第6章 粒子群优化算法讲解
第6章粒子群优化算法
第6章粒子群优化算法PSO算法的基本原理是通过模拟粒子在空间中的移动,从而找到最优解。
每个粒子代表一个可能的解,并根据自身的经验和群体的经验进行。
粒子的速度和位置的更新使用以下公式:v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 *rand( * (gbest - x(t))x(t+1)=x(t)+v(t+1)其中,v(t)代表粒子的当前速度,x(t)代表粒子的当前位置,w是惯性权重,c1和c2是学习因子,rand(是一个0到1之间的随机数,pbest 是粒子自身的最佳位置,gbest是整个群体的最佳位置。
PSO算法的过程如下:1.初始化粒子的位置和速度。
2.计算每个粒子的适应度值。
3. 更新每个粒子的pbest和gbest。
4.根据公式更新每个粒子的速度和位置。
5.重复步骤2到4,直到达到终止条件。
PSO算法有几个重要的参数需要设置:-群体大小:确定PSO算法中粒子的数量。
较大的群体大小可以增加整个空间的探索能力,但也增加了计算复杂度。
-惯性权重:控制粒子速度变化的因素。
较大的惯性权重可以增加粒子的飞行距离,但可能导致过程陷入局部最优解。
-学习因子:用于调节个体经验和群体经验的权重。
c1用于调节个体经验的权重,c2用于调节群体经验的权重。
较大的学习因子可以增加粒子的探索能力,但也可能增加时间。
PSO算法的优点是简单、易实现,收敛速度较快,对于多维、非线性、离散等问题具有良好的适应性。
然而,PSO算法也存在一些缺点,如易陷入局部最优解、对参数的敏感性等。
总之,粒子群优化算法是一种基于群体智能的优化算法,在求解复杂问题方面具有出色的性能。
它的基本原理是通过模拟粒子的移动来最优解,利用个体经验和群体经验进行自适应。
PSO算法在多个领域都有成功的应用,可以帮助解决实际问题。
粒子群优化算法理论及应用ppt课件
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化
算
对群体中的每个个体进行评价
法
流
利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:
向背离最近同伴的方向移动;
向目的移动;
向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最
粒子群优化算法PPT上课讲义
02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由简 单个体粒子群优化算法PPT
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想
粒子群优化算法ppt
联合优化
粒子群优化算法可以用于联合优化神经网络的参数和结构,进一步提高神经网络的性能。
粒子群优化算法在神经网络训练中的应用
粒子群优化算法可以用于优化控制系统的控制器参数,以提高控制系统的性能和稳定性。
控制器参数优化
鲁棒性优化
联合优化
粒子群优化算法可以用于提高控制系统的鲁棒性,以应对系统中的不确定性和干扰。
粒子群优化算法可以用于联合优化控制系统的参数和结构,进一步提高控制系统的性能和稳定性。
03
粒子群优化算法在控制系统中的应用
02
01
06
总结与展望
粒子群优化算法是一种高效的全局优化算法,具有速度快、简单易行、易于并行化等优点。它利用群体智慧,通过粒子间的协作与信息共享,可以快速找到全局最优解。
优点
PSO算法的特点包括:简单易懂、易实现、能够处理高维问题、对初始值不敏感、能够处理非线性问题等。
定义与特点
粒子群优化算法的起源与发展
PSO算法的起源可以追溯到1995年,由 Kennedy 和 Eberhart博士提出,受到鸟群觅食行为的启发。
最初的PSO算法主要应用于函数优化问题,后来逐渐发展应用到神经网络训练、模式识别、图像处理、控制等领域。
边界条件的处理
通过对粒子速度进行限制,可以避免粒子在搜索空间中过度震荡,从而更好地逼近最优解。
粒子速度的限制
实例一
针对函数优化问题,通过对粒子速度和位置进行更新时加入随机扰动,可以增加粒子的探索能力,从而寻找到更好的最优解。
实例二
针对多峰函数优化问题,将粒子的个体最佳位置更新策略改为基于聚类的方法,可以使得粒子更好地逼近问题的全局最优解。
粒子的适应度函数用于评估其位置的好坏。
粒子群优化算法
智能优化计算
1 群智能
1.2 群智能算法
优点
灵活性:群体完成任务;
自我组织:活动既不受中央控制,也不受局部监管。
典型算法 蚁群算法(蚂蚁觅食)
粒子群算法(鸟群捕食)
智能优化计算
2 粒子群算法的基本原理
2.1 粒子群算法的提出
粒子群优化算法 (简称为PSO),是一种以群体为基 础 (Population-based) 的最佳化搜寻技术 由 James Kennedy 和 Russell Eberhart 两位学者于 1995年时所提出
用途
基本PSO是用来解决连续问题优化的,离散二进制 PSO用来解决组合优化问题。
运动方程不同
k 1 k k k vid wvid c1rand()( pid xid ) c2 rand()( p gbest xid ) k 1 k 1 k 1 k 1 if ρid S (vid ) then xid 1; else xid 0
k 1 k k k vid k [vid c1rand( pid xid ) c2 rand( p gbest xid )]
k
2 2 4
2
, 其中 c1 c2 , 4
通常将φ设为4.1,经计算k为0.729。
智能优化计算
4 改进粒子群优化算法
Rosenbrock
智能优化计算
5 粒子群优化算法的应用
5.1 函数优化问题
Rastrigin
智能优化计算
5 粒子群优化算法的应用
5.1 函数优化问题
Schwefel
f ( x) ( xi ) sin( xi )
粒子群优化算法课件
实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。
《粒子群优化算法》课件
CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数
粒子群优化算法
好地求解各类优化问题。
03
多目标优化
多目标优化是未来粒子群优化算法的一个重要研究方向,可以解决实
际优化问题中多个目标之间的权衡和取舍。
THANKS
谢谢您的观看
粒子群优化算法
xx年xx月xx日
目录
• 粒子群优化算法简介 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进 • 粒子群优化算法的应用案例 • 粒子群优化算法的总结与展望
01
粒子群优化算法简介
什么是粒子群优化算法
粒子群优化算法是一种群体智能优化算法,通过模拟鸟群、 鱼群等动物群体的社会行为,利用群体中个体之间的相互作 用和信息共享,寻找问题的最优解。
动态调整约束参数
通过动态调整约束参数,使算法在不同阶段都能保持较好的优化效果。同时 ,可以设置一些参数的自适应调整策略,如根据迭代次数、最优解的位置和 速度等信息来自适应调整。
04
粒子群优化算法的应用案例
函数优化问题
求解函数最大值
粒子群优化算法可以用于求解各类连续或离散函数的最大值,例如非线性函数、 多峰函数等。通过不断迭代寻优,能够找到函数的局部最大值或全局最大值。
03
粒子群优化算法的参数包括粒子群的规模、惯性权重、加速常数和学习因子等 ,这些参数对算法的性能和收敛速度有着重要影响。
粒子群优化算法的应用领域
粒子群优化算法被广泛应用于各种优化问题中,包括函 数优化、路径规划、电力系统优化、机器学习、图像处 理、控制工程、模式识别、人工智能等领域。
具体应用包括:函数优化问题的求解、神经网络训练的 优化、控制系统参数的优化、机器人路径规划、图像处 理中的特征提取和分类等。
空间搜索的改进
引入高斯分布
通过引入高斯分布,使粒子速度更新过程中更侧重于向当前 最优解方向靠拢,提高算法的局部搜索能力。
粒子群优化算法综述
粒子群优化算法综述粒子群优化(Particle swarm optimization, PSO)是一种以群体行为模型为基础的进化算法,它是模拟群体中每个体的行动及各种影响机制来找到最优解。
1995年,Eberhart和Kennedy提出了粒子群优化(PSO)算法。
这个算法被用于多维、非线性优化问题,并认为其结果要好于其他搜索算法。
一、粒子群优化算法介绍:1、算法框架:粒子群优化算法是一种迭代搜索算法,它模拟生物世界中群体行为的进化机制来寻找最优解,它的基本框架如下:(1)初始化参数:决定搜索空间的边界条件,确定粒子群的初始状态;(2)计算适应度函数:按照不同的情况确定适应度函数,计算粒子群种群体的适应度;(3)更新种群体:根据当前种群体的适应度情况,更新个体的位置和速度;(4)迭代搜索:重复以上步骤,等待算法收敛到最优解;(5)结果输出:输出算法收敛的最优解。
2、算法特点:粒子群优化算法具有以下优势:(1)算法易于实现;(2)参数少;(3)计算局部搜索和全局搜索并重;(4)利用简单的几何形式,可以用于多目标优化问题。
二、应用情况:粒子群优化算法在多种复杂场景中应用十分灵活,它可以用于以下几个应用场景:(1)最优控制问题:用于解决轨道优化、多种自控问题。
(2)另一个应用领域是多元函数的优化求解,例如多元函数拟合、计算仿真等。
(3)另一个重要应用领域是信息处理,包括图像处理、模式识别等。
三、发展趋势:粒子群优化算法具有很好的搜索能力、实现简单以及参数少等优点,由于其交叉搜索能力和准确度,越来越受到关注,并被采用到各个领域。
然而,近些年,粒子群优化算法也因其原始算法难以改进收敛精度方面存在一定限制,受到两方面限制:一是获得最优解的能力较弱;二是收敛速度较慢。
四、结论:粒子群优化算法是一种利用生物行为模型进行优化的新算法,它在最优控制技术、多元函数优化求解以及信息处理等多个方面具有很好的应用价值。
虽然存在一定的缺点,但是随着计算机能力和计算机科学的发展,粒子群优化算法仍然具有良好的发展前景。
粒子群优化算法
模拟退火算法是一种基于物理退火原理的优化算法,具有较好的局部搜索能力和鲁棒性。将粒子群优 化算法与模拟退火算法结合,可以利用模拟退火算法的优点,弥补粒子群优化算法在搜索过程中的不 足之处,提高算法的性能和鲁棒性。
04
粒子群优化算法在解决实际问题 中的应用案例
求解函数最大值问题
总结词
决定粒子在更新速度时自身的惯 性大小,通常根据问题的特性来
选择。
02
速度和位置范围
粒子的速度和位置都有一定的范 围限制,这些限制根据问题的约
束条件来确定。
04
学习因子
决定粒子在更新速度时对自身最 优解和全局最优解的参考程度, 通常根据问题的特性来选择。
粒子群优化算法的流程
初始化
更新个体最优解
更Hale Waihona Puke 全局最优解结合强化学习技术,设计具有自适应和学习能力的粒子群优化 算法,以适应动态环境和复杂任务。
THANKS
感谢观看
更新速度和位置
终止条件
根据问题的约束条件随 机初始化粒子的速度和 位置。
比较每个粒子的当前解 和个体最优解,更新个 体最优解。
比较每个粒子的个体最 优解和全局最优解,更 新全局最优解。
根据粒子的个体最优解 和全局最优解以及粒子 的速度和位置,按照一 定的规则更新粒子的速 度和位置。
判断是否满足终止条件 (如达到最大迭代次数 或全局最优解满足一定 的精度要求),若满足 则停止迭代,否则返回 步骤2。
05
总结与展望
粒子群优化算法的优点与不足
01
优点
02
简单易实现:粒子群优化算法是一种基于群体智能的优化算法
,其实现原理简单,算法流程清晰,易于理解和实现。
粒子群优化算法(详细易懂)
粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN
粒子群优化算法
粒子群优化算法
• 基本粒子群算法的流程如下: (1)依照初始化过程,对粒子群的随机位置和速度进行初始设
定; (2)计算每个粒子的适应值; (3)应对值于进每行个比粒较子,,若将较其好适,应则值将与其所作经为历当过前的最最好好位位置置;Pi 的适 (4)对于每个粒子,将其适应值与全局所经历过的最好位置 Pg
• 当目标函数不是数量函数而是向量函数时,称之 为多目标函数,等等。
粒子群优化算法
• PSO算法是一种启发式的优化计算方法,其最大的优点: • ⑴易于描述,易于理解; • ⑵对优化问题定义的连续性无特殊要求; • ⑶只有非常少的参数需要调整; • ⑷算法实现简单,速度快; • ⑸相对其它演化算法而言,只需要较小的演化群体; • ⑹算法易于收敛,相比其它演化算法,只需要较少的评价
• 目前关于粒子群算法的研究,一般都是将带惯性权重的粒 子群算法作为最基本的PSO算法模型。
预备知识
无约束最优化问题
min f (x)
xRn
其中 x (x1, x2 ,, xn )T R n ,通常称变量 x1, x2 ,, xn 为决策变量(decision variables),称 f (x) 为目
粒子群优化算法
• 引增入加惯时性,权可重通过w可减消少除w基来本达粒到子平群衡算搜法索对,而Vmwax 的的需减要少。可当使Vmax 得所需的迭代次数变小。所以,可以将各维变量的 Vmax,D 固 定,而只对w进行调节。w越大,粒子的飞行速度就越大, 它将以较大的步长进行全局搜索;w越小,粒子的速度步 长越小,粒子趋向于进行精细的局部搜素。w的变化趋势 正好相当于粒子速度的变化趋势。所以带惯性权重的粒子 群算法的改进之处就是将二者结合起来以使粒子可以尽快 的向最优解区域靠拢,而又不至于在到达最优解区域附近 时飞越最优解。
第6章粒子群算法基本理论
PSO算法作为一种新兴智能仿生算法,目前还没有完备 的数学理论基础,但作为新兴优化算法已在诸多领域得到广 泛应用。
6.1 粒子群算法的概述
6.1.3 粒子群算法的特点
粒子群算法的优点 ① 粒子群算法依靠粒子速度完成搜索,在迭代进化中只 有最优的粒子将信息传递给其他粒子,搜索速度快。 ② 粒子群算法具有记忆性,粒子群体的历史最好位置可 以记忆,并传递给其他粒子。 ③ 需调整的参数较少,结构简单,易于工程实现。 ④ 采用实数编码,直接由问题的解决定,问题解的变量 数直接作为粒子的维数。
[2] Eberhart R,Kennedy J,A new optimizer using particle swarm theory,Proceeding of the 6th International Symposium on Micro-Machine and Human Science, 1995,39~43
粒子群算法的基本思想是通过群体中个体之间的协作和 信息共享来寻找最优解。
6.1 粒子群算法的概述
6.1.2 粒子群算法的发展
萌芽阶段
1986年,人工生命、计算机图形 学专家 Craig Reynolds提出了简单的 人工生命系统——boid模型(解释为 bird like object),模拟了鸟类在飞行 过程中分离、列队和聚集三种聚群飞 行行为,并能感知到周围一定范围内 其他boid的飞行信息。boid根据该信 息,结合当前自身的飞行状态,在三 条简单行为规则的指导下,做出下一 步的飞行决策。
Step2:评价每个微粒的适应度值。 Step3:将每个微粒的适应度值与其经过的最好位置 pbest进行比较,如果较好则将其作为当前的最好位置pbest。 Step4:将每个微粒的适应度值与种群的最好位置gbest 进行比较,如果较好则将其作为种群的最好位置gbest。 Step5:根据速度和位置公式调整粒子的飞行速度和所 处位置。 Step6:判断是否达到结束条件,若未达到转到Step2。
粒子群优化算法介绍
粒子群优化算法介绍
粒子群优化算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,通过不断地迭代寻找最优解。
该算法最初由美国加州大学的Eberhart和Kennedy于1995年提出,目前已经被广泛应用于各种优化问题中。
粒子群优化算法的基本思想是将待优化问题转化为一个多维空间中的搜索问题,将每个解看作空间中的一个粒子,每个粒子的位置表示该解的参数值,速度表示该解的变化方向和速度。
在算法的每一次迭代中,每个粒子都会根据自身的历史最优解和群体最优解来更新自己的速度和位置,以期望找到更优的解。
具体来说,粒子群优化算法的实现过程如下:
1. 初始化粒子群,包括粒子的位置和速度等信息。
2. 计算每个粒子的适应度值,即待优化问题的目标函数值。
3. 更新每个粒子的速度和位置,包括考虑自身历史最优解和群体最优解的影响。
4. 判断是否满足停止条件,如果满足则输出最优解,否则返回第2步。
粒子群优化算法的优点在于其简单易懂、易于实现和收敛速度较快等特点。
同时,该算法还具有较好的全局搜索能力和鲁棒性,能够
应对复杂的非线性优化问题。
然而,粒子群优化算法也存在一些缺点,如易陷入局部最优解、对参数的选择较为敏感等问题。
因此,在实际应用中需要根据具体问题进行调整和优化。
粒子群优化算法是一种有效的优化算法,已经被广泛应用于各种领域,如机器学习、图像处理、控制系统等。
随着人工智能和大数据技术的不断发展,相信粒子群优化算法将会有更广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Contents
1 算法简介 2 基本流程 3 改进研究 4 相关应用 5 参数设置
2
6.1 粒子群优化算法简介
粒子群优化算法是什么?
粒子群优化算法的思想来源是怎样的? 它由谁提出的?
粒子群优化算法 (Particle Swarm Optimization,PSO)
是进化计算的一个分支, 是一种模拟自然界的P生S物O模活拟动了的自随然机界搜鸟索群算捕法食。和鱼群捕食的过程。
14
步骤1:初始化。 假设种群大小是N=3;在搜索空间中随机 初始化每个解的速度和位置,计算适应函 数值,并且得到粒子的历史最优位置和群 体的全局最优位置。
p1
vx11
(3,2) (8,5)
f1
82
(5)2
64
25
89
pBest1 x1 (8,5)
p2
6.1
1.8
(6.1,1.8)
x1 x1 v1 (5,9) (6.1,1.8) (1.1,10.8) (1.1,10)
注意! 对于越界的位置,需要进行合法性调整
v3 v3 c1 r1 ( pBest3 x3 ) c2 r2 (gBest x3 )
粒子群优化算法
Байду номын сангаас鸟群觅食现象
6
6.2 粒子群优化算法的基本流程
基本流程
速度与位置更新公式 速度与位置更新示意图 算法流程图和伪代码
应用举例
函数最小化问题 算法的执行步骤示意图
7
粒子的个体速度与位置更新公式
vid vid c1 r1d ( pBestid xid ) c2 r2d (gBestd xid )
2006
2006
Kadirkamanathan 等人2006年在动态 环境中对PSO的行 为进行研究,由静
态分析深入到了动
态分析
F. van den Bergh 等人2006年对 PSO的飞行轨迹 进行了跟踪,深 入到了动态的系 统分析和收敛性 研究
19
6.3.2 拓扑结构改进
静态拓扑结构
全局版本:
end procedure
12
6.2.2 应用举例
例6.1 已知函数 y f (x1, x2) x12 x22 , 其中 10 x1, x2 10 ,用粒子群优化算法求解y的 最小值。
13
运行步骤
步步骤骤步根31骤据::2自:评身初粒的估子始历的粒史化速最子度。优和的位位置适置和更应全新局度。的函最优数值。 更假新设位粒种置子,群更的新大每历小个史粒是子最N的优=速3度位;和置在位置和搜。全索局空的间最中优随位机置。
群理论
4
6.1.2 基本原理
鸟群觅食现象
鸟群觅食现象
•鸟群 •觅食空间 •飞行速度 •所在位置 •个体认知与群体协作 •找到食物
类比关系
粒子群优化算法
•搜索空间的一组有效解 •问题的搜索空间 •解的速度向量 •解的位置向量 •速度与位置的更新 •找到全局最优解
粒子群优化算法
5
6.1.2 基本原理
Conference (GECCO) International Conference on Ant Colony
Optimization and Swarm Intelligence (ANTS) International Conference on Simulated Evolution
评估每个粒子并得到全局最优 是 满足结束条件
否 更新每个粒子的速度和位置 评估每个粒子的函数适应值 更新每个粒子历史最优位置
更新群体的全局最优位置
结束
procedure PSO for each particle i Initialize velocity Vi and position Xi for particle i Evaluate particle i and set pBesti = Xi end for gBest = min {pBesti} while not stop for i=1 to N Update the velocity and position of particle i Evaluate particle i if fit (Xi) < fit (pBesti) pBesti = Xi; if fit(pBesti) < fit (gBest) gBest = pBesti; end for end while print gBest
星型结构
局部版本:
f2
f2*
101.21
pBest2 X2 (1.1,10)
f3* (3.5)2 (1.7)2 12.252.8915.14113 f3
f3
f3*
15.14
pBest3 x3 (3.5,1.7)
gBest pBest3 (3.5, 1.7)
1.5 1
(1.5,1)
x1 x1 v1 (8,5) (1.5,1) (9.5,4)
v2 v2 c1 r1 ( pBest2 x2 ) c2 r2 (gBest x2 )
p2
v2
0.5 (3) 0 2 0.3 (8 (5)) 0.5 (2) 0 2 0.1 ((5) 9)
v2
x
2
(3,2)
f2
(5)2
92
2581106
(5,9) pBest2 x2 (5,9)
p3
v3
x3
(5,3)
f3
(7)2
(8)2
4964
113
(7,8)pBest3 x3 (7,8)
gBest pBest1 (8, 5)
通过群体中的协作寻找到问题的全局最优解。 它是1995年由美国学者Eberhart和Kennedy提出的, 现在已经广泛应用于各种工程领域的优化问题之中。
3
6.1.1 思想来源
生物界现象
群体行为 群体迁徙 生物觅食
……
粒子群 优化算法
社会心理学
群体智慧 个体认知 社会影响
……
人工生命
鸟群觅食
鱼群学习
步骤3:评估粒子的适应度函数值。 更新粒子的历史最优位置和全局的最优位置。
f1* 9.52 (4)2 90.2516 106.25 f1 89
f1 89 pBest1=(8,
5)
f2* 1.12 102 1.21100 101.21106 f2
拓扑结构 研究
混合算法 研究
算法应用 研究
16
与PSO相关的重要学术期刊与国际会议
重要学术期刊
IEEE Transactions on Evolutionary Computation IEEE Transactions on Systems, Man and Cybernetics IEEE Transactions on …… Machine Learning Evolutionary Computation ……
xid xid vid
自身速度
个体认知
更新速度
社会引导
8
速度与位置更新示意图
x2 P2
gBest x1
P1 P3
9
速度与位置更新示意图
x2 PB 2
P1
P2
x1 P3
10
速度与位置更新示意图
x2
经过若干次迭代之后
P2
P1
x1 P3
11
PSO算法流程图和伪代码
开始 随机初始化每个粒子
//功能:粒子群优化算法伪代码 //说明:本例以求问题最小值为目标 //参数:N为群体规模
p3
v3
0.5 5 0 2 0.05 (8 (7)) 3.5 0.5 3 0 2 0.8 ((5) (8)) 6.3
(3.5,6.3)
x1 x1 v1 (7,8) (3.5,6.3) (3.5,1.7)
17
与PSO相关的重要学术期刊与国际会议
重要国际会议
IEEE Congress on Evolutionary Computation (CEC) IEEE International Conference on Systems, Man, and
Cybernetics (SMC) ACM Genetic and Evolutionary Computation
步 如骤 果4满:足结束条件,则输出 ff1初数体2p*p*f11B始值的pp9e112s.8.,化全51t9122vx=vvx11112并每局vv(1(128x且个最01,((4238v)v00得解优00v1,2,52..12..55551))c5到的位.c1(3229((1)8,01粒速置23r0r1.0)5)12)51。子度(pf0000(1p0(Bp1B0B.的和1ee21251es,.s861s5tt1t)20历位0121..310(1x(19x史置1(1.0)x25.((5.(8),6112,5),最.c51)24c2)(2)52(计优58r9)12,r))620算位4f5(6116g()..gB81适置Be28se5fts(9应和26t.1x,1函群8x1)2.98)) ppf22B全 否esft局 则22注*vxx2意21 1X, 最!0x211((.转 优2v(31511,,.对91向 结(,于)215)0越,9步 果))界pf2B的(骤 并6e.位1s,(1t置.2结285),继)2需x束(12要.续19,1进2程0(.行8执)5合2序,59(法1行).1性,,81调01。)整106