图形的旋转 同步练习(详细答案)

合集下载

图形的旋转练习题及答案

图形的旋转练习题及答案

图形的旋转练习题及答案图形的旋转练习题及答案在几何学中,图形的旋转是一种常见的操作。

通过旋转,我们可以改变图形的方向和位置,从而得到新的图形。

旋转练习题可以帮助我们加深对旋转操作的理解,并提高解决几何问题的能力。

本文将介绍一些常见的图形旋转练习题及其答案,希望对读者有所帮助。

1. 旋转正方形首先,我们来看一个简单的例子。

假设有一个正方形,边长为4个单位。

我们需要将这个正方形绕着一个点旋转90度,问旋转后的正方形的边长是多少?解答:旋转后的正方形的边长仍然是4个单位。

旋转只改变了正方形的方向和位置,但没有改变其大小。

2. 旋转矩形接下来,我们考虑一个稍微复杂一些的例子。

假设有一个矩形,长为6个单位,宽为3个单位。

我们需要将这个矩形绕着一个点旋转180度,问旋转后的矩形的长和宽分别是多少?解答:旋转后的矩形的长和宽仍然分别是6个单位和3个单位。

和正方形一样,旋转只改变了矩形的方向和位置,但没有改变其大小。

3. 旋转三角形现在,让我们来考虑一个有趣的例子。

假设有一个等边三角形,边长为5个单位。

我们需要将这个三角形绕着一个点旋转60度,问旋转后的三角形的边长是多少?解答:旋转后的三角形的边长仍然是5个单位。

和之前的例子一样,旋转只改变了三角形的方向和位置,但没有改变其大小。

4. 旋转圆形最后,我们来看一个特殊的例子。

假设有一个半径为2个单位的圆形。

我们需要将这个圆形绕着一个点旋转120度,问旋转后的圆形的半径是多少?解答:旋转后的圆形的半径仍然是2个单位。

和之前的例子一样,旋转只改变了圆形的方向和位置,但没有改变其大小。

通过以上的例子,我们可以看到旋转操作并不改变图形的大小,只改变了其方向和位置。

这是因为旋转是一种刚体变换,保持了图形的形状和大小不变。

在解决几何问题时,我们可以利用旋转的性质来简化问题,找到更简单的解决方法。

总结起来,图形的旋转是一种常见的操作,通过旋转可以改变图形的方向和位置。

旋转练习题可以帮助我们加深对旋转操作的理解,并提高解决几何问题的能力。

图形的旋转测试题(含答案)

图形的旋转测试题(含答案)

《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是()DA.①②③④ B.①②③C.①③ D.③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为()度. CA、30 oB、45 oC、60 oD、90 o图1 图2 图33、如图2,边有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4,△DEF是由△ABC绕着某点旋转得到的, 则这点的坐标是( B )图5 图4 A. (1,1) B. (0,1) C. (−1,1) D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。

5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______.80(或120(.三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图6 BA CO图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连结BK和DM,试用旋转的思想说明线段BK与DM的关系.,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。

人教版九年级上册数学《图形的旋转》同步练习(含答案)

人教版九年级上册数学《图形的旋转》同步练习(含答案)

图形的旋转知识点1. 图形旋转的性质是:(1) 旋转前后的图形;(2)对应点到旋转中心的距离;(3) 对应点与旋转中心所连线段的夹角等于2. 简单的旋转作图--- 旋转作图的步骤(1)确立旋转;( 2)找出图形的重点点;( 3)将图形的重点点与旋转中心连结起来,而后按旋转方向分别将它们旋转一个角,获得此重点点的对应点;(4) 按图形的次序连结这些对应点,所获得的图形就是旋转后的图形。

一、选择题1.在图形旋转中,以下说法错误的选项是()A .在图形上的每一点到旋转中心的距离相等B .图形上每一点挪动的角度同样C .图形上可能存在不动的点D .图形上随意两点的连线与其对应两点的连线长度相等2.如图,下边的四个图案中,既包括图形的旋转,又包括图形的轴对称的是()3. 如下图的图案绕旋转中心旋转后能够与自己重合,那么它的旋转角可能是()。

A. 60°B.90°C. 72°D.120°4.如图,摆放有五杂梅花,以下说法错误的选项是(以中心梅花为初始地点)(? )A .左上角的梅花只要沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转C .右下角的梅花需先沿对角线平移后,再顺时针旋转D .左下角的梅花需先沿对角线平移后,再顺时针旋转5 △ ABC 绕着 A 点旋转后获得△ AB ′ C ′,若∠ BAC ′ =130°,∠ BAC=80°, ?则旋转角等于( )A . 50°B .210°C . 50°或 210°D.130°二、填空题6.图形的平移、旋转、轴对称中,其同样的性质是_________.45° 180 90°7.如,△ ABC和△ ADE均是角42°的等腰三角形,BC、DE分是底,中的△ABDA 旋 42°后获得的形是 ________,它之的关系是 ______,?此中 BD=_________.8、如,将△ OAB点 0 按逆方面旋至△0A′B′,使点 B 恰巧落在A′ B′上.已知 AB=4cm,BB′ =lcm, A′ B 是 _______cm.9、如,在平面直角坐系中,点 A 的坐(1 ,4) ,将段O A点O旋90°获得段OA′,点A′的坐是___________.10.如,自正方形 ABCD的点 A 引两条射分交 BC、CD于 E、F, ?∠ EAF=45°,在保持∠EAF=45°的前提下,当点 E、F 分在 BC、 CD上移, BE+?DF?与 EF 的关系是________ .11. 如,在直角坐系中,已知点A( 3,0) 、 B(0,4) ,△OAB作旋,挨次得到三角形①、②、③、④⋯,三角形⑩的直角点的坐__________ .三、合提升12.察以下形,它能够看作是什么“基本形”通怎的旋而获得的?13.如图:若∠AOD=∠BOC=60°,A 、O、C 三点在同一条线上,△图形。

初中数学:图形的旋转练习(含答案)

初中数学:图形的旋转练习(含答案)

初中数学:图形的旋转练习(含答案)知识点 1图形旋转的定义图 3-2-11.如图 3-2-1,△ ABO经过旋转得到△ A′ B′ O,且∠ AOB=25°,∠ AOB′= 20°,则线段 OB的对应线段是 ________;∠ OAB的对应角是 ________;旋转中心是 ________;旋转的角度是 ________.2.下列现象中,不属于图形的旋转的是()A.钟摆的运动 B .行驶中的汽车车轮C.方向盘的转动 D .电梯的升降运动3.如图 3- 2- 2,将正方形 ABCD中的阴影三角形绕点A顺时针旋转 90°后,得到的图形...为 ()图 3-2-2图 3-2-3知识点 2图形旋转的性质4.如图 3-2-4 所示,将一个含 30°角的三角板 ABC绕点 A 顺时针旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是 ()A.60° B .90°C.120° D . 150°图 3-2-4图 3-2-55.如图 3- 2- 5,将△ AOB绕点 O按逆时针方向旋转 45°后得到△ COD,若∠ AOB=15°,则∠ AOD的度数是 ________.图 3-2-66.如图 3-2-6,将△ ABC绕点 A 顺时针旋转60°得到△ AED. 若线段 AB=3,则 BE=________.7.如图 3-2-7,△ ABC的三个顶点都在方格纸的格点上,其中点 A 的坐标是 ( - 1, 0) ,现将△ ABC绕点 A 顺时针旋转 90°.(1)旋转后点 C 的坐标是 ________;(2)画出旋转后的三角形.图 3-2-7知识点 3中心对称8.如图 3-2-8,已知△ ABC与△ A′ B′ C′关于点 O成中心对称,则下列判断不正确的是 ()A.∠ ABC=∠ A′B′C′B.∠ BOC=∠ B′A′C′C.AB= A′ B′D.OA=OA′图 3-2-8图 3-2-99.如图 3-2-9,在平面直角坐标系中,若△ABC与△ A1 B1C1关于点 E 成中心对称,则对称中心点 E 的坐标是 ________.10.2017·金华改编如图3-2-10,在平面直角坐标系中,△ABC 各顶点的坐标分别为A( -2,- 2) ,B( - 4,- 1) ,C( -4,- 4) .作出△ ABC关于原点 O成中心对称的△ A1B1C1 .图 3-2-1011.如图 3- 2-11,如果齿轮 A 以逆时针方向旋转,那么齿轮 E 旋转的方向是 ()图 3-2-11A.顺时针 B .逆时针C.顺时针或逆时针 D .不能确定12.如图 3- 2-12,E,F 分别是正方形 ABCD的边 AB, BC上的点,且 BE=CF,连结 CE,DF,将△ DCF绕着正方形的中心O 按顺时针方向旋转到△ CBE的位置,则旋转角的度数为 ()A.30° B .45° C .60° D .90°图 3-2-12图 3-2-135)的对应点 A′的坐标是 ________.14.如图 3-2-14 所示,正方形 ABCD的边 BC上有一点 E,∠DAE的平分线交 CD于点 F.求证: AE= DF+BE.图 3-2-1415.创新学习问题:如图 3-2-15①,点 E,F 分别在正方形 ABCD的边 BC,CD上,∠ EAF = 45°,试判断 BE,EF,FD之间的数量关系.[ 发现证明 ]小聪把△ ABE绕点 A逆时针旋转 90°至△ ADG,从而发现 EF=BE+ FD,请你利用图①证明上述结论.[ 类比引申 ]如图②,在四边形ABCD中,∠ BAD≠ 90°, AB=AD,∠B+∠ D=180°,点 E,F 分别在边BC,CD上,则当∠ EAF与∠ BAD满足 ______关系时,仍有 EF= BE+FD.[ 探究应用 ]如图③,在某公园的同一水平面上,四条道路围成四边形ABCD.已知 AB= AD=80 米,∠ B =60°,∠ ADC= 120°,∠BAD= 150°,道路 BC,CD上分别有景点 E,F,且 AE⊥AD,DF=40( 3- 1) 米,现要在 E,F 之间修一条笔直的道路,求道路 EF的长 ( 结果精确到 1 米,参考数据:2≈ 1.41 ,3≈ 1.73) .图 3-2-15详解详析1.OB′∠OA′B′点O45°2.D 3.A4.D [ 解析 ]旋转角是∠ CAC′=180°-30°=150°.5.60°[解析]由旋转可知∠ BOD=°,∠ AOB=°,∴∠ AOD=°451560 ..解析]∵将△ABC绕点 A 顺时针旋转°得到△ AED,6 3 [60∴∠ BAE=60°, AB=AE,∴△ BAE是等边三角形,∴BE=AB= 3. 故答案为 3.7.(1)(2 , 1) (2) 略8. B [ 解析 ]因为△ ABC与△ A′B′C′关于点O 成中心对称,所以可得∠ABC=∠A′ B′ C′, AB= A′ B′, OA=OA′.故选 B.9.(3 ,- 1)10.解:如图,△ A1B1C1就是所求作的图形.11.B [ 解析 ] 齿轮 A 以逆时针方向旋转,齿轮 B 以顺时针方向旋转,齿轮 C 以逆时针方向旋转,齿轮 D 以顺时针方向旋转,齿轮 E 以逆时针方向旋转.故选 B.12. D [ 解析 ]如图,连结OC,OD.∵O为正方形 ABCD的中心,∴OD=OC, OD⊥OC,∴∠ DOC=90° .由题意得点 D 的对应点为 C,∠ DOC即为旋转角,则将△ DCF绕着正方形的中心 O按顺时针方向旋转90°到△ CBE的位置.故选 D.13. 5, 2)[ 解析 ]如图,分别过点A,A′作AC⊥x轴于点C,A′C′⊥ x轴于点C′.由旋转的性质可得AO=A′O,∠ AOA′= 90°,∴∠ AOC+∠ A′OC′= 90° .∵∠ C=∠ C′= 90°,∴∠ A′ OC′+∠ OA′C′= 90°,∴∠ AOC=∠ OA′C′,∴△ ACO≌△ OC′A′,∴AC=OC′, OC= A′C′.∵A( -2,5) ,∴OC′= AC=5,A′C′= OC= 2,∴A′(5 ,2) .14 证明:如图所示,将△ ADF绕点 A 顺时针旋转 90°得△ ABF′,则∠ 3=∠ 1,∠ AFD=∠ F′,∠ ABF′=∠ D,BF′= DF.∵四边形 ABCD为正方形,∴AB∥CD,∠ ABC=∠ D=90°,∴∠ AFD=∠ FAB,∠ ABF′=∠ D= 90°,∴∠ ABF′+∠ ABC=180°,∴F′, B, C三点共线.∵∠ FAB=∠ 2+∠ BAE,∴∠ AFD=∠ 2+∠ BAE.又∵∠ DAE的平分线交 CD于点 F,∴∠ 1=∠ 2,∴∠ 3=∠ 2,∴∠ AFD=∠ 3+∠ BAE,∴∠ F′=∠ 3+∠ BAE.∵∠ F′ AE=∠ 3+∠ BAE,∴∠ F′ AE=∠ F′,∴AE=EF′= BF′+ BE=DF+BE.15.解:[ 发现证明 ] 证明:∵将△ ABE绕点 A 逆时针旋转 90°至△ ADG,使 AB与 AD重合,∴△ ABE≌△ ADG,∴∠ BAE=∠ DAG,∠ B=∠ ADG,AE=AG, BE=DG.∵∠ BAE+∠ DAF= 90°-∠ EAF=45°,∴∠ DAG+∠ DAF= 45°,即∠ GAF=45°.∵在正方形 ABCD中,∠ B=∠ ADF=90°,∴∠ ADG+∠ ADF= 180°,即点 G,D,F 在一条直线上.在△ EAF和△ GAF中,AE= AG,∠EAF=∠ GAF=45°,AF= AF,∴△ EAF≌△ GAF,∴EF=GF.又 GF=DG+FD=BE+FD,∴EF=BE+ FD.1[ 类比引申 ] ∠ EAF=2∠BAD[ 探究应用 ] 如图,连结 AF,延长 BA, CD交于点 O.在△ AOD中,∠ ODA=180°-∠ ADC=60°,∠OAD= 180°-∠ BAD= 30°, AD=80 米,AOD AO3米,OD米.∴∠=90°,=40=40∵OF=OD+ DF=+40(-1)=403(米,403)∴AO=OF,∴∠ OAF=45°,∴∠ DAF=45°- 30°= 15°,∴∠ EAF=90°- 15°= 75°,1∴∠ EAF=2∠BAD.由已知条件得∠ B=60°,∠ BAE= 60°,∴△ ABE是等边三角形,∴BE=AB= 80 米.再由 [ 类比引申 ] 的结论可得EF= BE+DF=+1)≈109(米.40( 3)即道路 EF 的长约为 109 米.11。

中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。

图形旋转测试题及答案

图形旋转测试题及答案

图形旋转测试题及答案一、选择题1. 一个图形绕某点旋转了90°,下列说法正确的是:A. 图形的大小不变B. 图形的形状不变C. 图形的位置不变D. 以上说法都不正确答案:A、B2. 下列哪个图形旋转180°后与原图形完全重合?A. 正方形B. 圆形C. 长方形D. 三角形答案:B二、填空题3. 若一个图形绕中心点O旋转____度,可以得到与原图形关于点O对称的图形。

答案:1804. 一个等腰三角形绕底边的中点旋转____度,可以得到与原图形完全重合的图形。

答案:180三、简答题5. 描述一个正方形绕其一个顶点旋转90°后,图形的位置变化情况。

答案:正方形绕其一个顶点旋转90°后,其四个顶点的位置将分别移动到原来对角线的顶点位置。

具体来说,如果原正方形的顶点分别为A、B、C、D,且A为旋转中心,则旋转后,A点位置不变,B点移动到C点位置,C点移动到D点位置,D点移动到B点位置。

四、计算题6. 已知一个正六边形绕其中心点O旋转60°后,求旋转后顶点的新位置。

答案:正六边形的每个顶点绕中心点O旋转60°后,每个顶点的新位置将沿着正六边形的外接圆的圆周上移动,每个顶点相对于原来的位置旋转了60°的弧度。

五、论述题7. 论述图形旋转的性质及其在几何学中的应用。

答案:图形旋转是一种几何变换,它保持图形的大小和形状不变,只改变图形的位置。

旋转的性质包括旋转角度的可加性,即连续旋转两个角度相当于旋转这两个角度的和。

在几何学中,图形旋转常用于证明图形的对称性,解决几何构造问题,以及在变换几何中研究图形的不变性质等。

八下数学:3.2《图形的旋转》同步练习(含答案)

八下数学:3.2《图形的旋转》同步练习(含答案)

《图形的旋转》习题一、选择题1.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是( )A.36°B.60°C.72°D.90°3.下面的图形(1)-(4),绕着一个点旋转120°后,能与原来的位置重合的是( )A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)4.在平面上有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°5.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( )A.甲B.乙C.丙D.丁6.下面四个图案中,是旋转对称图形的是( )A. B. C. D.7.如图所示的图形中,是旋转对称图形的有( )A.1个B.2个C.3个D.4个二、填空题8.请写出一个既是轴对称图形又是旋转对称图形的图形_____.9.将等边三角形绕其对称中心O旋转后,恰好能与原来的等边三角形重合,那么旋转的角度至少是_____.10.如图所示的五角星_____旋转对称图形.(填“是”或“不是”).11.给出下列图形:①线段、②平行四边形、③圆、④矩形、⑤等腰梯形,其中,旋转对称图形有_____(只填序号).三、解答题12.如下图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为5cm2,∠AOB=120°,则图中阴影部分的面积之和为多少cm2.13.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?14.如图,△ABC和△BED是等边三角形,则图中三角形ABE绕B点旋转多少度能够与三角形重合.15.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案一、选择题1.答案:A解析:【解答】①正方形旋转的最小的能与自身重合的度数是90度,正确;②长方形旋转的最小的能与自身重合的度数是180度,错误;③等边三角形旋转的最小的能与自身重合的度数是120度,错误;④线段旋转的最小的能与自身重合的度数是180度,错误;⑤角旋转的最小的能与自身重合的度数是360度,错误;⑥平行四边形旋转的最小的能与自身重合的度数是180度,错误.故选A.【分析】根据旋转对称图形的旋转角的概念作答.2.答案:C解析:【解答】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C【分析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.3.答案:C解析:【解答】①旋转120°后,图形可以与原来的位置重合,故正确;②旋转120°后,图形可以与原来的位置重合,故正确;③五角星中心角是72°,120不是72的倍数,图形无法与原来的位置重合,故错误;④旋转90°后,图形无法与原来的位置重合,故错误.故选C.【分析】根据旋转的性质,对题中图形进行分析,判定正确选项.4.答案:B解析:【解答】因为菱形是中心对称图形也是旋转对称图形,要使它与原来的菱形重合,那么旋转的角度至少是180°.故选B.【分析】根据中心对称图形、旋转对称图形的性质.5.答案:B解析:【解答】圆被平分成八部分,旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故选B【分析】根据圆周角的度数.6.答案:D解析:【解答】A、B、C不是旋转对称图形;D、是旋转对称图形.故选D.【分析】根据旋转的定义.7.答案:C解析:【解答】旋转对称图形的有①、②、③.故选C【分析】图形①可抽象出正六边形,图形②可抽象出正五边形,图形③可抽象出正六边形,而④中为等腰三角形,然后根据旋转对称图形的定义进行判断.二、填空题8.答案:圆(答案不唯一)解析:【解答】根据旋转对称图形和轴对称图形的定义:旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(0度<旋转角<360度).如果一个图形沿着一条直线对折后两部分完全重合,叫轴对称图形.可以得出圆、正方形等都符合答案.【分析】根据旋转对称图形和轴对称图形的定义找出符合图形,得出答案.9.答案:120°解析:【解答】该图形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,那么它至少要旋转120°.故答案为:120.【分析】正三角形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,因而旋转120度的整数倍,就可以与自身重合.10.答案:是.解析:【解答】因为五角星的五个顶点到其中心的距离相等,将圆周角5等分,故五角星是旋转对称图形.【分析】五角星的五个顶点到其中心的距离相等,将周角平分为5份,可判断是旋转图形.11.答案:①②③④解析:【解答】①线段,旋转中心为线段中点,旋转角为180°,是旋转对称图形;②平行四边形,旋转中心为对角线的交点,旋转角为180°,是旋转对称图形;③圆,旋转中心为圆心,旋转角任意,是旋转对称图形;④矩形,旋转中心为对角线交点,旋转角为180°,是旋转对称图形;⑤等腰梯形,是轴对称图形,不能旋转对称.故旋转对称图形有①②③④.【分析】根据每个图形的特点,寻找旋转中心,旋转角,逐一判断.三、解答题12.答案:5cm2解析:【解答】每个叶片的面积为5c m2,因而图形的面积是15cm2,图形中阴影部分的面积是图形的面积的三分之一,因而图中阴影部分的面积之和为5cm2.【分析】根据旋转的性质和图形的特点解答.13.答案:见解答过程.解析:【解答】(1)证明:在△AE B与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.(2)因为△ADC≌△AED,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.14.答案:60度.解析:【解答】已知△ABC和△BED是等边三角形,∠ABC=∠EBD=60°⇒∠EBC=60°,又因为AB=BC,EB=BD,∠ABE=∠CBD=120°,所以△ABE≌△CBD.故△ABE绕B点旋转60度能够与△CBD重合.【分析】根据旋转对称图形的定义以及全等三角形的判定作答.15.答案:见解答过程.解析:【解答】(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC-∠PAF=∠EAF-∠PAF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.。

北师大版数学八年级下册:3.2 图形的旋转 同步练习(附答案)

北师大版数学八年级下册:3.2 图形的旋转  同步练习(附答案)

2图形的旋转第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为()A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=()A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是()A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.14.(2019·河南)如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)错误!第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.5.(教材P78做一做变式)如图,△ABC 绕点O 旋转后,顶点A 的对应点为A′,试确定旋转后的三角形.易错点 旋转方向不确定导致漏解6.在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 旋转90°到OA′,则点A′的坐标是 .7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG 可以看成是将平行四边形ABCD 以A 为中心( )A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到8.如图,已知Rt △ABC 和三角形外一点P ,按要求完成图形. (1)将△ABC 绕顶点C 顺时针方向旋转90°,得△A ′B ′C ′; (2ABC 绕点P 逆时针方向旋转60°,得△A ″B ″C ″.ABC·P9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.参考答案:第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为90°.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转的角度为60°.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为(A)A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=(D)A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(D)A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为(C)A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为(B)A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为(A)A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是(B)A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于(D)A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC =65°,∠ACB =28°,求∠FGC 的度数.解:(1)证明:∵∠CAF =∠BAE , ∴∠BAC =∠EAF.∵线段AC 绕A 点旋转到AF 的位置,∴AC =AF.在△ABC 和△AEF 中,⎩⎨⎧AB =AE ,∠BAC =∠EAF ,AC =AF ,∴△ABC ≌△AEF (SAS ). ∴EF =BC.(2)∵AB =AE ,∠ABC =65°, ∴∠BAE =180°-65°×2=50°. ∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°. ∴∠FGC =∠FAG +∠F =50°+28°=78°.14.(2019·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为(D )A .(10,3)B .(-3,10)C .(10,-3)D .(3,-10)错误!模型展示条件:OA绕原点O逆时针旋转90°至OA′.结论:△AOB≌△A′OB′.条件:AB绕点A顺时针旋转90°至AB′.结论:△ABD≌△B′AC.第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(C)2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是点B.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转90度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图所示.5.(教材P78做一做变式)如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.易错点旋转方向不确定导致漏解6.在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O旋转90°到OA′,则点A′的坐标是(-4,3)或(4,-3).02中档题7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是将平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到8.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示.(2)△A″B″C″如图所示.9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.解:(1)如图,△A′B′C′即为所求.(2)如图,△AB′C′即为所求.。

人教版2021年九年级上册:23.1.1 图形的旋转及性质 同步练习(含答案)

人教版2021年九年级上册:23.1.1 图形的旋转及性质 同步练习(含答案)

人教版2021年九年级上册:23.1图形的旋转同步练习第1课时图形的旋转及性质一、选择题1.下列运动形式属于旋转的是()A.放飞的风筝B.飞奔的高铁动车C.时钟上分针的运动D.鱼在水中游动2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOCB.∠AODC.∠AOBD.∠BOC第2题图第3题图第4题图3.如图,在4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.点AB.点BC.点CD.点D4.如图所示的每个小三角形是全等的等边三角形,其中的菱形AEFG可以看成是菱形ABCD以点A 为中心()A.顺时针旋转60°所得到的B.逆时针旋转60°所得到的C.顺时针旋转120°所得到的D.逆时针旋转120°所得到的5.如图,将△ABC绕点C逆时针旋转60°得到△A'B'C,点A在边B'C上.若∠B=30°,则∠A'的大小是( )A.30°B.60°C.90°D.120°第5题图第6题图第7题图6.如图,一块含30°角的直角三角板ABC绕点C顺时针旋转一定角度得到△A'B'C,当点B,C,A'在一条直线上时,三角板ABC的旋转角度为()A.150°B.120°C.60°D.30°7.如图,将Rt△ABC绕点A顺时针旋转一定角度得到Rt△ADE,使得点B的对应点D恰好落在BC 边上.若AB=1,∠B=60°,则CD的长为()A.0.5B.1.5C.√2D.18.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数()A.20°B.25°C.30°D.35°9.如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A逆时针旋转一定角度得到△AEF(点A,B,E 在同一条直线上),连接CF,则CF的长为()A.5B.3√2C.4√2D.5√2第8题图第9题图第10题图10.如图,在Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α(0°<α<180°)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90°-αB.αC.90°-α2D.α211.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EFC.∠AEF=∠D D.AB⊥DF12.(2020·大连)如图,在△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50° B.70° C.110° D.120°13.(2020·苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为()A.18° B.20° C.24° D.28°14.(2020·海南)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1 cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB′C′,使点C′落在AB边上,连接BB′,则BB′的长度是()A.1 cm B.2 cmC. 3 cm D.2 3 cm二、填空题15.如图,△ABC是等腰直角三角形,D是AB边上一点,△CBD经旋转后到达△CAE的位置,则旋转中心是;旋转角度是;点B的对应点是;点D的对应点是;线段CB的对应线段是;∠B的对应角是.16.如图,F是等边△ABC内一点,将△ABF绕点B顺时针旋转60°得△CBG,连接FG,则△BFG的形状是.17.如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一条直线上,且有一个公共顶点A.若正五边形ABCDE绕点A旋转x度恰好与正五边形AFGHM的一条边重合,则x的最小值为.18.如图,正方形ABCD的边长为5,O是AB边的中点,E是正方形内的一个动点,OE=2,将线段CE绕点C逆时针旋转90°得到CF,连接OF,则线段OF的最小值为.三、解答题19.如图,在△ABC中,AB=AC,∠BAC=100°,将△ABC绕点A逆时针旋转40°得到△ADE,BC与AD,DE分别交于点G,F.(1)求∠AGC的度数;(2)求证:四边形ABFE是菱形.20.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,EC=BC,连接CD,将线段CD绕点C顺时针旋转90°得到线段CF,连接EF.(1)补全图形;(2)若EF∥CD,求证:∠BDC=90°.21.如图,E是正方形ABCD的边BC上一点,连接AE,将线段AE绕点E顺时针旋转一定的角度得到EF,点C在EF上,连接AF交边CD于点G.(1)若AB=4,BF=8,求CE的长;(2)求证:AE=BE+DG.22.(中考·宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数;(3)求证:DE2=BD2+AD2.23.(2019·荆州)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=________(用含α的式子表示);(2)在图②中猜想AF与DE的数量关系,并证明你的结论.24.【探索新知】如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=.(用含α的代数式表示出所有可能的结果)【深入研究】如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”?(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ 是∠MPN的“巧分线”时t的值.参考答案一、选择题1.下列运动形式属于旋转的是(C)A.放飞的风筝B.飞奔的高铁动车C.时钟上分针的运动D.鱼在水中游动2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是(A)A.∠AOCB.∠AODC.∠AOBD.∠BOC第2题图第3题图第4题图3.如图,在4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是(B)A.点AB.点BC.点CD.点D4.如图所示的每个小三角形是全等的等边三角形,其中的菱形AEFG可以看成是菱形ABCD以点A 为中心(D)A.顺时针旋转60°所得到的B.逆时针旋转60°所得到的C.顺时针旋转120°所得到的D.逆时针旋转120°所得到的5.如图,将△ABC绕点C逆时针旋转60°得到△A'B'C,点A在边B'C上.若∠B=30°,则∠A'的大小是(C)A.30°B.60°C.90°D.120°第5题图第6题图第7题图6.如图,一块含30°角的直角三角板ABC绕点C顺时针旋转一定角度得到△A'B'C,当点B,C,A'在一条直线上时,三角板ABC的旋转角度为(A)A.150°B.120°C.60°D.30°7.如图,将Rt△ABC绕点A顺时针旋转一定角度得到Rt△ADE,使得点B的对应点D恰好落在BC 边上.若AB=1,∠B=60°,则CD的长为(D)A.0.5B.1.5C.√2D.18.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数(B)A.20°B.25°C.30°D.35°9.如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A逆时针旋转一定角度得到△AEF(点A,B,E 在同一条直线上),连接CF,则CF的长为(D)A.5B.3√2C.4√2D.5√2第8题图第9题图第10题图10.如图,在Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α(0°<α<180°)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是(C)A.90°-αB.αC.90°-α2D.α211.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(D)A.AC=DE B.BC=EFC.∠AEF=∠D D.AB⊥DF12.(2020·大连)如图,在△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是(D)A.50° B.70° C.110° D.120°13.(2020·苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为(C)A.18° B.20° C.24° D.28°14.(2020·海南)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1 cm,将Rt△ABC绕点A 逆时针旋转得到Rt△AB′C′,使点C′落在AB边上,连接BB′,则BB′的长度是(B)A.1 cm B.2 cmC. 3 cm D.2 3 cm二、填空题15.如图,△ABC是等腰直角三角形,D是AB边上一点,△CBD经旋转后到达△CAE的位置,则旋转中心是点C;旋转角度是90°;点B的对应点是A;点D的对应点是E;线段CB的对应线段是CA;∠B的对应角是∠CAE.16.如图,F是等边△ABC内一点,将△ABF绕点B顺时针旋转60°得△CBG,连接FG,则△BFG的形状是等边三角形.17.如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一条直线上,且有一个公共顶点A.若正五边形ABCDE绕点A旋转x度恰好与正五边形AFGHM的一条边重合,则x的最小值为36.18.如图,正方形ABCD的边长为5,O是AB边的中点,E是正方形内的一个动点,OE=2,将线段CE绕点C逆时针旋转90°得到CF,连接OF,则线段OF的最小值为5√102-2.提示:如图,连接CO,将线段CO绕点C逆时针旋转90°得到CM,连接FM,OM,∴∠ECF=∠OCM =90°,∴∠ECO=∠FCM.∵CE=CF,CO=CM,∴△ECO≌△FCM(SAS),∴FM=OE=2.∵正方形ABCD中,AB=5,O是AB边的中点,∴OB=2.5,∴OC=√52+(52)2=5√52,∴OM=√2OC=5√10 2.∵OF+MF≥OM,∴OF≥5√102-2,∴线段OF的最小值为5√102-2.三、解答题19.如图,在△ABC中,AB=AC,∠BAC=100°,将△ABC绕点A逆时针旋转40°得到△ADE,BC与AD,DE分别交于点G,F.(1)求∠AGC的度数;(2)求证:四边形ABFE是菱形.解:(1)∵AB=AC,∠BAC=100°,∴∠B=∠C=40°.由旋转的性质可知∠BAD=40°,∴∠AGC=∠B+∠BAD=80°.(2)由旋转的性质可知∠D=∠B=∠BAD=40°,∠DAE=100°,∴AB∥DE.由(1)知∠AGC=80°,∴∠DAE+∠AGC=180°,∴AE∥BF,∴四边形ABFE是平行四边形.又∵AB=AC=AE,∴四边形ABFE是菱形.20.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,EC=BC,连接CD,将线段CD绕点C顺时针旋转90°得到线段CF,连接EF.(1)补全图形;(2)若EF∥CD,求证:∠BDC=90°.解:(1)补全图形,如图所示.(2)由旋转的性质可知∠DCF =∠DCE +∠ECF =90°,CD =CF.∵∠ACB =∠DCE +∠BCD =90°,∴∠ECF =∠BCD.∵EF ∥CD ,∴∠EFC +∠DCF =180°,∴∠EFC =90°.在△BDC 和△EFC 中,{CD =CF,∠BCD =∠ECF,BC =EC,∴△BDC ≌△EFC (SAS),∴∠BDC =∠EFC =90°.21.如图,E 是正方形ABCD 的边BC 上一点,连接AE ,将线段AE 绕点E 顺时针旋转一定的角度得到EF ,点C 在EF 上,连接AF 交边CD 于点G.(1)若AB =4,BF =8,求CE 的长;(2)求证:AE =BE +DG.解:(1)∵四边形ABCD 为正方形,∴AB =BC =4,∠ABC =90°.∵BF =8,∴CF =BF -BC =4.由旋转的性质知,EF =AE ,∴BE =BF -EF =BF -AE =8-AE ,在Rt △ABE 中,AB 2+BE 2=AE 2,即42+(8-AE )2=AE 2,解得AE =5,∴CE =EF -CF =AE -CF =5-4=1.(2)延长EB 到点H ,使得BH =DG ,易证△ADG ≌△ABH (AAS),∴∠BAH =∠DAG ,∴∠HAF =∠BAD =90°.∵AE =EF ,∴∠EAF =∠F.∵∠EAH +∠EAF =90°,∠F +∠H =90°,∴∠H =∠EAH ,∴EA =EH.∵EH =BE +BH =BE +DG ,∴AE =BE +BG.22.(中考·宁波)如图,在△ABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE .(1)求证:△ACD ≌△BCE ;证明:由题意可知CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠DCE =∠ACB .∵∠ACD =∠ACB -∠DCB ,∠BCE =∠DCE -∠DCB ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).(2)当AD =BF 时,求∠BEF 的度数;解:∵∠ACB =90°,AC =BC ,∴∠A =45°.由(1)知△ACD ≌△BCE ,∴∠A =∠CBE =45°,AD =BE .∵AD =BF ,∴BE =BF .∴∠BEF =180°-45°2=67.5°. (3)求证:DE 2=BD 2+AD 2.证明:由(1)知△ACD ≌△BCE ,∴∠A =∠CBE ,AD =BE .∵∠ACB =90°,∴∠A +∠CBA =90°.∴∠CBE +∠CBA =90°.∴∠EBD =90°.∴DE 2=BD 2+BE 2.∴DE 2=BD 2+AD 2.23.(2019·荆州)如图①,等腰直角三角形OEF 的直角顶点O 为正方形ABCD 的中心,点C ,D 分别在OE 和OF 上,现将△OEF 绕点O 逆时针旋转α角(0°<α<90°),连接AF ,DE (如图②).(1)在图②中,∠AOF =________(用含α的式子表示);【思路点拨】如图②,利用旋转的性质得到∠DOF =∠COE =α,再根据正方形的性质得到∠AOD =90°,从而得到∠AOF =90°-α;(2)在图②中猜想AF 与DE 的数量关系,并证明你的结论.【思路点拨】如图②,利用正方形的性质得到∠AOD =∠COD =90°,OA =OD ,再利用△OEF 为等腰直角三角形得到OF =OE ,利用(1)的结论得到∠AOF =∠DOE ,则可证明△AOF ≌△DOE ,从而得到AF =DE .解:AF =DE .证明如下:∵四边形ABCD 为正方形,∴∠AOD =∠COD =90°,OA =OD .∵∠DOF =∠COE =α.∴∠AOF =∠DOE .∵△OEF 为等腰直角三角形,∴OF =OE .在△AOF 和△DOE 中,⎩⎨⎧AO =DO ,∠AOF =∠DOE ,OF =OE ,∴△AOF ≌△DOE (SAS).∴AF =DE .24.【探索新知】如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB ,∠AOC 和∠BOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的“巧分线”.(1)一个角的平分线 是 这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ 是∠MPN 的“巧分线”,则∠MPQ= 12α或13α或23α .(用含α的代数式表示出所有可能的结果)【深入研究】如图2,若∠MPN=60°,且射线PQ 绕点P 从PN 位置开始,以每秒10°的速度逆时针旋转,当PQ 与PN 成180°时停止旋转,旋转的时间为t 秒.(3)当t 为何值时,射线PM 是∠QPN 的“巧分线”?(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ 是∠MPN的“巧分线”时t的值.×60,解得t=9;解:(3)依题意有①10t=60+12②10t=2×60,解得t=12;③10t=60+2×60,解得t=18.故当t为9或12或18时,射线PM是∠QPN的“巧分线”.(4)当t为2.4或4或6时,射线PQ是∠MPN的“巧分线”.提示:依题意有①10t=1(5t+60),解得t=2.4;3②10t=1(5t+60),解得t=4;2③10t=2(5t+60),解得t=6.3。

北师大版六年级数学下课课练 3.1图形的旋转(一)同步练习(含答案)

北师大版六年级数学下课课练  3.1图形的旋转(一)同步练习(含答案)

北师大版六年级数学下课课练 3.1图形的旋转(一)同步练习(含答案)一、填空题1.钟面上指针从数字“6”绕中心点________时针旋转90°后指向数字________.2.时针从2时到6时,按________方向旋转了________°.3.指针顺时针旋转90度,从B点旋转到________,指针逆时针旋转90度,从C 点旋转到________。

4.体育课上,老师口令“立正,向后转” 时,你的身体按________时针旋转了________°,口令“立正,向左转” 时,你的身体按________时针旋转了________°。

5.从2:30到2:45,分针旋转了________度;从6:00到9:00,时针旋转了________度。

二、填空题。

6.图形旋转的方向包括________时针和________时针。

7.图形旋转是三要素是指________、________和________。

8.图形旋转后的________和________发生了改变,________不变。

三、选择题。

9.如图,线段AB绕点A逆时针旋转了()°A. 90B. 180C. 270D. 36010.如图,线段AB是绕()点顺时针旋转了90°。

A. AB. BC. CD. D四、选择题11.如图,指针绕点0顺时针从12转到3,旋转了()度。

A. 30B. 90C. 27012.把一个图形绕某点顺时针旋转30°,所得的图形与原来的图形相比()A. 变大了B. 大小不变C. 变小了D. 无法确定大小是否变化13.从9:30到9:45钟面上的分针按顺时针方向旋转了()。

A. 30°B. 90°C. 180°D. 360°14.从10:00到12:00,时针旋转了()°,从1:30到1:50,分针旋转了()°。

旋转练习题带答案

旋转练习题带答案

旋转练习题带答案旋转是数学中的一个重要概念,它涉及到图形在平面或空间中的转动。

下面是一些关于旋转的练习题,以及它们的答案。

练习题1:在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度后,求点A的新坐标。

答案:点A绕原点O顺时针旋转90度后,其坐标变为(-4, 3)。

练习题2:如果一个正方形的四个顶点在平面直角坐标系中分别位于(1, 1), (1, -1), (-1, -1), (-1, 1),求这个正方形绕其中心点旋转180度后的顶点坐标。

答案:正方形绕其中心点(0, 0)旋转180度后,顶点坐标变为(-1, -1), (-1, 1), (1, 1), (1, -1)。

练习题3:一个圆心位于(2, 2)的圆,半径为3,求这个圆绕原点O(0, 0)顺时针旋转45度后,圆上任意一点P(x, y)的新坐标。

答案:由于圆的旋转不改变其形状和大小,只是位置发生变化,所以具体点P(x, y)的新坐标取决于其在圆上的位置。

但可以确定的是,圆心的新坐标会发生变化。

通过计算,圆心的新坐标为(1, 2 + √2)。

练习题4:在三维空间中,一个立方体的一个顶点位于(1, 1, 1),求这个立方体绕通过(1, 1, 1)且与x轴成30度角的直线旋转90度后,该顶点的新坐标。

答案:这个问题较为复杂,需要使用三维空间旋转矩阵来解决。

但一般来说,通过适当的旋转矩阵变换,我们可以找到新的坐标。

具体计算需要用到三角函数和矩阵乘法。

练习题5:考虑一个由四个点组成的矩形,其顶点坐标分别为A(0, 0), B(4, 0), C(4, 3), D(0, 3)。

求矩形绕点A旋转60度后,各顶点的新坐标。

答案:矩形绕点A旋转60度后,可以使用旋转矩阵来计算新坐标。

新坐标分别为:- A点不变,坐标仍为(0, 0)。

- B点新坐标为(2√3, -2)。

- C点新坐标为(2√3, 2)。

- D点新坐标为(-2√3, 2)。

请注意,这些练习题的答案需要根据具体的旋转公式和几何知识来计算得出。

图形的旋转九年级试卷【含答案】

图形的旋转九年级试卷【含答案】

图形的旋转九年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 图形绕某点旋转90°,相当于图形绕同一点旋转_________。

A. 45°B. 180°C. 270°D. 360°2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。

A. 30°B. 45°C. 60°D. 90°3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?A. 等边三角形B. 等腰三角形C. 长方形D. 正五边形4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。

A. 0°B. 90°C. 180°D. 270°5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?A. 正方形B. 正五边形C. 正六边形D. 正八边形二、判断题(每题1分,共5分)1. 旋转前后图形的大小和形状都不会改变。

()2. 旋转角是指旋转中心与旋转后的图形的对应点之间的夹角。

()3. 任何图形绕中心旋转180°后,都能与原图形重合。

()4. 一个图形绕中心旋转360°后,一定回到原来的位置。

()5. 旋转前后图形的面积一定相等。

()三、填空题(每题1分,共5分)1. 图形绕某点旋转_________度,相当于图形绕同一点旋转270°。

2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。

3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?_________4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。

5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?_________四、简答题(每题2分,共10分)1. 简述旋转的基本性质。

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)考试时间:60分钟;总分:100分一.选择题(共8小题,满分32分,每小题4分)1.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.135°B.90°C.60°D.45°2.下列运动属于旋转的是()A.篮球的滚动过程B.转动的方向盘C.气球升空的运动D.一个图形沿某直线对折的过程3.如图,把△ABC绕点C顺时针旋转某个角度a得到△A'B'C,∠A=30°,∠1=50°,则旋转角a等于()A.110°B.70°C.40°D.20°4.如图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数为()A.119°B.120°C.61°D.121°5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=DE7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°.则∠BAA'的度数是()A.55°B.60°C.65°D.70°二.填空题(共4小题,满分16分,每小题4分)9.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上点A 的位置,用(1,2)表示点B的位置,那四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是.10.如图,图形是由一个菱形经过次旋转得到,每次旋转了度.11.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为.三.解答题(共4题,满分52分,每小题13分)13.(13分)如图,作出△ABC绕点O顺时针旋转60°之后的三角形.(保留作图痕迹)14.(13分)如图,已知正方形ABCD,点E在AB边上,点F在BC边的延长线上,且CF=AE.以图中某一点为旋转中心,将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合.(1)旋转中心是点,旋转角的度数为°.(2)判断△DFE的形状并说明理由.15.(13分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连接AD,交OC于点E,求∠AEO的度数.16.(13分)如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α,将△AOC绕顶点C按顺时针方向旋转90°得△BDC,连接OD(1)当α=95°时,是判断△BOD的形状,并说明理由;(2)若OC=1,OA=2,OB=,求∠BOC的度数;(3)当α等于多少度时,△BOD是等腰三角形?参考答案与试题解析一.选择题(共25小题,满分100分,每小题4分)1.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.B.90°C.60°D.45°解:∵△AOB绕点O按逆时针方向旋转到△COD的位置∴对应边OB、OD的夹角∠BOD即为旋转角而∠DOB=90°.∴旋转的角度为90°.故选:B.2.下列运动属于旋转的是()A.篮球的滚动过程B.转动的方向盘C.气球升空的运动D.一个图形沿某直线对折的过程解:A、篮球的滚动不一定是旋转;B、转动的方向盘,属于旋转;C、气球升空的运动是平移,不属于旋转;D、一个图形沿某直线对折的过程是轴对称,不属于旋转.故选:B.3.如图,把△ABC绕点C顺时针旋转某个角度a得到△A'B'C,∠A=30°,∠1=50°,则旋转角a等于()A.110°B.70°C.40°D.20°解:∵△ABC绕点C顺时针旋转某个角度α得到△A′B′C∴∠A=∠A′=30°又∵∠1=∠A′+∠ACA′=50°∴∠BCB′=∠ACA′=20°故选:D.4.如图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数为()A.119°B.120°C.61°D.121°解:∵AB与地面的夹角∠CAB为61°∴∠BAB'=180°﹣∠CAB=180°﹣61°=119°即旋转角为119°∴箕面AB绕点A旋转的度数为119°.故选:A.5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角∴旋转角为90°故选:C.6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=DE解:∵点E在AB的延长线上∴A、B、E三点在同一条直线上∴∠ABD和∠CBE分别是△DBE和△ABC的外角∴∠ABD>∠E,∠CBE>∠C故A错误、B错误;由旋转得BD=BA,∠ABD=∠CBE=60°∴△ABD是等边三角形∵∠ADB=60°,∠CBD=180°﹣∠ABD﹣∠CBE=60°∴∠ADB=∠CBD∴AD∥BC故C正确;∵∠DAE=∠ABD=60°,∠E<∠ABD∴∠E<60°∴∠DAE≠∠E若AD=DE,则∠DAE=∠E,显然与已知条件相矛盾∴AD≠DE故D错误故选:C.7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)解:∵A(3,0),B(0,4)∴AO=3,BO=4∴AB==5∴AB=AB′=5,故OB′=8∴点B′的坐标是(8,0).故选:B.8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°.则∠BAA'的度数是()A.55°B.60°C.65°D.70°解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C∴AC=A′C∴△ACA′是等腰直角三角形∴∠CA′A=∠A′AC=45°∴∠CA′B′=∠CA′A﹣∠1=45°﹣25°=20°=∠BAC∴∠BAA′=∠BAC+∠A′AC=20°+45°=65°故选:C.二.填空题(共11小题,满分44分,每小题4分)9.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上点A 的位置,用(1,2)表示点B的位置,那四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是(5,2).解:如图,连接AE、DH作AE、DH的垂线,相交于点P,则点P即为旋转中心∵A(2,1),B(1,2)∴P(5,2).故答案为:(5,2).10.如图,图形是由一个菱形经过六次旋转得到,每次旋转了60度.解:图形是由一个菱形经过六次旋转得到,每次旋转了360°÷6=60度.故答案为:六;60.11.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′∴∠B'AC'=33°,∠BAB'=50°∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为30°.解:∵将△ABC绕点C顺时针旋转∴BC=CD,∠BCD=∠ACE∴∠B=∠BDC=50°∴∠BCD=80°=∠ACE∵∠ACE=∠B+∠A∴∠A=80°﹣50°=30°故答案为:30°.三.解答题(共11小题,满分143分,每小题13分)13.(13分)如图,作出△ABC绕点O顺时针旋转60°之后的三角形.(保留作图痕迹)解:如图所示,△A′B′C′即为所求作的三角形.14.(13分)如图,已知正方形ABCD,点E在AB边上,点F在BC边的延长线上,且CF=AE.以图中某一点为旋转中心,将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合.(1)旋转中心是点D,旋转角的度数为90°.(2)判断△DFE的形状并说明理由.解:(1)∵将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合∴∠ADC=∠EDF=90°,DE=DF∴旋转中心是点D,旋转角的度数为90°故答案为:D,90;(2)△DEF是等腰直角三角形理由如下:∵将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合∴∠ADC=∠EDF=90°,DE=DF∴△DEF是等腰直角三角形.15.(13分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是2个单位长度;△AOC与△BOD关于直线对称,则对称轴是y轴;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是120度;(2)连接AD,交OC于点E,求∠AEO的度数.解:(1)∵点A的坐标为(﹣2,0)∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形∴∠AOC=∠BOD=60°∴∠AOD=120°∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB∴OA=OD∵∠AOC=∠BOD=60°∴∠DOC=60°即OE为等腰△AOD的顶角的平分线∴OE垂直平分AD∴∠AEO=90°.故答案为2;y轴;120.16.(13分)如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α,将△AOC绕顶点C按顺时针方向旋转90°得△BDC,连接OD(1)当α=95°时,是判断△BOD的形状,并说明理由;(2)若OC=1,OA=2,OB=,求∠BOC的度数;(3)当α等于多少度时,△BOD是等腰三角形?解:(1)△BOD为等腰三角形.理由如下:∵△AOC绕直角顶点C按顺时针方向旋转90°得△BDC∴∠OCD=90°,CO=CD,∠CDB=∠COA=α∴△COD是等腰直角三角形;∴∠COD=∠CDO=45°∵∠BOD=360°﹣∠AOB﹣∠AOC﹣∠COD=360°﹣140°﹣95°﹣45°=80°而∠BDO=∠CDB﹣∠CDO=95°﹣45°=50°∴∠DBO=180°﹣∠BDO﹣∠BOD=50°∴∠DBO=∠BDO∴△BOD为等腰三角形;(2)∵△COD是等腰直角三角形∴OD=OC=而BD=OA=2,OB=∴OB2+OD2=BD2∴△BOD为等腰直角三角形∠BOD=90°;(3)∠BOD=360°﹣∠AOB﹣∠AOC﹣∠COD=360°﹣140°﹣α﹣45°=175°﹣α∠BDO=∠CDB﹣∠CDO=α﹣45°∠OBD=180°﹣∠BDO﹣∠BOD=180°﹣α+45°﹣175°+α=50°当BD=OD时,∠OBD=∠BOD,即175°﹣α=50°,解得α=125°;当OB=OD时,∠OBD=∠BDO,即α﹣45°=50°,解得α=95°;当DB=DO时,∠BOD=∠DBO,即175°﹣α=α﹣45°,解得α=110°即当α等于125°或95°或110°时,△BOD是等腰三角形.。

旋转测试题及答案人教版

旋转测试题及答案人教版

旋转测试题及答案人教版一、选择题1. 一个图形绕某一点旋转180°后,下列说法正确的是()A. 形状不变,大小不变,位置变化B. 形状不变,大小不变,位置不变C. 形状变化,大小不变,位置变化D. 形状变化,大小变化,位置不变答案:A2. 如果一个图形绕着一个点旋转了90°,那么这个图形()A. 形状不变,大小不变,位置变化B. 形状变化,大小不变,位置变化C. 形状不变,大小变化,位置不变D. 形状变化,大小变化,位置不变答案:A二、填空题3. 一个正方形绕其中心点旋转90°后,得到的图形仍然是一个______。

答案:正方形4. 一个等边三角形绕着它的一个顶点旋转120°后,得到的图形仍然是一个______。

答案:等边三角形三、解答题5. 描述一个图形绕某一点旋转的过程,并说明旋转后图形的位置和形状的变化。

答案:一个图形绕某一点旋转的过程包括确定旋转中心、旋转角度和旋转方向。

旋转后,图形的位置会发生变化,但形状和大小保持不变。

例如,一个矩形绕其中心点旋转90°后,其位置会改变,但仍然是一个矩形,且边长和角度不变。

6. 如果一个图形绕着一个点旋转了180°,描述旋转后图形与原图形的关系。

答案:当一个图形绕着一个点旋转180°后,旋转后的图形与原图形关于旋转中心对称。

这意味着如果将旋转后的图形与原图形重叠,它们会完全重合,只是方向相反。

结束语:通过以上题目的练习,可以加深对旋转变换的理解,掌握旋转的性质和特点。

希望同学们能够熟练运用这些知识,解决实际问题。

《23.1图形的旋转(第1课时)旋转的概念及性质》同步练习含答案

《23.1图形的旋转(第1课时)旋转的概念及性质》同步练习含答案

23.1图形的旋转第1课时旋转的概念及性质关键问答②旋转和平移有什么相同之处和不同之处?②图形的旋转和图形上任何一点的旋转具有怎样的关系?1.①下列现象中属于旋转的是()A.汽车在急刹车时向前滑动B.拧开水龙头C.雪橇在雪地里滑动D.电梯的上升与下降2.②如图23-1-1,△ABC和△DCE都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,则下列叙述中错误的是()图23-1-1A.旋转中心是点CB.旋转角可能是90°C.AB=DED.∠ABC=∠D3.钟表的分针经过5分钟,旋转了________°.命题点1旋转的概念[热度:82%]4.③下列图案中,不能由一个图形通过旋转形成的是()图23-1-2解题突破③找轴对称图形是确定线,找旋转图形是确定点(即旋转中心).命题点2旋转中心的确定[热度:89%]5.④如图23-1-3,在一个4×4的正方形网格中,若两个阴影部分的三角形绕某点旋转一定的角度后能互相重合,则其旋转中心可能是图中的()图23-1-3A.点A B.点B C.点C D.点D方法点拨④确定旋转中心的方法:作两对对应点连线的垂直平分线,它们的交点即为旋转中心.6.⑤如图23-1-4,ABCD和DCGH是两块全等的正方形铁皮,要使它们重合,则存在的旋转中心有()图23-1-4A.1个B.2个C.3个D.4个易错警示⑤容易忽略D,C两个点也可以作为旋转中心.命题点3求角度[热度:82%]7.⑥2017·菏泽如图23-1-5,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()图23-1-5A.55°B.60°C.65°D.70°方法点拨⑥将三角形绕某一顶点旋转后,有公共端点的对应边可构成一个新的等腰三角形.8.如图23-1-6,▱ABCD绕点A逆时针旋转30°得到▱AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数是________.图23-1-6命题点4求长度[热度:92%]9.⑦如图23-1-7,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE 绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()图23-1-7A.25B.23C.4 D.210方法点拨⑦利用旋转的性质,构建直角三角形(尤其是含30°,45°角的直角三角形),再依据勾股定理求边长,这是旋转中求线段长的常用方法.10.如图23-1-8,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.将△ABC绕点C顺时针旋转得到△A′B′C,连接AB′.若点A,B′,A′在同一条直线上,则AA′的长为()图23-1-8A.6 B.43C.33D.311.2017·黄冈已知:如图23-1-9,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D 恰好为AB的中点,则线段B1D=________cm.图23-1-912.⑧2016·眉山如图23-1-10,把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()图23-1-10A.62B.6 C.32D.3+3 2解题突破⑧连接BC′,点B在对角线AC′上.13.⑨2017·徐州如图23-1-11,已知AC⊥BC,垂足为C,AC=4,BC=3 3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=________;(2)求线段DB的长度.图23-1-11模型建立⑨三角形的两边及这两边的夹角确定后,三角形是唯一确定的.命题点5求图形的面积[热度:95%]14.B10如图23-1-12,将矩形ABCD绕点A旋转至矩形AB′C′D′的位置,此时AC′的中点恰好与点D重合,AB′交CD于点E.若AB=3,则△AEC的面积为()图23-1-12A.3 B.1.5 C.23D.3方法点拨○10旋转中求面积是在旋转中求线段长的基础上,利用几何图形的面积公式(或几何图形的面积和与差)来求解的.15.⑪2016·台州如图23-1-13,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分).若菱形的一个内角为60°,边长为2,则该“星形”的面积是________.图23-1-13方法点拨⑪把“星形”分割成菱形与四个全等的三角形,并求出四个全等三角形中任意一个三角形的面积.16.如图23-1-14,将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB′C′D′,求图中阴影部分的面积.图23-1-1417.⑫2017·贵港如图23-1-15,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C 逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()图23-1-15A.4 B.3 C.2 D.1解题突破⑫在旋转过程中,点P到点C的距离会变化吗?点C到点M的距离呢?18.⑬如图23-1-16,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是________.图23-1-16模型建立⑬有公共端点的两条线段,另外两个端点间的最大距离是两条线段的长度和,最小距离是两条线段的长度差.典题讲评与答案详析1.B 2.D 3.304.C [解析]只有选项C 不能通过旋转得到.5.C [解析]两对对应点连线的垂直平分线的交点,即为旋转中心.6.C [解析]根据旋转的性质,可得要使正方形ABCD 和DCGH 重合,有3种方法,即可以分别绕点D ,C 或CD 的中点旋转,即旋转中心有3个.7.C [解析]∵将Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A ′B ′C ,∴AC =A ′C ,∴△ACA ′是等腰直角三角形,∴∠CA ′A =∠CAA ′=45°,∴∠CA ′B ′=20°=∠BAC ,∴∠BAA ′=20°+45°=65°.8.[导学号:04402145]105°[解析]由题意可得AB =AB ′,∠BAB ′=30°,所以∠B =∠AB ′B =75°.又因为四边形ABCD 是平行四边形,所以∠C =180°-∠B =105°.9.A [解析]由题意可得AE =AE ′,∠EAE ′=90°.因为AD =AB =3,DE =1,所以AE =AE ′=32+12=10,所以EE ′=10+10=2 5.10.A [解析]因为∠ACB =90°,∠B =60°,BC =2,所以AB =4.由题意可得A ′B ′=AB =4,∠A ′=∠CAB =30°,∠A ′B ′C =∠B =60°,A ′C =AC , 所以∠A ′=∠CAA ′=30°.又因为∠A ′B ′C =∠CAA ′+∠B ′CA =60°, 所以∠CAA ′=∠B ′CA =30°, 所以AB ′=B ′C =BC =2, 所以AA ′=A ′B ′+AB ′=6.11.1.5 [解析]∵在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm ,∴AB =OA 2+OB 2=5 cm.∵D 为AB 的中点,∴OD =12AB =2.5 cm.∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4 cm ,∴B 1D =OB 1-OD =1.5 cm.12.[导学号:04402147]A [解析]连接BC ′,CD ′,如图.∵旋转角∠BAB ′=45°, ∠BAD ′=45°, ∴B 在对角线AC ′上. ∵B ′C ′=AB ′=3,∴在Rt △AB ′C ′中,AC ′=AB ′2+B ′C ′2=3 2.∵∠OBC ′=90°,∠D ′C ′A =45°,∴△OBC ′为等腰直角三角形. ∵在等腰直角三角形OBC ′中,OB =BC ′, ∴AC ′=AB +BC ′=AB +OB =3 2. 同理可得AD ′+OD ′=3 2,∴四边形ABOD ′的周长=3 2+3 2=6 2. 故选A.13.解:(1)∵AC =AD ,∠CAD =60°, ∴△ACD 是等边三角形,∴DC =AC =4.(2)如图,过点D 作DE ⊥BC 于点E . ∵△ACD 是等边三角形, ∴∠ACD =60°. 又∵AC ⊥BC ,∴∠DCE =∠ACB -∠ACD =90°-60°=30°,∴在Rt △CDE 中,DE =12DC =2,CE =DC 2-DE 2=2 3,∴BE =BC -CE =3 3-2 3=3,∴BD =DE 2+BE 2=22+(3)2=7.14.D [解析]∵旋转后AC ′的中点恰好与点D 重合, 即AD =12AC ′=12AC ,∴在Rt △ACD 中,∠ACD =30°,∠DAC =60°, ∴∠C ′AD ′=60°,∴∠DAE =30°, ∴∠EAC =∠ACD =30°, ∴AE =CE ,AD = 3.设AE =CE =x ,则有DE =DC -CE =AB -CE =3-x . 在Rt △ADE 中,根据勾股定理,得x 2=(3-x )2+(3)2, 解得x =2,∴CE =2,则S △AEC =12CE ·AD = 3.15.6 3-6 [解析]在图中标上字母,令AB 与A ′D ′的交点为E ,过点E 作EF ⊥AC 于点F ,如图所示.∵四边形ABCD 为菱形,AB =2,∠BAD =60°, ∴∠BAO =30°,∠AOB =90°,∴BO =12AB =1,AO =AB 2-BO 2=22-12= 3.同理可知A ′O =3,D ′O =1, ∴AD ′=AO -D ′O =3-1.∵∠A ′D ′O =90°-30°=60°,∠BAO =30°, ∴∠AED ′=30°=∠EAD ′, ∴D ′E =AD ′=3-1.在Rt △ED ′F 中,ED ′=3-1,∠ED ′F =60°,∴D ′F =12D ′E =3-12,EF =3-32, ∴S 阴影=S 菱形ABCD +4S △AD ′E =12·2AO ·2BO +4×12AD ′·EF =6 3-6.16.解:如图,设B ′C ′与CD 的交点为E ,连接AE .在Rt △AB ′E 和Rt △ADE 中,∵AE =AE ,AB ′=AD ,∴Rt △AB ′E ≌Rt △ADE (HL),∴∠DAE =∠B ′AE .∵旋转角为30°,∴∠DAB ′=60°,∴∠DAE =12×60°=30°, ∴DE =12AE ,则DE 2=4DE 2-1,∴DE =33, ∴阴影部分的面积=1×1-2×⎝⎛⎭⎫12×1×33=1-33. 17.B [解析]连接PC .在Rt △ABC 中,∵∠A =30°,BC =2,∴AB =4.根据旋转的性质可知,A ′B ′=AB =4.∵P 是A ′B ′的中点,∴PC =12A ′B ′=2.易得CM =BM =1.又∵PM ≤PC +CM ,即PM ≤3,∴PM 的最大值为3(此时P ,C ,M 三点共线).18.[导学号:04402151]1.5[解析]如图,取AC 的中点G ,连接EG .∵旋转角为60°,∴∠ECD +∠DCF =60°.又∵∠ECD +∠GCE =∠ACB =60°,∴∠DCF =∠GCE .∵AD 是等边三角形ABC 的对称轴,∴CD =12BC ,∴CD =CG .又∵将EC 旋转得到FC ,∴CE =CF ,∴△DCF ≌△GCE (SAS),∴DF =GE .根据垂线段最短,得当GE ⊥AD 时,GE 最短,即DF 最短.此时,∵∠CAD =12×60°=30°,AG =12AC =3,∴EG =12AG =12×3=1.5,即DF 的最小值是1.5.【关键问答】①相同之处:旋转或平移前、后的图形都是全等的.不同之处:平移是一个图形沿某一方向移动了一段距离,旋转是一个图形绕着某一点沿顺时针或逆时针方向转动了一个角度.②图形的旋转和图形上任何一点的旋转是一致的,即都是绕一个相同的点,沿顺时针或逆时针转动了一个相同的角度.。

2022年五年级上册数学同步练习 2 2图形的旋转 西师大版(含答案)

2022年五年级上册数学同步练习 2 2图形的旋转  西师大版(含答案)

五年级上册数学一课一练图形的旋转一、单项选择题1.汽车在行驶过程中,车轮的运动属于〔〕现象。

A. 旋转B. 平移2.以下属于旋转的是〔〕A. 球射门B. 拧水龙头C. 踢毽子D. 搬东西3.从9时到12时,时针绕中心点顺时针方向旋转了〔〕度。

A. 90B. 60C. 120D. 1804.以下图是由经过〔〕得到的。

A. 平移B. 旋转C. 既是平移又是旋转5.以下日常生活现象中,不属于平移的是〔〕A. 升国旗时,国旗的运动B. 在计数器上拨珠子的运动C. 荡起来的秋千D. 淘气在光滑的冰面上滑动二、判断题6.拧开水龙头的运动是旋转。

7.平移和旋转的共同特征是形状、大小不变,位置、方向改变。

8.风车的转动是旋转,箱子在地面上被拖动也是旋转。

9.电风扇的运动是旋转的。

10.钟表上时针在平移运动。

三、填空题11.张叔叔在笔直的公路上开车,方向盘的运动是________现象。

升国旗时,国旗的升降运动是________现象。

妈妈用拖布擦地,是________现象。

(填“平移〞或“旋转〞)12.如图,线段AB绕点A旋转到AB1、的位置,是按________时针方向旋转________度。

13.旋转时物体的________没有改变,________和________改变了。

14.物体绕着某个________或某个________按一定________运动,这种现象叫做旋转。

15.以下图钟面上的指针绕点O按顺时针方向旋转60°后指向________,然后指针再绕点O按顺时针方向旋转90°后指向________四、解答题16.下面图形是轴对称图形的在方框里画“√〞,不是的画“×〞。

17.转一转,说一说图形A如何形成图形B.五、综合题18.〔1〕指针从A开始________时针旋转________°到B.〔2〕指针从D开始________时针旋转________°到B.参考答案一、单项选择题1.【答案】A【解析】【解答】解:车轮的运动属于旋转现象。

小学旋转测试题目及答案

小学旋转测试题目及答案

小学旋转测试题目及答案一、选择题1. 一个正方形旋转180度后,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A2. 一个圆形在平面上旋转任意角度,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A3. 一个等腰直角三角形绕着其直角边旋转180度,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A二、填空题1. 当一个物体绕着一个点旋转360度后,其位置和方向将______。

答案:保持不变2. 如果一个物体绕着一个点旋转90度,那么它的位置将______。

答案:改变三、判断题1. 一个物体绕着一个轴旋转180度后,它将回到原始位置。

()答案:正确2. 一个物体绕着一个轴旋转360度后,它的位置和方向将发生变化。

()答案:错误四、简答题1. 描述一个物体绕着一个点旋转90度后,它的位置和方向的变化。

答案:物体绕着一个点旋转90度后,它的位置相对于旋转点将顺时针或逆时针移动到新的位置,方向也会相应地顺时针或逆时针旋转90度。

2. 解释为什么一个圆形在平面上旋转任意角度,其形状和大小都不会改变。

答案:圆形是一个对称图形,无论旋转到哪个角度,其所有点到中心点的距离都是相等的,因此形状和大小都不会因为旋转而发生变化。

2022年五年级上册数学同步练习 图形的旋转 (含解析)

2022年五年级上册数学同步练习 图形的旋转 (含解析)

西师大版(含解析)一、选择题(共5题;共10分)1.下面的图形中,()是旋转而成的。

A. B. C.2.下图可以看作是由绕一个顶点经过()变换而得到的。

A. 平移B. 旋转C. 平移和旋转 D. 对折3.下面三幅图中,以点A为旋转中心的图形是()。

A. B. C.4.下列现象中,既有平移现象,又有旋转现象的是()。

A. 正在工作的风扇叶片B. 在笔直道路上行驶的汽车C. 运行中的观光电梯D. 传输带上的物品5.图①绕点O()变为图②。

A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°二、判断题(共3题;共6分)6.把一个图形旋转后,图形的大小不变,但形状会发生改变。

()7.是由右图通过平移得到的。

()8.钟表上的时针从3时走到6时,是顺时针旋转了90°。

三、填空题(共7题;共38分)9.把一个三角形按顺时针方向旋转,旋转后的图形与原图形相比,________和________不会改变。

10.看图,回答问题①指针从“11”绕点O顺时针旋转________°到“1”。

②指针从“2”绕点O顺时针旋转30°到“________”。

③指针从“3”绕点O顺时针旋转到“9”旋转了________°。

11.①图形1绕点O顺时针旋转90°到图形________所在的位置。

②图形2绕点O顺时针旋转180°到图形________所在的位置。

③图形3绕点O顺时针旋转________到图形1所在的位置。

④图形1绕点O________旋转________到图形4所在的位置。

12.观察图形,填空。

①号图形是绕A点按________时针方向旋转了________°;②号图形是绕________点按顺时针方向旋转了________°;③号图形是绕________点按________时针方向旋转了90°;④号图形是绕________点按________时针方向旋转了________°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的旋转一.选择题1.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.992.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.23.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°4.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°5.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B 的()A.内部B.外部C.边上D.以上都有可能6.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D 的长度是()A.B.2C.3 D.27.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形二.填空题8.旋转不改变图形的和.9.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.13.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.14.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.15.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是.17.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=(提示:可连接BE)三.解答题18.我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.图形的变化示例图形与对应线段有关的结论与对应点有关的结论平移(1)AA′=BB′AA′∥BB′轴对称(2)(3)旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.(4)19.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.20.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.22.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.23.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.答案与解析一.选择题1.(2016•呼和浩特)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.【点评】此题主要考查了生活中的旋转现象,正确想象出旋转后图形是解题关键.2.(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A 逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D 处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016•新疆)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠CAC′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.4.(2016•株洲)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【分析】由三角形的内角和为180°可得出∠A=40°,由旋转的性质可得出BC=B′C,从而得出∠B=∠BB′C=50°,再依据三角形外角的性质结合角的计算即可得出结论.【解答】解:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.【点评】本题考查了旋转的性质、角的计算依据外角的性质,解题的关键是算出∠ACB′=10°.本题属于基础题,难度不大,解决该题型题目时,依据旋转的性质找出相等的角和相等的边,再通过角的计算求出角的度数是关键.5.(2016•玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.6.(2016•无锡)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2 C.3 D.2【分析】首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.【点评】本题考查旋转的性质、30度角的直角三角形性质、等边三角形的判定和性质、勾股定理等知识,解题的关键是证明△ACA1,△BCB1是等边三角形,属于中考常考题型.7.(2016•莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.二.填空题8.(2016•怀化)旋转不改变图形的形状和大小.【分析】根据旋转的性质(旋转不改变图形的大小与形状,只改变图形的位置.也就是旋转前后图形全等,对应点与旋转中心所连线段间的夹角为旋转角)即可得出答案.【解答】解:旋转不改变图形的形状和大小,只改变图形的位置,故答案为:形状,大小.【点评】本题考查了有关旋转的性质的应用,注意:(1)旋转是指一个图形绕一点沿一定方向旋转一定的角度,它有三要素:①旋转中心(绕着转的那个点),②旋转方向(顺时针还是逆时针)③旋转的角度;(2)旋转的性质是:①旋转不改变图形的大小与形状,只改变图形的位置,也就是旋转前后图形全等;②对应点与旋转中心所连线段间的夹角为旋转角.9.(2016•巴彦淖尔)如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是+.【分析】如图,连接AD,由题意得:CA=CD,∠ACD=60°,得到△ACD为等边三角形根据AC=AD,CE=ED,得出AE垂直平分DC,于是求出EO=DC=,OA=AC•sin60°=,最终得到答案AE=EO+OA=+.【解答】解:如图,连接AD,由题意得:CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CA,∠DAC=∠DCA=∠ADC=60°;∵∠ABC=90°,AB=BC=2,∴AC=AD=2,∵AC=AD,CE=ED,∴AE垂直平分DC,∴EO=DC=,OA=CA•sin60°=,∴AE=EO+OA=+,故答案为+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【分析】根据旋转的性质可知,由此可得S阴影=,根据扇形面积公式即可得出结论.【解答】解:∵,2=π.∴S阴影==πAB故答案为:π.【点评】本题考查了旋转的性质以及扇形的面积公式,解题的关键是找出S阴影=.本题属于基础题,难度不大,解决该题型题目时,根据旋转的性质找出阴影部分的面积等于扇形的面积是关键.11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E 是对应点,若∠CAE=90°,AB=1,则BD=.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.(2016•温州)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46度.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.【点评】本题考查了旋转的性质,解决本题的关键是由旋转得到△ABC≌△A′B′C.13.(2016•荆门)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=2cm.【分析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性质得出FC的长.【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2(cm).故答案为:2.【点评】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.14.(2016•达州)如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA=6,PB=8,PC=10,则四边形APBQ 的面积为 24+9 .【分析】连结PQ ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC ,再根据旋转的性质得AP=PQ=6,∠PAQ=60°,则可判断△APQ 为等边三角形,所以PQ=AP=6,接着证明△APC ≌△ABQ 得到PC=QB=10,然后利用勾股定理的逆定理证明△PBQ 为直角三角形,再根据三角形面积公式,利用S四边形APBQ =S △BPQ +S △APQ进行计算.【解答】解:连结PQ ,如图,∵△ABC 为等边三角形,∴∠BAC=60°,AB=AC ,∵线段AP 绕点A 顺时针旋转60°得到线段AQ ,∴AP=PQ=6,∠PAQ=60°,∴△APQ 为等边三角形,∴PQ=AP=6,∵∠CAP +∠BAP=60°,∠BAP +∠BAQ=60°,∴∠CAP=∠BAQ ,在△APC 和△ABQ 中,,∴△APC ≌△ABQ ,∴PC=QB=10,在△BPQ 中,∵PB 2=82=64,PQ 2=62,BQ 2=102,而64+36=100,∴PB 2+PQ 2=BQ 2,∴△PBQ 为直角三角形,∠BPQ=90°,∴S 四边形APBQ =S △BPQ +S △APQ =×6×8+×62=24+9.故答案为24+9.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了勾股定理和等边三角形的性质.15.(2016•呼伦贝尔)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,把△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB 于点E ,若AD=BE ,则△A′DE 的面积是 .【分析】在Rt △ABC 中,由勾股定理求得AB=5,由旋转的性质可知AD=A′D ,设AD=A′D=BE=x ,则DE=5﹣2x ,根据旋转90°可证△A′DE ∽△ACB ,利用相似比求x ,再求△A′DE 的面积.【解答】解:Rt △ABC 中,由勾股定理求AB==5,由旋转的性质,设AD=A′D=BE=x ,则DE=5﹣2x ,∵△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′,∴∠A′=∠A ,∠A′DE=∠C=90°,∴△A′DE ∽△ACB ,∴=,即=,解得x=,∴S=DE×A′D=×(5﹣2×)×=,△A′DE故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理及旋转的性质.关键是根据旋转的性质得出相似三角形,利用相似比求解.16.(2016•宁德)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是≤l<13..【分析】如图,连接DE,作AH⊥BC于H.首先证明GF=DE=,要求四边形MNFG 周长的取值范围,只要求出MG的最大值和最小值即可.【解答】解:如图,连接DE,作AH⊥BC于H.在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵•AB•AC=•BC•AH,∴AH=,∵AD=DB,AE=EC,∴DE∥CB,DE=BC=,∵DG∥EF,∴四边形DGFE是平行四边形,∴GF=DE=,由题意MN∥BC,GM∥FN,∴四边形MNFG是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值=2×+2×=,当G与B重合时可得周长的最大值为13,∵G不与B重合,∴≤l<13.故答案为≤l<13.【点评】本题考查旋转变换、勾股定理、平行四边形的性质、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会取特殊点解决问题,属于中考常考题型.17.(2016•绥化)如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=5(提示:可连接BE)【分析】要求BD的长,根据旋转的性质,只要求出AE的长即可,由题意可得到三角形ABE的形状,从而可以求得AE的长,本题得以解决.【解答】解:连接BE,如右图所示,∵△DCB绕点C顺时针旋转60°得到△ACE,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等边三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案为:5.【点评】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.三.解答题18.(2016•南京)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.图形的变化示例图形与对应线段有关的结论与对应点有关的结论平移(1)AB=A′B′,AB∥A′B′AA′=BB′AA′∥BB′轴对称(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)l垂直平分AA′旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.(4)OA=OA′,∠AOA′=∠BOB′【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.19.(2016•娄底)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE 是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.【解答】(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠AEC,∴四边形A1BCE是平行四边形,∴A1B=BC,∴四边形A1BCE是菱形.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.20.(2016•荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC 上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是2个单位长度;△AOC与△BOD关于直线对称,则对称轴是y轴;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是120度;(2)连结AD,交OC于点E,求∠AEO的度数.【分析】(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.【解答】解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.22.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.【分析】(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.【解答】(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.【点评】此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.23.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.【分析】(1)由于AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,则AD=AE= AB,再根据旋转的性质得到∠B′AD=∠C′AE=α,AB′=AB,AC′=AC,则AB′=AC′,根据三角形全等的判定方法可得到△B′AD≌△C′AE(SAS),则有DB′=EC′;(2)由于DB′∥AE,根据平行线的性质得到∠B′DA=∠DAE=90°,又因为AD= AB=AB′,根据含30°的直角三角形三边的关系得到∠AB′D=30°,利用互余即可得到旋转角∠B′AD的度数.【解答】解:(1)DB′=EC′.理由如下:∵AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,∴AD=AE=AB,∵△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′,∴∠B′AD=∠C′AE=α,AB′=AB,AC′=AC,∴AB′=AC′。

相关文档
最新文档