3:下列方程组中,是二元一次方程组的是( )A.22375(9)1x yx y⎧+=⎨+=-⎩B.2138237yxx y⎧-=⎪⎨⎪-=⎩C.135()237x z x yx z y=+-⎧⎨-=⎩D.5()()82317x y x yx y-++=⎧⎨=-+⎩()四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x yx y+=⎧⎨+=⎩无解,而方程组1222x yx y+=-⎧⎨+=-⎩的解有无数个.【巩固练习】一、选择题1.下列方程中,属于二元一次方程的是()A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y D.231 xy-=2.下列方程组是二元一次方程组的是()A.53 x yz x+=⎧⎨+=⎩ B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩3. 以31xy=⎧⎨=⎩为解建立一个二元一次方程,不正确的是()A.3x-4y=5 B.13x y-= C.x +2y=-3 D.25236xy-=4. 方程组233x yx y-=⎧⎨+=⎩的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩5.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解6. 关于,m n 的两个方程23321m n m n -=+=与的公共解是( )A. 03m n =⎧⎨=-⎩B. 11m n =⎧⎨=-⎩C. 012m n =⎧⎪⎨=⎪⎩ D. 122m n ⎧=⎪⎨⎪=-⎩ 二、填空题7.由x+2y =4,得到用y 表示x 的式子为x =________;得到用x 表示y 的式子为y =________.8.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==9.若22(32)0x y x -++=,则xy的值是 . 10.若是二元一次方程的一个解,则的值是__________.11.已知,且,则___________.12.若方程ax-2y =4的一个解是21x y =⎧⎨=⎩,则a 的值是 . 三、解答题 13.已知23x y =⎧⎨=⎩是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.14.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的13比乙数的2倍少7; (2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个 未知数的值;(4)写出方程组的解. 一般地,当方程组中某个方程的某未知数的系数绝对值是1或常数项为0时,用代入法简便.例2 解方程组 327,2 5.x y x y -=⎧⎨+=⎩①②解析:由②,得 52x y =-. ③ 将③代入①,得 3(52)27y y --=, 15627y y --=,88y -=-, 1.y = 把 1y =代入③,得 3.x =所以原方程组的解是⎩⎨⎧==.1,3y x点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x . 用代入消元法解二元一次方程组,需先观察方程组的系数特点,判断消去哪个未知数较为简单. 代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误.变式2:用代入法解方程组:34,110.42x y x y +=⎧⎪⎨+=⎪⎩①②方法2.加减消元法解二元一次方程组加减消元法解二元一次方程组的步骤有四步: (1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:111222,a xb yc a x b y c +=⎧⎨+=⎩的形式,若此时两未知数的绝对值都不相等,则先观察哪个未知数的系数较易化为绝对值(系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式.(2)两个未知数的值都可采用加减消元法的方法求出.(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简便.例3 解方程组:521,7316.m nm n+=⎧⎨-+=⎩①②解析:法一:①×3,②×2,得1563,14632.m nm n+=⎧⎨-+=⎩③④③-④,得29m=-29,m=-1.将m=-1代入①,得-5+2n=1,n=3.所以原方程组的解为1,3. mn=-⎧⎨=⎩法二:①×7,②×5,得35147,351580.m nm n+=⎧⎨-+=⎩③④③+④,得29n=87,n=3.把n=3代入①,得5m+6=1,m=-1.所以原方程组的解为1,3. mn=-⎧⎨=⎩点评:此题方程组中的两方程,两未知数的系数分别既不相等也不互为相反数,即绝对值不相等. 因此先将两方程分别变形,使某个未知数的系数的绝对值相等. 比较题中的两种方法,先消去系数比较简单的未知数n,解法较为简捷. 另外用加减消元法解二元一次方程组,需注意两方程相减时,符号的正确处理.练习(1)(2)(3)(4);(5); (6)附加题(7)(8) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x。
二元一次方程组的概念和解法要点精析
二元一次方程组的概念和解法要点精析二元一次方程组是初中代数的重要内容之一,它的应用很广泛.一方面在进一步学习高中数学如平面解析几何时要用它们;另一方面在国防、科技、工、农、商业和生活的实际问题中也要用到它们.同学们必须把它学好,在学习时要注意以下几个问题:一、正确理解四个概念1. 二元一次方程 含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程.如x + y =6.必须注意:同时具备下列三个条件的方程才能叫做二元一次方程.(1)二元一次方程必须是整式方程.即等号两边的代数式必须是整式(单项式,多项式).如x+ 1y =1, 14x+ 2y = 6都不是二元一次方程,而是分式方程(分母中含有未知数). (2)二元一次方程中必须含有两个未知数.如2x+3=0含有一个未知数,x+4y+z=5含有三个未知数,因而,它们都不是二元一次方程.(3)二元一次方程中的“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.即未知项的次数必须是“一次”.如xy+3=0就不是二元一次方程,尽管x 、y 的次数都是一次,但单项式xy 的次数为二,所以,它不是二元一次方程,而是二元二次方程. 例1.下列方程中,二元一次方程是( ).(A)xy=1 (B)y=3x - 1 (C)x+1y=2 (D)x 2+y -3=0 (上海市中考题)解析:本题可利用二元一次方程的概念进行检验.显然,方程xy=1,x 2+y -3=0都不满足“未知项的次数是1的条件”,而方程 x +1y =2的左边 x +1y 不是整式.故只有方程y=3x -1符合二元一次方程的概念.选(B).例2.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( ).(A)1,0 (B)0,-1 (C) (D)2,-3(陕西省中考题)解析:根据二元一次方程的意义,即含未知数的项的次数是1,得12 1.a b a b -=⎧⎨+-=⎩, 即 13.a b a b -=⎧⎨+=⎩, 解得21.a b =⎧⎨=⎩,故选(C). 2. 二元一次方程的解 能使二元一次方程左右两边的值相等的未知数的值,叫做二元一次方程的解.如11.x y =⎧⎨=⎩, 能使方程x+y=2的左右两边的值相等,所以11.x y =⎧⎨=⎩,就叫做方程x+y=2的一个解.但是,能使该方程的左右两边的值相等的未知数的值有无数对,如20.xy=⎧⎨=⎩,31.xy=⎧⎨=-⎩,……所以,任何一个二元一次方程都有无数个解.例3.二元一次方程x -2y=1有______个解.(上海市中考题)解:无数.例4.已知12.xy=⎧⎨=⎩,是方程ax-3y=5的一个解,则a=___.(苏州市中考题)解析:根据二元一次方程的解的意义,将12.xy=⎧⎨=⎩,代入方程,解关于a的一元一次方程.得a=11.3. 二元一次方程组两个含有相同未知数的二元一次方程合在一起,就组成了一个二元一次方程组.二元一次方程组必须具备以下三个条件:(1)有两个或两个以上的整式方程组成,常用“{”把这些方程联合在一起.(2)方程组中含有两个不同未知数,且方程组中,同一未知数代表同一数量.(3)方程组中每个方程经过整理后,都是一次方程.但要注意:二元一次方程组里一共含有两个未知数,而不是一定要每个方程都含有两个未知数.例如,211.x yy+=⎧⎨=⎩,也是二元一次方程组.同样,方程组21062.x yx yy x+=⎧⎪+=⎨⎪-=⎩,,,虽然是由三个二元一次方程组成,但整个方程组中只有两个未知数,所以它仍然是二元一次方程组,而方程组3050.x zx y+=⎧⎨+=⎩,中,虽然,每个方程中都只含有两个未知数,但整个方程组中却有三个未知数,因此它不是二元一次方程组,而是三元一次方程组.4. 二元一次方程组的解使二元一次方程组的两个方程的左、右两边的值都相等的两个未知数的值,即方程组中各个方程的公共解,叫做二元一次方程组的解.如12.xy=-⎧⎨=⎩,是方程组31.y xx y-=⎧⎨+=⎩,的一个解(其实是一对数),但不能叫两个解.要注意:解方程组时,原方程组中每个方程都至少要用到一次.方程组的解满足方程组中的每个方程,反之,方程组中任何一个方程的解不一定是方程组的解.例5.已知12xy=⎧⎨=⎩是方程组120.ax yx by+=-⎧⎨-=⎩,的解,则a+b=( ).(A)2 (B)-2 (C)4 (D) - 4(浙江省绍兴市中考题)解析:根据二元一次方程组的解的概念.12xy=⎧⎨=⎩满足方程组120.ax yx by+=-⎧⎨-=⎩,于是代入得21,220.ab+=-⎧⎨-=⎩解得3,1ab=-⎧⎨=⎩所以a+b=-3+1=-2.故选(B).二、注意领会一个思想有一位著名数学家曾经指出:“解题就是把习题归结为已经解过的问题”.由此可知,解数学题时,要自觉地把题目变型转化,归结为“已经解过的问题”来处理,这种关于解题的思想称为“化归”,它体现了“在一定条件下,不同的事物可以互相转化”的唯物辨证观点,是解数学题的一盏指路名灯.在本章内容中,蕴涵的一个重要化归思想就是“消元”.即把“三元”通过消去一个未知数转化为“二元”,“二元”再通过消去一个未知数转化为“一元”.转化为一元一次方程就会解了,化“未知”为“已知”,化“复杂”为“简单”,充满了辨证思维,希望同学们好好领会.三、熟练掌握两种方法代入消元法和加减消元法是二元一次方程组的常规解法.1.代入消元法的主要步骤;(1)求表达式从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用含另一个未知数(x)的代数式表示出来,写成y=ax+b的形式;(2)代入消元将表达式y=ax+b代入另一个方程中,消去y,得到一个关于x一元一次方程;(3)解方程解这个一元一次方程,求出x的值;(4)回代得解把求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解.2.加减消元法的主要步骤:(1)变换系数方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;(2)加减消元把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解方程解这个一元一次方程;(4)回代得解将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.在解方程组时,应根据题中的系数构成情况灵活选用两种方法,一般说来:①当方程组中有一个方程的某一个未知数的系数绝对值是1;②当方程组中有一个方程的常数项是0,此时用代入法较简捷.又,①当方程组中两个方程的某一个未知数的系数绝对值相等;②当方程组中两个方程的某一个未知数的系数成整数倍,此时用加减法较简捷.。
(完整版)二元一次方程基本概念及基本解法讲解
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是 1,像这样的方程叫做二元一次方程.注意:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数 .(2) “未知数的次数为1”是指含有未知数的项(单项式)的次数是 1.(3)二元一次方程的左边和右边都必须是整式^练习1:已知下列方程,其中是二元一次方程的有 .(1)2x-5=y; (2)x-1 = 4; (3)xy = 3;(4)x+y = 6; (5)2x-4y=7;一 1- 2 1 _ 2__ x4y -(6) x - 0; (7)5x — 1; (8)x - y 3; (9) x 8y 0; (10) ---------------- 6.2 y 2 2【变式1 ]下列方程中,属于二元一次方程的有()2A. xy 7 1B. 2x 1 3y 1C. 4x 5y 3x 5yD. 3x — 1 y二、二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值, 叫做二元一次方程的一组解.注意:如:x y 10的解可以是练习2:二元一次方程 x-2y= 1有无数多个解,下列四组值中不是该方程解的是x 1 x 1C. D.y 0 y 1.............................. x 2【变式2】若方程ax 2y 4的一个解是 ,则a= .y 1三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组 注意:组成方程组的两个方程不必同时含有两个未知数,例如3x 1 0也是二元一次方x 2y 5(1)二元一次方程的解都是一对数值,而不是一个数值, 般用大括号联立起来, 如:x 2, y 5.(2) 一般情况下,二元一次方程有无数个解, 即有无数多对数适合这个二元一次方程.x 1 B.y 1程组.练习3:下列方程组中,是二元一次方程组的是( )四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解^注意:(1)二元一次方程组的解是一组数对, 它必须同时满足方程组中的每一个方程, 一般x a , 写成的形式.y b〃, ,、…,…一“ ,一,/ , 2x y 5T (2)一般地,二元一次方程组的解只有一个, 但也有特殊情况,如方程组无2x y 6一 一、… x y 1 ,…,解,而方程组 "的解有无数个.2x 2y 2【巩固练习】 一、选择题1 .下列方程中,属于二元一次方程的是(A. xy-7=1B. 2x-1 = 3y+12 .下列方程组是二元一次方程组的是()x 3 _3 .以为解建立一个二兀一次万程,不正确的是()y 11 x 25 A. 3x- 4y= 5 B. —xy 0 C. x +2y = - 3 D.— — y —3 2 362x y 3 34 .方程组的解是()x y 3C.2x 2 3y 7 5(x 9) 1 y B.3- y 2 8 x 2x 3 7yx 13z 5(x y) 2x 3z 7yD.5(x y) (x y) 8 2x 3y 1) 7C. 4x-5y=3x-5y0 2D. 3x 一y x y 5A.z x 3x y xy 4 C.3x y 41-x 2y 13D.2-x - y 2(x 3 22y)x 1 x 2A. B.y 2 y 1C.y 1D.「 ,、… 6x 5y 11, ①……5 .已知二元一次方程组 7,下列说法正确的是()3y 2x 7,②A.适合②的x, y 的值 是方程组的解①②B.适合①的x, y 的值 是方程组的解C.同时适合①和②的x, y 的值 不一定是方程组的解D.同时适合①和②的 x, y 的值 是方程组的解 6 .关于m, n 的两个方程2m n 3与3m 2n二、填空题7 .由x+2y =4,得到用y 表示x 的式子为x= x y 4 ,, …8 .在二元一次方程组中,有x 6 ,则y _______ , m ______2x m 3y9 .若 |x 2 (3y 2x)2 0 ,则二的值是次方程"工+如二一2的一个解,则2a-b-6的值是11 .已知以一 1|+[2>+1),=0 ,且2工一仙=4 ,则太=一一 .一 x 2 ........... .12 .右方程ax-2y = 4的一个解是 ,则a 的值是 ___________ .y 1三、解答题x 213,已知是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.y 314.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的1比乙数的2倍少7;33 .、1的公共解是(A.m 0B .n 3m 1 C.n 1m 0 1 D.n -21m - 2 n 2;得到用x 表示y 的式子为 y=x = 210.若"是二兀〔A —(2)摩托车的时速是货车的一倍,它们的速度之和是200km/h;2(3)某种时装的价格是某种皮装价格的 1.4倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知 数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值; (3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个未知数的值;(4)写出方程组的解.一般地,当方程组中某个方程的某未知数的系数绝对值是 1或常数项为0时,用代入法简便.3x 2y 7, ① x 2y 5. ② x 5 2y.③ 3(5 2y) 2y 7,15 6y 2y 7, 8y 8, y 1.把y 1代入③,得 x 3.点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x.用代入消元法解二元一次方程组, 需先观察方程组的系数特点,判断消去哪个未知数较为简单 .代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误 .x 3y 4, ①变式2:用代入法解方程组:1 1-x -y 0.② 4 2方法2.加减消元法解二元一次方程组 加减消元法解二元一次方程组的步骤有四步:(1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两 方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:a1x b 1yc 1’的形a 2xb 2yc 2式,若此时两未知数的绝对值都不相等, 则先观察哪个未知数的系数较易化为绝对值 (系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式例2解方程组 解析:由②,得 将③代入①,得所以原方程组的解是x 3,y 1.(2)两个未知数的值都可采用加减消元法的方法求出^(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简 便.③-④,得 29m=-29 , m=-1. 将 m=-1 代入①,得-5+2 n=1, n=3.③ +④,得 29n=87, n=3.把 n=3 代入①,得 5m+6=1 , m=-1. 点评:此题方程组中的两方程, 两未知数的系数分别既不相等也不互为相反数,即绝对值不相等.因此先将两方程分别变形, 使某个未知数的系数的绝对值相等 .比较题中的两种方法, 先消去系数比较简单的未知数 n,解法较为简捷.另外用加减消元法解二元一次方程组,需 注意两方程相减时,符号的正确处理 . 练习f9x+2y=20 l3x+4y=10例3解方程组:5m 2n 1, ①7m 3n 16.②解析:法①②X2,得15m 6n 3, ③14m 6n 32.④所以原方程组的解为m 1, n3.法二:①X 7,②X 5,得35m 14n 35m 15n7, 80.④所以原方程组的解为m 1, n 3.(1)j 2戈-3产- 5[3x+2y=12"2y=3⑸" x 一第F ;J- -2=10附加题C3 (s- t) - 2 ts+t) =10 13 fs-t) +2 (s+t) =26x 2 y 1--- --- - 2(8) 3 2x 2 1 y d1。
中考数学知识讲解:二元一次方程的概念及解法
中考数学知识讲解:二元一次方程的概念及解法二元一次方程有关概念(1)概念:含有两个未知数,并且未知数的项的次数都是1,这样的方程叫做二元一次程.(2)一般形式:ax+by=c(a≠0,b≠0).(3)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.二元一次方程的解法1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
全面掌握二元一次方程组的概念与解法
全面掌握二元一次方程组的概念与解法二元一次方程组是方程大家族中又一十分重要的成员,在日常生活中也有着广泛的应用,我们在学习二元一次方程组的概念与解法时应注意掌握以下要点:一、理解二元一次方程和二元一次方程组的概念把两个一元一次方程合在一起,就组成了一个二元一次方程组.如27,1.1405x y x y -=⎧⎨+=⎩和0000210,8090182.x y x y +=⎧⎨+=⎩等等都是二元一次方程组. 类比一元一次方程,二元一次方程只是对“元”和“次”作进一步的变通;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数.二、理解二元一次方程组的解的概念我们知道,对于1,1;x y =⎧⎨=⎩1,3x y =-⎧⎨=⎩…等等都满足二元一次方程x +y =2,对于1,2;x y =⎧⎨=-⎩ 1,3x y =-⎧⎨=⎩…等等也都满足方程x -y =3,而1,3x y =-⎧⎨=⎩则满足二元一次方程组2,3.x y x y +=⎧⎨-=⎩ 就说x =-1与y =3是二元一次方程组2,3x y x y +=⎧⎨-=⎩的解.一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.就是说二元一次方程组的解就是两个二元一次方程的公共解.三、知道解二元一次方程组的基本思想解二元一次方程组的基本思想是“消元”,即化二元一次方程组为一元一次方程.就是说,把陌生的二元一次方程组转化为熟悉的一元一次方程来解.图示如下:四、熟练掌握解二元一次方程组的基本方法解二元一次方程组的基本方法是代入消元法与加减消元法.一般地说,当某一个未知数的系数是1或一个方程的常数项为零时,用代入法比较方便;当两个方程中,同一个未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.五、掌握用代入法解二元一次方程组的一般步骤用代入法解二元一次方程组的一般步骤是:例如,解方程组:38100.y x y ⎨--=⎩分析 这两个方程中未知数的系数都不是l ,但因为x 的系数为正数,且系数也较小,所以应用y 来表示x 较好.即这里用代入法消去x ,得到关于y 的一元一次方程.对于一般形式的二元一次方程用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错。
二元一次方程组解法详解
二元一次方程组解法详解一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式.6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有()①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2 D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,晨旭教育培训中心所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.晨旭教育培训中心又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x 的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b的值.题设的已知条件是两个方程组有相同的解。
初中数学-二元一次方程和一元二次方程详解
初中数学-二元一次方程和一元二次方程详解我选择介绍初中数学中的二元一次方程和一元二次方程的基本概念和解法。
一、二元一次方程二元一次方程是形如ax+by=c的方程,其中a,b,c为已知系数,x,y为未知数,且a,b不同时为0。
二元一次方程可以通过联立两个方程组成,例如:2x+y=53x-2y=8将这两个方程进行联立,可以得到:2x+y=5-6x+4y=-16然后我们采用消元法即可:将第二个方程乘以1/2,得到:2x+y=5-3x+2y=-8然后我们将第二个方程中的y消去,得到:2x+y=5-3x+2y=-8===================7x=-15因此,x=-15/7。
将x的值代回到第一个方程式中,可以解得y=25/7。
因此,原方程组的解为(x,y)=(-15/7,25/7)。
二、一元二次方程一元二次方程是形如ax²+bx+c=0的方程,其中a,b,c为已知系数,x为未知数,且a≠0。
求解一元二次方程通常有三种方法:配方法、公式法和图像法。
1)配方法:通过将方程式拆分成两个平方形式的式子,进而进行配方运算,最终得到方程的解。
例如,对于方程x²+6x+8=0,可以将其化为(x+2)(x+4)=0的形式,从而解得x=-2或x=-4。
2)公式法:对于形如ax²+bx+c=0的一元二次方程,可以使用求根公式:x = (-b ± √b²-4ac) / 2a来解方程。
其中,±表示两个解,√表示根号。
需要注意的是,一元二次方程的根数量可能为0、1或2个,具体取决于方程的判别式:b²-4ac。
3)图像法:将一元二次方程表示为y=ax²+bx+c的形式,可以得到一条开口朝上或朝下的抛物线。
通过观察或绘制这个抛物线,可以得到方程的解。
例如,对于方程x²-4x+3=0,我们可以将其表示为y=x²-4x+3的形式。
二元一次方程
二元一次方程二元一次方程,也称为一元二次方程,是高中数学中重要的概念之一。
它是指形如ax+by+c=0的方程,其中a、b、c为已知的实数,而x、y为未知数。
在这篇文章中,我们将探讨二元一次方程的基本概念、解法以及应用。
通过详细的讲解和例题分析,帮助读者加深对二元一次方程的理解。
一、基本概念二元一次方程可以看作是一种含有两个变量的一次方程,其一般形式为ax+by+c=0。
其中,a、b、c为已知实数,x、y为未知数。
我们可以通过消元、代入或配方法等多种方式来求解二元一次方程。
二、解法解二元一次方程的基本方法有三种:消元法、代入法和配方法。
接下来,我们将分别介绍这三种方法的步骤和原理。
1. 消元法消元法是解二元一次方程的常用方法。
具体步骤如下:(1)通过变换,使其中一个未知数的系数相等或相差一个倍数;(2)将两个方程相减,消去一个未知数,得到另一个未知数的方程;(3)求解得到其中一个未知数的值;(4)将求得的未知数的值代入任一方程中,求解另一个未知数的值。
2. 代入法代入法是解二元一次方程的另一种常用方法。
具体步骤如下:(1)选择一个方程,将其中一个未知数表示成另一个未知数的函数;(2)将该函数代入另一个方程中,得到只含有一个未知数的方程;(3)求解得到该未知数的值;(4)将求得的未知数的值代入最初选择的方程中,求解另一个未知数的值。
3. 配方法配方法也是解二元一次方程的重要方法之一。
具体步骤如下:(1)将一个方程的两边同时乘以一个系数,使得其两个未知数的系数相等或相差一个倍数;(2)将两个方程相加(或相减),得到一个只含有一个未知数的方程;(3)求解得到该未知数的值;(4)将求得的未知数的值代入任一方程中,求解另一个未知数的值。
三、应用二元一次方程在实际生活中有着广泛的应用。
下面我们以一个例子来说明二元一次方程的具体应用。
例题:一个体育馆里有男性和女性运动员,总共有100人。
男性每人平均站立重量为70kg,女性每人平均站立重量为60kg。
二元一次方程组知识点归纳及解题技巧
二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.练习1:已知下列方程,其中是二元一次方程的有________.(1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y+=.【变式1】下列方程中,属于二元一次方程的有( )A .71xy -=B .2131x y -=+C .4535x y x y -=-D . 231x y-= 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩.(2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.如:10x y +=的解可以是241,,869x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩等等练习2:二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( )A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【变式2】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= .三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.练习3:下列方程组中,是二元一次方程组的是( )A.22375(9)1x yx y⎧+=⎨+=-⎩B.2138237yxx y⎧-=⎪⎨⎪-=⎩C.135()237x z x yx z y=+-⎧⎨-=⎩D.5()()82317x y x yx y-++=⎧⎨=-+⎩()四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x yx y+=⎧⎨+=⎩无解,而方程组1222x yx y+=-⎧⎨+=-⎩的解有无数个.【巩固练习】一、选择题1.下列方程中,属于二元一次方程的是()A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y D.231 xy-=2.下列方程组是二元一次方程组的是()A.53 x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩3. 以31xy=⎧⎨=⎩为解建立一个二元一次方程,不正确的是()A.3x-4y=5 B.13x y-=C.x +2y=-3 D.25236xy-=4. 方程组233x yx y-=⎧⎨+=⎩的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩5.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解6. 关于,m n 的两个方程23321m n m n -=+=与的公共解是( )A. 03m n =⎧⎨=-⎩B. 11m n =⎧⎨=-⎩C. 012m n =⎧⎪⎨=⎪⎩ D. 122m n ⎧=⎪⎨⎪=-⎩ 二、填空题7.由x+2y =4,得到用y 表示x 的式子为x =________;得到用x 表示y 的式子为y =________.8.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==9.若22(32)0x y x -++=,则xy的值是 . 10.若是二元一次方程的一个解,则的值是__________.11.已知,且,则___________.12.若方程ax -2y =4的一个解是21x y =⎧⎨=⎩,则a 的值是 . 三、解答题 13.已知23x y =⎧⎨=⎩是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.14.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的13比乙数的2倍少7; (2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个 未知数的值;(4)写出方程组的解. 一般地,当方程组中某个方程的某未知数的系数绝对值是1或常数项为0时,用代入法简便.例2 解方程组 327,2 5.x y x y -=⎧⎨+=⎩①②解析:由②,得 52x y =-. ③ 将③代入①,得 3(52)27y y --=, 15627y y --=,88y -=-, 1.y = 把 1y =代入③,得 3.x =所以原方程组的解是⎩⎨⎧==.1,3y x点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x . 用代入消元法解二元一次方程组,需先观察方程组的系数特点,判断消去哪个未知数较为简单. 代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误.变式2:用代入法解方程组:34,110.42x y x y +=⎧⎪⎨+=⎪⎩①②方法2.加减消元法解二元一次方程组加减消元法解二元一次方程组的步骤有四步: (1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:111222,a xb yc a x b y c +=⎧⎨+=⎩的形式,若此时两未知数的绝对值都不相等,则先观察哪个未知数的系数较易化为绝对值(系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式.(2)两个未知数的值都可采用加减消元法的方法求出.(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简便.例3 解方程组:521,7316.m nm n+=⎧⎨-+=⎩①②解析:法一:①×3,②×2,得1563, 14632.m nm n+=⎧⎨-+=⎩③④③-④,得29m=-29,m=-1.将m=-1代入①,得-5+2n=1,n=3.所以原方程组的解为1,3. mn=-⎧⎨=⎩法二:①×7,②×5,得35147,351580.m nm n+=⎧⎨-+=⎩③④③+④,得29n=87,n=3.把n=3代入①,得5m+6=1,m=-1.所以原方程组的解为1,3. mn=-⎧⎨=⎩点评:此题方程组中的两方程,两未知数的系数分别既不相等也不互为相反数,即绝对值不相等. 因此先将两方程分别变形,使某个未知数的系数的绝对值相等. 比较题中的两种方法,先消去系数比较简单的未知数n,解法较为简捷. 另外用加减消元法解二元一次方程组,需注意两方程相减时,符号的正确处理.练习(1)(2)(3)(4);(5); (6)附加题(7)(8) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x。