(完整版)中职升高职数学试题及答案(1--5套)
中职升学数学试卷及答案
中职升学数学试卷一、单项选择题(本大题共12小题,每小题4分,共48分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.若集合{1,2}M =,{2,3}N =,则M N 等于()A .{2}B .{1}C .{1,3}D .{1,2,3}2.若函数()cos()f x x ϕ=+(πϕ≤≤0)是R 上的奇函数,则ϕ等于()A .0B .4πC .2πD .π3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是()A.2m =-B.2m =C.2n =-D.2n =4.已知向量(1,)a x = ,(1,)b x =- .若a b ⊥,则||a 等于()A .1B C .2D .45.若复数z 满足(1)1i z i +=-,则z 等于()A .1i+B .1i-C .iD .i-6.若直线l 过点(1,2)-且与直线2310x y -+=平行,则l 的方程是()A.3280x y ++=B.2380x y -+=C.2380x y --=D.3280x y +-=7.若实数x 满足2680x x -+≤,则2log x 的取值范围是()A.[1,2]B.(1,2)C.(,1]-∞D.[2,)+∞8.设甲将一颗骰子抛掷一次,所得向上的点数为a ,则方程012=++ax x 有两个不相等实根的概率为()A .32B .31C .21D .1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为,则此双曲线的渐近线方程为()A.y =B.2y x=±C.22y x =±D.12y x =±10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成立的是()A .3()2f -<(1)f -<(2)f B .(1)f -<3()2f -<(2)f C .(2)f <(1)f -<3()2f -D .(2)f <3()2f -<(1)f -11.若圆锥的表面积为S ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为()B.D.12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A.(B.[C.33()33-D.33[,]33-二、填空题(本大题共6小题,每小题4分,共24分)13.sin150︒=.14.已知函数()f x 11x =+,则[(1)]f f =.15.用数字0,3,5,7,9可以组成个没有重复数字的五位数(用数字作答).16.在ABC ∆中,====B A b a 2cos ,23sin ,20,30则.17.设斜率为2的直线l 过抛物线22y px =(0)p >的焦点F ,且与y 轴交于点A .若OAF ∆(O 为坐标原点)的面积为4,则此抛物线的方程为.18.若实数x 、y 满足220x y +-=,则39x y+的最小值为.三、解答题(本大题7小题,共78分)19.(6分)设关于x 的不等式||x a -<1的解集为(,3)b ,求a b +的值.20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最小正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值.21.(10分)已知数列{n a }的前n 项和为n S 2n n =-,n N +∈.(1)求数列{n a }的通项公式;(2)设2na nb =1+,求数列{n b }的前n 项和n T .22.(10分)对于函数()f x ,若实数0x 满足00()f x x =,则称0x 是()f x 的一个不动点.已知2()(1)(1)f x ax b x b =+++-.(1)当1a =,2b =-时,求函数()f x 的不动点;(2)假设12a =,求证:对任意实数b ,函数()f x 恒有两个相异的不动点.23.(14分)甲、乙两位选手互不影响地投篮,命中率分别为31与p .假设乙投篮两次,均未命中的概率为254.(1)若甲投篮4次,求他恰命中3次的概率;(2)求乙投篮的命中率p ;(3)若甲、乙两位选手各投篮1次,求两人命中总次数ξ的概率分布与数学期望.24.(14分)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =.(1)证明:当点E 在棱AB 上移动时,11D E A D ⊥;(2)当E 为AB 的中点时,求①二面角1D EC D --的大小(用反三角函数表示);②点B 到平面1ECB 的距离.25.(14分)已知椭圆C :22221x y a b+=(0)a b >>的离心率为23,且该椭圆上的点到右焦点的最大距离为5.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,且过点(9,)D m 的直线DA 、DB 与此椭圆的另一个交点分别为M 、N ,其中0m ≠.求证:直线MN 必过x 轴上一定点(其坐标与m 无关).数学试题答案及评分参考一、单项选择题(本大题共12小题,每小题4分,共48分)题号123456789101112答案DCAB CBAACDB D二、填空题(本大题共6小题,每小题4分,共24分)13.1214.2315.9616.1317.28y x=18.6三、解答题(本大题共7小题,共78分)19.(本小题6分)解:由题意得11x a -<-<,………………………………………………………………1分11a x a -+<<+,…………………………………………………………1分113a b a -+=⎧⎨+=⎩,………………………………………………………………2分解得21a b =⎧⎨=⎩,………………………………………………………………1分所以3a b +=.…………………………………………………………1分20.(本小题10分)解:(1)由题意得()cos f x x x=+…………………………………………………1分2sin(6x π=+,……………………………………………………2分所以函数()f x 的最小正周期2T π=.……………………………1分(2)由1()2f α=得1sin(64πα+=,…………………………………………………………1分因为(,)63ππα∈-,所以(0,)62ππα+∈,…………………………1分15cos(64πα+=,…………………………1分从而sin sin[()]66ππαα=+-sin(cos cos()sin6666ππππαα=+-+131514242=⨯-3158-=.…………………………3分21.(本小题10分)解:(1)当1n =时,211110a S ==-=,………………………………1分当2n ≥时,1n n n a S S -=-22()[(1)(1)]n n n n =-----22n =-,……………………………………………2分综合得22n a n =-,n ∈N +………………………………………2分(2)222121n an n b -=+=+141n -=+,…………………………………1分21(1444)n n T n -=+++++ 1(14)14n n ⨯-=+-4133n n =+-.…………………………………4分22.(本小题10分)(1)解:由题意得2(21)(21)x x x +-++--=,……………………………1分即2230x x --=,解得11x =-,23x =,……………………………………2分所以函数()f x 的不动点是1-和3.……………………………1分(2)证明:由题意得21(1)(1)2x b x b x +++-=,①……………………………1分即21(1)02x bx b ++-=,……………………………1分因为判别式22(1)b b ∆=--222b b =-+……………………………2分2(1)1b =-+0>,……………………………1分所以方程①有两个相异的实根,即对任意实数b ,函数()f x 恒有两个相异的不动点.……1分23.(本小题14分)解:(1)记甲投篮4次,恰命中3次的概率为1P ,由题意得1P =334128C (3381⨯⨯=.……………………………4分(2)由题意得24(1)25p -=,……………………………3分解得35p =.……………………………………………1分(3)由题意ξ可取0,1,2,…………………………………1分154)531()311()0(=-⨯-==ξP ,15853311(531(31)1(=⨯-+-⨯==ξP ,1535331)2(=⨯==ξP .所以ξ的概率分布列为……………………………………………3分1514153215811540)(=⨯+⨯+⨯=ξE .……………………………………2分24.(本小题14分)(1)证明:连接1AD .在长方体1111ABCD A B C D -中,因为1AD AA =,所以11AA D D 为正方形,从而11AD A D ⊥.因为点E 在棱AB 上,所以1AD 就是1ED 在平面11AA D D 上的射影,从而11D E A D ⊥.……………………………………………4分ξ12P154158153(2)解:①连接DE .由题意知11AD AA ==,1AE EB ==.在Rt DAE ∆中,DE ==,在Rt EBC ∆中,EC ==,从而2224DE EC DC +==,所以EC DE ⊥,又由1D D ⊥面ABCD 知1D D EC ⊥,即1EC D D ⊥,从而EC ⊥面1D DE ,所以1EC D E ⊥,因此1D ED ∠是二面角1D EC D --的平面角.…………………2分在1Rt D DE ∆中,11tan2D D D ED DE ∠==,得1D ED ∠2arctan2=,即二面角1D EC D --的大小为arctan 2.…………………3分②设点B 到平面1ECB 的距离为h ,由11EB BC BB ===知11EC B C B E ===123342ECB S ∆==.……………………………1分因为11B ECB B ECBV V --=,所以111133ECB ECB S h S BB ∆∆⋅=⋅,即131113232h ⋅⋅=⋅⋅,所以33h =,故点B 到平面1ECB 的距离为33.……………………………4分25.(本小题14分)解:(1)设右焦点为)0,(c ,则由题意得⎪⎩⎪⎨⎧=+=532c a a c ,……………………………………………2分解得⎩⎨⎧==23c a ,所以549222=-=-=c a b ,椭圆C 的方程为15922=+y x .………………………………………2分(2)由(1)知)0,3(),0,3(B A -,直线DA 的方程为)3(12+=x my ………………………………………1分直线DB 的方程为)3(6-=x my ………………………………………1分设点M 的坐标为),(11y x ,点N 的坐标为),(22y x ,由⎪⎪⎩⎪⎪⎨⎧=++=159)3(1222y x x m y ,………………………………………1分得0451291254)1295(22222222=-+++m x m x m ,由于),0,3(-A M ),(11y x 是直线DA 与此椭圆的两个交点,所以2222211295451293m m x +-=⋅-,解得221803240mm x +-=,从而2118040)3(12m m x m y +=+=.…………2分由⎪⎪⎩⎪⎪⎨⎧=+-=159)3(622y x x m y ,………………………………………1分得04569654)695(22222222=-+-+m x m x m ,由于),0,3(B N ),(22y x 是直线DB 与此椭圆的两个交点,所以22222269545693m m x +-=⋅,解得22220603m m x +-=,从而2222020)3(6m m x m y +-=-=.…………2分若21x x =,则由222220603803240mm m m +-=+-,得402=m 此时121==x x ,从而直线MN 的方程为1=x ,它过点E )0,1(;若21x x ≠,则402≠m ,直线ME 的斜率2222401018032408040mm m m m mk ME-=-+-+=,直线NE 的斜率222240101206032020m m mm m mk NE-=-+-+-=,得NE ME k k =,所以直线MN 过点)0,1(E ,因此直线MN 必过x 轴上的点)0,1(E .………………………………2分。
职中数学试题及答案
职中数学试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项是实数集R的子集?A. 整数集ZB. 有理数集QC. 复数集CD. 自然数集N答案:B2. 函数f(x)=3x+2的值域是?A. (-∞, +∞)B. [2, +∞)C. (-∞, 2]D. (2, +∞)答案:A3. 圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标为?A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A4. 集合{1, 2, 3}与{3, 4, 5}的交集是?A. {1, 2}B. {3}C. {1, 3}D. {2, 3}答案:B5. 已知等差数列的前三项分别为1, 4, 7,那么第n项an的通项公式为?A. an = 3n - 2B. an = 3n - 1C. an = 3nD. an = 3n + 1答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = ax^2 + bx + c的图像开口向上,且f(0) = 1,f(1) = 2,则a的值为____。
答案:12. 一个等比数列的前三项分别为2, 6, 18,那么第四项是____。
答案:543. 已知三角形ABC的两边长分别为3和4,夹角为60°,则第三边长为____。
答案:√74. 函数y = log2(x+1)的定义域为____。
答案:(-1, +∞)5. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5})是____。
答案:{4, 5}三、解答题(每题10分,共60分)1. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f(2)的值。
答案:f(2) = 2^3 - 3*2^2 + 2*2 + 1 = 8 - 12 + 4 + 1 = 12. 求函数y = x^2 - 6x + 9的最小值。
答案:y = (x - 3)^2,当x = 3时,y取得最小值0。
2023年广东省高等职业院校招收中等职业学校毕业生考试数学真题含答案
2023广东省高等职业院校招收中等职业学校毕业生考试试卷数学试题本试卷共24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹旳钢笔将自己旳姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型填涂在答题卡对应位置上。
将条形码横贴在答题上右上角“条形码粘贴处”。
2.选择题每题选出答案后,用2B铅笔把答题卡上对应题目选项旳答案信息点涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹旳钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内对应位置上;如需改动,先画掉本来旳答案,然后再写上新旳答案;不准使用铅笔和涂改液。
不按以上规定作答旳答案无效。
4.考生必须保持答题卡旳整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共15小题,每题5分,满分75分。
在每题给出旳四个选项中,只有一项是符合题目规定旳。
1.若集合A={2,3,a} ,B={1,4} ,且A∩B={4},则a=A. 1B. 2C. 3D. 42.函数y=√2x+3旳定义域是,+∞)A. (-∞,+∞)B. [-32] D. (0, +∞)C. (-∞,- -323.设a,b为实数,则“b=3”是“a(b-3)=0”旳A. 充足非必要条件B. 必要非充足条件C. 充足必要条件D. 非充足非必要条件4.不等式x2−5x−6≤0旳解集是A. {x|−2≤x≤3}B. {x|−1≤x≤6}C. {x|−6≤x≤1}D. {x|x≤−1或x≥6}5. 下列函数在其定义域内单调递增旳是 A. y= x 2B. y=(13)xC. y= 3x2x D. y= - log 3x6. 函数y=cos (π2−x )在区间[π3,56π]上旳最大值是A. 12B. √22C. √32D. 17. 设向量a =(-3,1),b =(0,5),则|a -b |= A. 1 B. 3 C. 4 D. 58. 在等比数列{a n }中,已知a 3=7,a 6=56,则该等比数列旳通项公式是A. 2B. 3C. 4D. 89. 函数y=(sin 2x −cos 2x )2旳最小正周期是 A. π2 B. πC. 2πD. 4π10. 已知f (x )为偶函数,且y=f (x )旳图像通过点(2,-5),则下列等式恒成立旳是A. f (-5)=2B. f (-5)=-2C. f (-2)=5D. f (-2)=-511. 抛物线x 2=4y 的准线方程是 A. y= -1 B. y=1 C. x= -1 D. X=112. 设三点A (1,2),B (-1,3)和C (x-1,5),若AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗⃗ 共线,则x = A. – 4 B. – 1 C. 1 D. 413. 已知直线l 旳倾斜角为 π4 ,在y 轴上旳截距为2,则l 旳方程是A. y +x -2=0B. y +x +2=0C. y -x -2=0D. y -x +2=014. 若样本数据3,2,x ,5旳均值为3,则改样本旳方差是A. 1B. 1.5C. 2.5D. 615. 同步抛三枚硬币,恰有两枚硬币正面朝上旳概率是 A. 18B. 14C. 38D. 58二、 填空题:本大题共5小题,每题5分,满分25分。
中职数学考试卷和答案
中职数学考试卷和答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √(-1)C. √0D. √(-2)答案:A2. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 5D. -5答案:A3. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A4. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 已知集合A={1, 2, 3},B={2, 3, 4},求A∩B。
A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {1, 2, 3, 4}答案:B6. 函数y = x^2 - 4x + 4的顶点坐标是?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A7. 一个三角形的两边长分别为3和4,第三边长x满足什么条件?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 3 < x < 11答案:C8. 已知等比数列的首项是2,公比是3,求第4项。
A. 162B. 54C. 48D. 24答案:A9. 函数y = sin(x)的值域是?A. [-1, 1]B. [0, 1]C. [1, 2]D. [0, 2]答案:A10. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是多少?A. 24B. 12C. 8D. 6答案:B二、填空题(每题4分,共20分)11. 已知向量a = (3, -2),b = (1, 4),求向量a和b的数量积(点积)。
答案:-212. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。
答案:3x^2 - 6x13. 已知一个等比数列的首项是4,公比是1/2,求第6项。
答案:114. 已知一个圆的直径是10,求它的周长。
职专数学试题推荐及答案
职专数学试题推荐及答案一、选择题(每题2分,共10分)1. 下列哪个选项是不等式2x + 3 > 5的解集?A. x > 1B. x > 2C. x < 1D. x < 22. 函数f(x) = 3x^2 - 2x + 1的顶点坐标是?A. (1, 0)B. (-1, 0)C. (1, -2)D. (-1, -2)3. 若a + b = 5,a - b = 3,求a和b的值。
A. a = 4, b = 1B. a = 3, b = 2C. a = 2, b = 3D. a = 1, b = 44. 圆的面积公式是πr^2,若圆的半径为3,则其面积为:A. 9πB. 18πC. 27πD. 36π5. 以下哪个数列是等差数列?A. 2, 4, 8, 16B. 1, 3, 6, 10C. 3, 5, 7, 9D. 5, 4, 3, 2二、填空题(每题2分,共10分)6. 将分数3/4转换为小数是________。
7. 一个直角三角形的两条直角边分别为3和4,其斜边长度为________。
8. 已知等比数列的首项为2,公比为3,求其第5项的值是________。
9. 一个圆的周长为2π,其半径为________。
10. 若sinθ = 1/2,求cosθ的值(结果保留一位小数)是________。
三、简答题(每题10分,共20分)11. 解不等式组:\[\begin{cases}x + y \geq 4 \\x - y \leq 2\end{cases}\]12. 证明:若a, b, c为正数,且a + b + c = 1,则(1/a + 1)(1/b + 1)(1/c + 1) ≥ 27。
四、计算题(每题15分,共30分)13. 计算下列定积分:\[\int_{0}^{1} (3x^2 - x + 1) dx\]14. 解线性方程组:\[\begin{cases}x + 2y = 5 \\3x - y = 1\end{cases}\]五、证明题(每题15分,共15分)15. 证明:对于任意实数x,不等式e^x ≥ x + 1成立。
职高数学统招试题及答案
职高数学统招试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 函数f(x) = 2x^2 - 3x + 1的顶点坐标是:A. (0,1)B. (3/4, -1/8)C. (1, -1)D. (-1, 2)3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的结果是:A. {1}B. {2, 3}C. {4}D. {2, 3, 4}4. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 30π5. 已知sinθ = 3/5,且θ为锐角,求cosθ的值:A. 4/5C. 3/5D. -3/56. 一个等差数列的首项是2,公差是3,那么它的第5项是:A. 17B. 14C. 11D. 87. 根据题目所给的统计数据,某班学生的平均身高是165cm,标准差是8cm,那么身高在157cm到173cm之间的学生占该班学生总数的百分比是多少?A. 68%B. 95%C. 99%D. 50%8. 下列哪个是二次方程的解?A. x = 2B. x = -3C. x = 1/2D. x = 09. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 810. 已知等比数列的第1项是2,第2项是4,求第3项:B. 16C. 32D. 64二、填空题(每题3分,共15分)11. 计算(3x^2 - 4x + 2) / (x - 1)的结果是______。
12. 如果一个数列的前n项和为S_n,且S_5 = 15,S_10 = 45,那么S_15 = ______。
13. 一个函数的增长速度是指数型的,如果它的初始值是a,增长率是r,那么经过t时间后的值为a * (1 + r)^t,假设初始值为100,增长率为0.05,经过2年后的值为______。
14. 一个长方体的长、宽、高分别是2米、3米和4米,那么它的体积是______立方米。
数学试题及答案职高版
数学试题及答案职高版一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333D. 1/32. 函数f(x) = x^2 + 2x + 1的最小值出现在x等于:A. -1B. 0B. 1D. 23. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B的结果:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}4. 以下哪个表达式等价于(a+b)^2?A. a^2 + b^2B. a^2 + 2ab + b^2C. a^2 - 2ab + b^2D. a^2 + b^2 + 2a5. 圆的半径为5,圆心到直线的距离为3,这个直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边分别为3和4,其斜边的长度是________。
7. 已知等差数列的首项a1=2,公差d=3,求第5项a5的值是________。
8. 函数y = 2x - 1与x轴的交点坐标是________。
9. 已知集合C={x | x > 5},D={x | x < 10},求C∩D的结果为________。
10. 抛物线y = -2x^2 + 4x - 1的顶点坐标是________。
三、解答题(每题10分,共30分)11. 解不等式:2x + 5 > 3x - 2。
12. 已知函数f(x) = 3x^2 - 4x + 1,求其导数f'(x)。
13. 证明:对于任意实数a和b,(a+b)^2 ≤ 2(a^2 + b^2)。
四、综合题(每题15分,共30分)14. 某工厂生产一种产品,每件产品的成本为20元,销售价格为30元。
如果工厂希望获得的利润不低于5000元,求至少需要生产多少件产品。
15. 一个圆的直径为10厘米,求这个圆的面积和周长。
职高数学试题及答案
职高数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 函数f(x)=2x+1的反函数是:A. f^-1(x)=(x-1)/2B. f^-1(x)=(x+1)/2C. f^-1(x)=2x-1D. f^-1(x)=2x+1答案:A3. 一个数列的前三项是2, 4, 8,那么第四项是:A. 16B. 32C. 64D. 128答案:A4. 在直角坐标系中,点(3, 4)关于y轴的对称点坐标是:A. (-3, 4)B. (3, -4)C. (-3, -4)D. (3, 4)答案:A5. 一个圆的直径是10,那么它的半径是:A. 5B. 10C. 15D. 20答案:A6. 直线y=2x+3与x轴的交点坐标是:A. (0, 3)B. (-3/2, 0)C. (0, -3)D. (3/2, 0)答案:B7. 集合{1, 2, 3}与{3, 4, 5}的交集是:A. {1, 2, 3}B. {3, 4, 5}C. {3}D. 空集答案:C8. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 3B. 2C. 4D. 1答案:A9. 函数y=x^2-4x+3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A10. 以下哪个选项是方程x^2-5x+6=0的解?A. x=1B. x=2C. x=3D. x=4答案:C二、填空题(每题4分,共20分)1. 一个等比数列的首项是3,公比是2,那么它的第五项是______。
答案:482. 函数f(x)=x^3-3x^2+2的导数是______。
答案:3x^2-6x3. 一个圆的面积是π,那么它的半径是______。
答案:14. 直线y=x-2与直线y=2x+3相交于点(a, b),则a+b=______。
答案:15. 一个数列的前三项是1, 1, 2,且满足an=a(n-1)+a(n-2),那么第四项是______。
职高数学试题及答案
职高数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = 2x + 3在x=1时的值是多少?A. 5B. 6C. 7D. 8答案:A3. 以下哪个不是二次方程?A. x^2 + 4x + 4 = 0B. x^2 - 5x + 6 = 0C. 3x^2 - 2x + 1 = 0D. 4x + 7 = 0答案:D4. 圆的面积公式是什么?A. πr^2B. 2πrC. r^2D. πd答案:A5. 直线y = 3x + 2与x轴的交点坐标是什么?A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:C6. 以下哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 8, 16C. 1, 1, 1, 1D. 1, 4, 9, 16答案:A7. 一个直角三角形的两条直角边分别为3和4,斜边长度是多少?A. 5B. 6C. 7D. 8答案:A8. 以下哪个是复数的实部?A. 3 + 4iB. 2 - 3iC. 5iD. -1答案:D9. 以下哪个是正弦函数的周期?A. 2πB. πC. 1D. 3π答案:A10. 一个数的平方根是它自己,这个数是什么?A. 0B. 1C. -1D. 2答案:A二、填空题(每题2分,共20分)1. 一个数的绝对值是它自己,这个数是______或______。
答案:正数;02. 圆的周长公式是C = ______。
答案:2πr3. 一个二次方程ax^2 + bx + c = 0的判别式是______。
答案:b^2 - 4ac4. 函数y = kx的斜率是______。
答案:k5. 一个数的倒数是1/x,这个数是______。
答案:非零数6. 正弦函数sin(x)的值域是______。
答案:[-1, 1]7. 一个数的对数以10为底,记作______。
(完整版)中等职业学校对口升学考试数学模拟试题及答案
中等职业学校对口升学考试数学模拟试题及答案本试卷分选择题和非选择题两部分。
满分 100 分,考试时间为 90 分钟。
答卷前先填写 密封线内的项目和座位号。
考试结束后,将本试卷和答题卡一并交回。
选择题注意事项:1.选择题答案必须填涂在答题卡上,写在试卷上的一律不计分。
2.答题前,考生务必将自己的姓名、准考证号、座位号、考试科目涂写在答题卡上。
3.考生须按规定要求正确涂卡,否则后果自负。
一、单项选择题(本大题共 10 小题,每小题 4 分,共计 40 分)1. 己知 M={x|x>4}, .N={x|x<5},则 M∪N=( )A. {x|4<x<5}B.RC. { x|x>4}D. {x|x>5}22. 已知 sin α= ,则 cos 2α值为( ) 32 5A. -1 3 1B. 9 5C. 9 5D.1- 33. 函数 y=x 3 是( )A.偶函数又是增函数B. 偶函数又是减函数C.奇函数又是增函数D. 奇函数又是减函数4.不等式|2x -1|<3 的解集是( )A. { x ︱ x <1}B. { x ︱ -1<x <2}C. { x ︱ x >2}D. { x ︱ x < -1 或 x >2}5.在等差数列{a n }中, a 5+a 7=3,则 S 11=( )A.15B.16.5C.18D.18.56. 已知直线a,b 是异面直线,直线 c ∥a ,那么 c 与 b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面7.将 3 封信投入 4 个不同的邮筒的投法共有 ( )种A.34 B .43 C .A 34 D .C 348. 已知|a|=8, |b|=6,<a,b >=150°, 则 a ·b=( )A.-24 3B.-24C.24 3D.169. 函数 f(x)=x 2-3x+1在区间[-1,2]上的最大值和最小值分别是 ( )5 5A.5,-1B. 11,-1C.5, -D. 11,- 4 4x 2 y 25 16A . (±11,0)B . (0, ± 11 ) C. (0, ±11) D . (± 11 ,0)10.椭圆 + =1 的焦点坐标是( )非选择题注意事项:用蓝黑色钢笔或圆珠笔将答案直接写在试卷上。
高职单招数学卷+答案 (1)
单独招生考试招生文化考试数学试题卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题6分,共60分)1.已知函数f (x )的图象关于直线x =1对称,当x2>x1>1时,[f (x2)﹣f (x1)](x2﹣x1)<0恒成立,设a =f (−12),b =f (2),c =f (e ),则a ,b ,c 的大小关系为()A.c >a >bB.c >b >aC.a >c >bD.b >a >c2.已知函数y =f (x )在区间(﹣∞,0)内单调递增,且f (﹣x )=f (x ),若a =f (log 123),b =f (2﹣1.2),c =f (12),则a ,b ,c 的大小关系为()A.a >c >bB.b >c >aC.b >a >cD.a >b >c3.设函数f (x )=ex+x ﹣2,g (x )=lnx+x2﹣3.若实数a ,b 满足f (a )=0,g (b )=0,则()A.g (a )<0<f (b )B.f (b )<0<g (a )C.0<g (a )<f (b )D.f (b )<g (a )<04.下列命题是假命题的是()A.(0,sin 2x x xπ∀∈> B.000,sin cos 2x R x x ∃∈+=C.,30xx R ∀∈> D.00,lg 0x R x ∃∈=5.已知11tan(),tan()tan()62633πππαββα++=-=-+=则()A.16B.56C.﹣1D.16.下列函数中,在定义域内单调递增且是奇函数的是()A.y =log 2(x 2+1−x)B.y =sinxC.y =2x ﹣2﹣xD.y =|x ﹣1|7.设函数f (x )=x (ex+e ﹣x ),则对f (x )的奇偶性和在(0,+∞)上的单调性判断的结果是()A.奇函数,单调递增B.偶函数,单调递增C.奇函数,单调递减D.偶函数,单调递减8.若函数f (x )=xln (x +a +x 2)为偶函数,则a 的值为()A.0B.1C.﹣1D.1或﹣19.设函数f (x )=ln|2x+1|﹣ln|2x ﹣1|,则f (x )()A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递增C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递增10.已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,则三个数a =f (﹣log313),b =f (2cos2π5),c =f (20.6)的大小关系为()A.a >b >cB.a >c >bC.b >a >cD.c >a >b 二、填空题:(共30分.)1.若圆锥曲线15222=++-k y k x 的焦距与k 无关,则它的焦点坐标是__________.2.定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是__________.3.若数列}{n a ,)(*N n ∈是等差数列,则有数列)(*21N n na a ab nn ∈+++=也为等差数列,类比上述性质,相应地:若数列}{n C 是等比数列,且)(0*N n C n ∈>,则有=n d __________)(*N n ∈4.若n S 是数列}{n a 的前n 项的和,2n S n =,则=++765a a a ________.三、解答题:(本题共6小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.)1.圆C 的圆心在x 轴上,并且过点A(-1,1)和B(1,3),求圆C 的方程。
中职对口升学数学资料-全册1-10单元测试题+答案
中职数学基础模块上下册1-10章试题第一单元测试题一 选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.给出 四个结论:①{1,2,3,1}是由4个元素组成集合 ② 集合{1}表示仅由一个“1”组成集合 ③{2,4,6}与{6,4,2}是两个不同集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( ); A.B B A = B.φ=B A C.B A ⊃ D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.第二单元测试题一 选择题:本大题共8小题,每小题6分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若m >4,则下列不等式中成立的是( ); A .m +4>4 B.m -4<0 C.m -2>4 D.m -7<-32.若m >0,n <0,则下列不等式中成立的是( ); A.0>m n B.m-n >0 C. mn >0 D.mn 11> 3.下列不等式中正确的是 ( );A.5a >3aB.5+a >3+aC.3+a >3-aD.aa 35> 4.不等式6≥x 的解集是( );A.[)+∞,6B.[]6,6-C.(]6,-∞-D. (][)+∞-∞-,66, 5.不等式(x -2)(x +3) >0的解集是( ); A.(-2,3) B.(-3,2) C.),2()3,(+∞--∞ D.),3()2,(+∞--∞ 6.与不等式121>-x 同解的是( );A .1-2x >1± B.-1<1-2x <1 C.2x -1>1或2x -1<-1 D.1-2x >1 7.不等式0232>++x x 的解集是( ); A.(1,2) B.),2()1,(+∞-∞ C.(-2,-1) D. +∞---∞,1()2,( ) 8.不等式155->--x 的解集是( ). A.{}20<x x B.{}2010<<-x x C.{}10->x x D. {}2010>-<x x x 或二 填空题:本大题共6小题,每小题6分,共36分。
(完整word版)中职升高职数学试题与答案(1__5套)
中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( )A. ()2f x x =B.2()f x x =-C. ()2xf x = D. 2()log f x x =4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )A.2B.3C. 2D. 5、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( )A. 80B.81C. 26D. -26 6、下列向量中与向量(1,2)a =垂直的是( )A. (1,2)b =B.(1,2)b =-C. (2,1)b =D. (2,1)b =- 7、直线10x y -+=的倾斜角的度数是( ) A. 60︒B. 30︒C.45︒D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________10、函数22()log (56)f x x x =--的定义域为_______________________ 11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
中职考试数学试题及答案
中职考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 如果一个角的度数是30°,那么它的余角是多少?A. 30°B. 45°C. 60°D. 90°答案:C3. 以下哪个表达式的结果不是整数?A. 3 + 2B. 4 - 1C. 5 × 2D. 6 ÷ 2答案:A4. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B5. 下列哪个是二次方程?A. x + 2 = 0B. x² + 3x + 2 = 0C. x³ - 4 = 0D. 2y - 7 = 0答案:B6. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 7B. 8C. 11D. 14答案:C7. 以下哪个是不等式?A. x + 2 = 5B. 3x - 4 ≥ 5C. 2y + 3 = 0D. 5z - 1 < 4答案:B8. 一个三角形的三边长分别为3, 4, 5,那么它是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:C9. 如果一个函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -2B. -1C. 0D. 1答案:A10. 下列哪个是复数?A. 3 + 4iB. -2C. √2D. π答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个数的绝对值是10,那么这个数可以是________或________。
答案:10 或 -1013. 一个圆的直径是14,那么它的半径是________。
答案:714. 如果一个数的平方根是4,那么这个数是________。
答案:1615. 一个数列的前3项分别是1, 4, 9,那么它的第4项是________。
(完整word版)中职升高职数学试题及答案(1-5套),推荐文档
中职高升职招生考试数学试卷 ( 一)一、单项选择题(在每题的四个备选答案中选出一个正确的答案。
本大题共 8 小题,每小题3分,共 24分)1、设会合 A {0,5} , B {0,3,5} , C {4,5,6} , 则 (B U C) IA ()A. {0,3,5}B.{0,5}C.{3}D.2、命题甲: ab , 命题乙: ab , 甲是乙建立的()A. 充足不用要条件B.必需不充足条件C.充足必需条件 D 既不充足又不用要条件3、以下各函数中偶函数为( )A. f ( x) 2 xB.f (x) x2C.f (x) 2xD.f ( x)log 2 x4、若 cos 1 (0,) ,则 sin 的值为(),222 B. 3C.3D.3A.3225、已知等数比列 { a},首项 a2 ,公比q3,则前 4 项和 s 等于()n14A. 80B.81C. 26D. -266、以下向量中与向量r (1,2) 垂直的是(a)r B.r (1, 2)C.r (2,1)D.r (2, 1)A. b (1,2)bbb7、直线 xy 1 0 的倾斜角的度数是 ()A. 60B. 30C.45D.1358、假如直线 a 和直线 b 没有公共点,那么 a 与 b ()A. 共面B.平行 C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共 4 小题,每题 4 分,共 16 分)9、在ABC 中,已知 AC=8,AB=3, A60 则 BC 的长为 _________________10、函数 f ( x) log 2 ( x 2 5x6) 的定义域为 _______________________11、设椭圆的长轴是短轴长的 2 倍,则椭圆的离心率为______________12、 (x1 )9 的睁开式中含 x 3 的系数为 __________________ x参照答案中职高升职招生考试数学试卷 ( 一)一、单项选择题(在每题的四个备选答案中选出一个正确的答案。
职校数学试题及答案
职校数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -5答案:C2. 函数y=x^2+2x+1的顶点坐标是?A. (-1, 0)B. (1, 0)C. (-1, 2)D. (1, 2)答案:C3. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 2, 4, 8, 16C. 3, 6, 9, 12D. 1, 2, 4, 8答案:A4. 圆的面积公式是?A. πr^2B. 2πrC. πrD. πr^35. 以下哪个是二次函数?A. y = 3x + 2B. y = x^2 - 4x + 4C. y = x^3 + 2x^2 - 5D. y = 5答案:B6. 以下哪个是不等式?A. x + 3 = 7B. x^2 - 4x + 3 > 0C. 2x - 5D. y = 2x答案:B7. 以下哪个是复数?A. 3 + 4iB. -2C. √2D. 0.5答案:A8. 以下哪个是三角函数?A. sin(x)B. log(x)C. tan(x)D. exp(x)答案:A9. 以下哪个是向量?B. 2x + 3C. √3D. π答案:A10. 以下哪个是矩阵?A. [1, 2; 3, 4]B. 2x + 3C. (3, 4)D. √2答案:A二、填空题(每题4分,共20分)11. 圆的周长公式是 ________。
答案:2πr12. 等差数列的通项公式是 ________。
答案:a_n = a_1 + (n-1)d13. 函数y=f(x)的反函数表示为 ________。
答案:f^(-1)(x)14. 二项式定理的展开式中,(x+y)^n的第r+1项是 ________。
答案:C(n, r) * x^(n-r) * y^r15. 向量(a, b)与(c, d)的点积是 ________。
答案:ac + bd三、解答题(每题10分,共50分)16. 解方程:2x - 3 = 7。
中职对口升学数学资料-上册1-5单元测试题+答案
中职数学基础模块上册1-5章试题第一单元测试题一 选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则 A C B )(( ); A.{0,1,2,3,4} B. C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A. NB.M NC.M ND.N M7.设集合 0),( xy y x A ,,00),( y x y x B 且则正确的是( ); A.B B A B. B A C.B A D.B A 8.设集合,52,41 x x N x x M 则 B A ( );A. 51 x xB. 42 x xC.42 x x D. 4,3,2 9.设集合,6,4 x x N x x M 则 N M ( );A.RB. 64 x xC.D.64 x x 10.设集合B A x x x B x x A 则,02,22( ); A. B.A C. 1 A D.B11.下列命题中的真命题共有( ); ① x =2是022x x 的充分条件② x≠2是022x x 的必要条件③y x 是x=y 的必要条件④ x =1且y =2是0)2(12y x 的充要条件A.1个B.2个C.3个D.4个12.设共有则满足条件的集合M M ,4,3,2,12,1 ( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合42x Z x ; 2.用描述法表示集合 10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.,13),(,3),( y x y x B y x y x A 那么 B A ; 6.042x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A=B A B A x x B x x ,,71,40求 .2.已知全集I=R ,集合A C x x A I 求,31 .3.设全集I=,2,3,1,3,4,322a a M C M a I 求a 值.4.设集合,,02,0232A B A ax x B x x x A 且求实数a 组成的集合M.第二单元测试题一 选择题:本大题共8小题,每小题6分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若m >4,则下列不等式中成立的是( ); A .m +4>4 B.m -4<0 C.m -2>4 D.m -7<-32.若m >0,n <0,则下列不等式中成立的是( ); A.0 m n B.m-n >0 C. mn >0 D.mn 11 3.下列不等式中正确的是 ( );A.5a >3aB.5+a >3+aC.3+a >3-aD.aa 35 4.不等式6 x 的解集是( );A. ,6B. 6,6C. 6,D. ,66, 5.不等式(x -2)(x +3) >0的解集是( ); A.(-2,3) B.(-3,2) C.),2()3,( D.),3()2,( 6.与不等式121 x 同解的是( );A .1-2x >1 B.-1<1-2x <1 C.2x -1>1或2x -1<-1 D.1-2x >1 7.不等式0232x x 的解集是( );A.(1,2)B.),2()1,(C.(-2,-1)D. ,1()2,( ) 8.不等式155 x 的解集是( ). A. 20 x x B.2010 x x C. 10 x x D.2010 x x x 或二 填空题:本大题共6小题,每小题6分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( )A. ()2f x x =B.2()f x x =- C. ()2xf x = D. 2()log f x x =4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )A. 2B.3C. 25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( ) A. 80 B.81 C. 26 D. -266、下列向量中与向量(1,2)a =垂直的是( )A. (1,2)b =B.(1,2)b =-C. (2,1)b =D. (2,1)b =-7、直线10x y -+=的倾斜角的度数是( ) A. 60︒B. 30︒C.45︒D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________ 10、函数22()log (56)f x x x =--的定义域为_______________________ 11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分) 9. 7 10. (,1)(6,)-∞-+∞,也可以写成{1x x <-或6}x >11.212. 84中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设全集{1,2,3,4,5}U =,{2,3}A =,{3,4,5}B =,则()u C A B 等于( )A. {1}B. {3}C.{4,5}D.{1,3,4,5}2、设命题甲:2x >,命题乙:1x >,甲是乙成立的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D 既不充分又不必要条件3、设0a b >>,下列不等式正确的是 ( ) A. 0.30.3ab> B.22a b> C. 0.30.3log log a b > D. 22log log a b < 4、若1sin 2α=,α是第二象限角,则cos α的值为 ( )A. -125、下列直线中与260x y -+=平行的是( )A.2410x y --=B. 230x y -+=C. 230x y +-=D. 2410x y ++= 6、一条直线和两条异面直线中的一条平行,则它与另一条直线的位置关系是 ( )A. 平行B.相交C. 异面D.相交或异面 7、下列函数中,定义域为R 的函数是( )A. y =13y x =- C. 221y x x =-- D. 21y x= 8、抛物线28y x =的准线方程为( )A.2x =B. 2y =C. 2x =-D. 2y =-二、填空题(本大题共4小题,每小题4分,共16分)9、若向量(2,)a x =-,(3,2)b =且a b ⊥,则x 等于___________________10、一名教师与4名学生随机站成一排,教师恰好站在中间位置的概率为____________ 11、已知数列{}n a 为等比数列,426a a =,12a =,则3a =________________ 12、直二面角l αβ--内一点S ,S 到两个半平面的距离分别是3和4,则S 到l 的距离为_________________参考答案中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分) 9. 3 10.1511. 12 12. 5中职升高职招生考试数学试卷(三)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合{1,2}M =,集合{2,0,1,2,4}N =-,则MN =( )A. {2,0,4}-B. {2,0,1,2,4}-C. {1,2}D.∅2、设命题p :2x =,命题q :(2)(3)0x x -+=,则p 是q 成立的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D 既不充分又不必要条件3、点(2,1)-关于x 轴的对称点的坐标为 ( )A. (2,1)B. (2,1)--C. (2,1)-D. (1,2)- 4、向量(2,3)a =-,(5,4)b =-,则a b ⋅=( ) A. 22 B. 7 C. -2 D. -15 5、双曲线2233x y -=的渐近线方程为( )A.3y x =±B. 13y x =±C. y =D. 3y x =± 6、已知4sin 5α=,且α是第二象限角,则tan α的值为( ) A. 35- B.35 C. 34- D.43-7、用一个平面去截正方体,所得截面的形状不可能是( )A. 六边形B. 梯形C. 圆形 D 三角形 8、前n 个正整数的和等于( ) A.2n B. (1)n n + C.1(1)2n n + D. 22n 二、填空题(本大题共4小题,每小题4分,共16分)9、若()f x 为奇函数,(2)3f =-则(2)f -的值为__________________ 10、圆222440x y x y +-+-=的圆心坐标为_________________ 11、若2sin x a =成立,则a 的取值范围是_________________________12、 在8(21)x -展开式中各项系数和为____________________参考答案中职升高职招生考试数学试卷(三)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分) 9. 3 10. (1,2)-11. [2,2]-,注:也可以写成{22}x x -≤≤,22x -≤≤. 12. 1中职升高职招生考试数学试卷(四)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合{4}M x x =≥-,集合{6}N x x =<,则MN 等于( )A. RB. {46}x x -≤<C. ∅D. {46}x x -<< 2、下列结论正确的是( ) A. 若0,0b a <>,则11a b< B.对任意实数xx =成立。
C. 已知,x y 是实数,若220x y +=,则0x y == D.若 0,a b c <>,则ab ac >3、已知直线1:1l y kx =+,2:31l y x =-,且12l l ⊥,则斜率k 的值为 ( ) A. -3 B.13 C. 3 D. -134、不等式11x -≤的解集为 ( )A. []0,2B. (,0][2,)-∞+∞C. (,2]-∞D. [2,)+∞ 5、首项为5,末项为160,公比为2的等比数列共有 ( )A. 4项B. 6项C. 5项D. 7项6、已知2log 5a =,2log 3b =,则2a b+的值为 ( ) A. 5 B. 8 C. 10 D. 157、已知直线过点(1,5)和点(2,3),则该直线的斜率为( ) A. 2 B.12 C. -2 D. 12- 8、和两条异面直线都垂直的直线( )A. 有无数条B. 有两条C. 只有一条D. 不存在 二、填空题(本大题共4小题,每小题4分,共16分)9、椭圆2212516x y +=的离心率为_________________ 10、函数1()sin(3)26f x x π=+的最小值为________________________ 11、 向量(1,1)a =-,(3,4)a b +=,则b =_____________________12、已知7270127(12)x a a x a x a x -=++++,则0a =________________参考答案中职升高职招生考试数学试卷(四)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小二、填空题(本大题共4小题,每小题4分,共16分)9. 35 10. 1211. (4,3) 12. 1中职升高职招生考试数学试卷(五)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设全集,{1,2,3}A =,{3,4}B =,则AB =( )A. {1,2,3}B. {3}C.{1,2,3,4}D.{1,2,4} 2、22a b >是0a b >>成立的( )A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3、下列各函数中是偶函数且在(0,)+∞ 内是增函数的是( ) A. 2y x = B.5log y x = C. 2xy -= D. 2y x -= 4、计算sin15cos15︒︒⋅的结果正确的是( )A.12 B.14C. 22 5、要使直线l ⊥平面α,只需l 垂直于平面α内( )A.两条不同直线B.无数条直线C.不平行的两条直线D. 不垂直的两条直线6、同时抛掷两颗均匀的骰子,出现点数之和为7的概率是( ) A. 736 B.536C. 19D. 167、椭圆221259x y +=的焦距长为( ) A. 18 B. 16 C. 12 D. 88、等差数列{}n a 的首项11a =,公差3d =-,则第3项3a 的值为( ) A. 5 B. 4 C. -4 D. -5 二、填空题(本大题共4小题,每小题4分,共16分)9、计算1038(1)lg1π--+的值为_________________ 10、函数1()2sin()24f x x π=-的最小正周期为____________11、若向量(2,5)a =与(4,)b y =共线,则y =________________ 12、如图,在正方体1111ABCD A B C D -中,直1AD 与1A B 所成的角的度数是___________________BACD A 1B 1C 1D 1参考答案中职升高职招生考试数学试卷(五)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。