集合PPT课件

合集下载

高中数学集合ppt课件

高中数学集合ppt课件

描述法
总结词
通过描述集合中元素的共同特征来展 示集合的方法。
详细描述
描述法适用于集合元素数量较多,无 法一一列举的情况。例如,集合 B={x|x>2},可以通过描述法表示为 {x|x>2}。
韦恩图法
总结词
通过图形表示集合及其关系的方法。
详细描述
韦恩图法是一种直观的表示方法,通过圆圈、椭圆等图形来 表示不同的集合,以及它们之间的关系。这种方法有助于理 解集合的并、交、差等运算。
总结词
表示两个或多个集合中共有的元 素
详细描述
交集是指两个或多个集合中共有 的元素组成的集合。可以用符号 "∩"表示交集,例如A∩B表示集合 A和集合B的交集。
并集
总结词
表示两个或多个集合中所有的元素, 不考虑重复
详细描述
并集是指两个或多个集合中所有的元 素组成的集合,不考虑重复。可以用 符号"∪"表示并集,例如A∪B表示集 合A和集合B的并集。
互异性
• 互异性是指集合中的元素互不相同,即集合中不会有重复的元素。例如,集合 {1,2,3}中没有重复的元素,而集合{1,2,2,3,3}中有重复的元素2和3。
05
集合的应用
在数学中的应用
1 2
3
集合论
集合论是数学的基础理论之一,它为数学概念提供了一种抽 象的描述方式。通过集合,数学中的许多概念,如函数、数 列、平面几何等都可以被统一地表达和描述。
在经济学中,集合的概念也经常被使 用。例如,可以将一组商品看作一个 集合,然后对这组商品进行分析和比 较。
计算机科学
在计算机科学中,集合的概念被广泛 应用于数据结构和算法的设计。例如 ,数组、链表、栈、队列等数据结构 都是基于集合的。

集合的概念ppt课件

集合的概念ppt课件
反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.

集合课件ppt课件

集合课件ppt课件

函数与映射
集合在函数和映射的概念中起着关键 作用。函数可以看作是一种特殊的集 合关系,其中每个输入元素都与输出 元素相关联。
在计算机科学中的应用
数据结构
在计算机科学中,集合常被用作实现各种数据结构的基础 ,如哈希表、队列和栈等。集合提供了快速插入、删除和 查找等操作的方法。
算法设计与分析
在Hale Waihona Puke 法设计和分析中,集合用于表示问题实例、状态和转 换等。通过集合运算,我们可以实现各种算法逻辑,如排 序、搜索和图算法等。
统计学与社会学
在统计学和社会学中,集合用于描述人口分布、市场调查和民意调查 等。通过集合运算,我们可以分析数据并得出有意义的结论。
05 集合的扩展知识
无限集
无限集定义
无限集是包含无穷多个元素的集 合,无法完全列举其所有元素。
无穷大与无穷小
无限集中的元素可以按其数量大小 分为无穷大和无穷小,分别表示集 合中元素的数量趋于无穷和趋于零 。
A⊆B。
02
超集定义
如果集合A中的所有元素都是集合B中的元素,并且B中至少有一个元素
不属于A,则称B是A的超集,记作B⊇A。
03
子集与超集的性质
子集和超集之间存在互补关系,即对于任意集合A,存在一个与之对应
的超集A',使得A和A'的并集等于全集。
THANKS FOR WATCHING
感谢您的观看
数据库与信息检索
在数据库和信息检索中,集合用于表示数据记录、查询条 件和结果等。通过集合运算,可以实现高效的数据检索和 管理。
在日常生活中的应用
分类与分组
在日常生活中,集合的概念用于分类和分组事物。例如,将一组物 品分成几组、将人群分为不同年龄段或职业类别等。

集合的概念ppt课件

集合的概念ppt课件

(1) 1
N
(3) -12
Z (5) √2
R
(2) 0
N* (4) √3
Q (6) π
R
解析: (1) ∈ (3) ∈
(5) ∈
(2) ∉ (4) ∉ (6) ∈
03
集合的表示
一、合作探究
小组讨论:
1、小于5的自然数集合A,有哪些元素? 2、小于5的实数集合B,包括哪些元素?
1、集合A,包括元素:0,1,2,3,4。 集合A中的元素可以一 一列举。
③ 集合中元素的特征:确定性、无序性、互异性 ④ 集合的分类:有限集、无限集、空集 ⑤ 数集:N , N* , Z , Q , R ⑥ 集合的表示方法:列举法、描述法
06
课后作业
课后作业1
1、用符号“∈”或“∉”填空:
(1) -3
N, 0.5
N, 0.3
N
(2) 1.5
Z, -5
Z,
3
Z
(3)-0.2
第一章 集合与常用逻辑用语
1.1 集合的概念
目录
01 集合的概念
0 元素与集合 2
0 集合的表示 3
04 集合的分类
01
集合的概念
一、导入生活情景
情景1-上架商品:
如右图,“美汇”生活超市新进了一批果蔬:苹果, 葡萄,黄桃,柠檬,石榴,西瓜,土豆。茄子,西蓝 花等。
作为陈列员,你该如何分类摆放这些商品呢?
四、集合中元素的性质
集合中元素的性质
确定性
1 集合中的元素 必须是确定的
无序性
2 集合中的元素
无顺序之分 {a, b, c} = {a, c, d}
互异性
3 集合中的元素 是互不相同的

集合单元复习ppt课件.ppt

集合单元复习ppt课件.ppt

4.注意空集特殊性和两重性。 空集是任意集合的子集,即 A ,是任一非空集合的
真子集,即 A(A≠ ).有三种情况: A,AB,A B.
另外还要分清楚 与{}, 与{0}的关系。
例4:下列五个命题:①空集没有子集;②空集是任何一个 集合真子集;③ {0} ;④任何一个集合必有两个或两个 以上的子集;⑤若 AB,则A、B之中至少有一个为空 集.其中真命题的个数( A ) A.0个 B.1个 C.2个 D.3个
X
②“正整数集”的补集是“负整数集X”;
③空集没有子集;
X
④任一集合至少有两个子集; X
⑤若 ABB ,则B A; √
⑥若 AB,则A、B之中至少有一个为空集;X
1.注意集合中元素的实质。 “代表元素”的实质是认识和区别集合的标准。根据 集合元素的确定性,集合中元素都有确定的含义。所 以弄清楚集合中的代表含义什么,才能正确表示一个 集合。代表元不同,即使同一个表达式,所表示的集
则实数a满足_______________
(2)集合A={x|-2<x<1},B={x|x≤a},若 AB ,则
实数a满足_______
(3)已知全集U=R,A={x|1≤x≤2},且B∪CUA=R,B∩CUA ={x|0<x<1或2<x<3},则集合B为________
(4)U={(x,y)|x,y∈R},A={(x,y)|
合也不同。
例如A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2}
例1:P={y=x2+1},Q={y|y=x2+1},S={x|y=x2+1}, M={(x,y)|y=x2+1},N={x|x≥1}.则( D)

高一数学集合ppt课件

高一数学集合ppt课件

3. 如果A⊆B且B和C是两个互不相交的集 合(即B与C没有交集),那么A与C也是 互不相交的。
2. 如果A⊆B且B⊆C,那么A⊆C。
子集的性质
1. 任何一个集合都是其本身的子集,即 A⊆A。
真子集的定义与性质
真子集的定义:如果 一个集合A是集合B的 一个子集,并且A和B 中至少有一个元素不 相同,那么我们称A 是B的真子集,记为 A⊈B。
集合通常用大写字母 表示,如A、B、C等 。
集合的元素
元素是集合中的个体,可以用小 写字母表示,如a、b、c等。
一个元素可以属于一个或多个集 合,不同元素可以属于同一个集
合。
空集是指不含有任何元素的集合 。
集合的表示方法
列举法
图示法
把集合中的元素一一列举出来,用大 括号{}括起来。
用一条封闭的曲线表示集合,内部可 以填充颜色或点上小点表示元素。
如果一个集合不是另一个集合 的真子集,那么称它为该集合 的真超集。
04
集合的交集、并集、补集的图形 表示
交集的图形表示
总结词
交集是指两个或两个以上集合的公共 部分,可以用符号 "∩" 表示。
详细描述
在图形表示中,交集通常用两个或多 个集合的公共部分来表示。例如,在 两个圆的重叠部分中,重叠部分的元 素就是两个圆的交集。
集合的运算性质
01
02
03
交换律
若A、B是两个集合,则A 并B等于B并A,A交B等于 B交A。
结合律
三个集合的交集和并集, 等于这三个集合分别交、 并后再合并得到的交集和 并集。
分配律
两个集合的并集与另一个 集合的交集相等,等于这 两个集合分别与另一个集 合的交集的并集。

集合课件PPt

集合课件PPt

集合的传递性、吸收性、反对称性
传递性
如果A包含B,B包含C,则A包含C。
吸收性
如果A包含B,则A并B等于A。
反对称性
如果A包含B,B包含A,则A等于B。
集合运算的应用
用于解决数学问题中 的分类和合并问题。
用于逻辑推理和证明 中的概念和定理的表 述和证明。
用于处理集合之间的 关系和运算,如交、 并、补等。
集合的表示方法
列举法
将集合的元素一一列举出来,用 大括号{}括起来。例如:{1,2,3}表 示一个包含三个元素的集合。
描述法
通过描述集合中元素的共同特征 来表示集合。例如:{x|x是正方形 }表示所有正方形的集合。
集合的分类
01
02
03
有限集
包含有限个元素的集合。 例如:{1,2,3}是一个有限 集。
无限集
包含无限个元素的集合。 例如:自然数的集合N是 一个无限集。
空集
不包含任何元素的集合。 例如:{}是一个空集。
02 集合运算
交集、并集、补集
交集
由两个集合中共有的元素 组成的集合称为这两个集 合的交集。
并集
由两个或两个以上集合的 所有元素组成的集合称为 这些集合的并集。
补集
在集合A中,不属于A的元 素组成的集合称为A的补 集。
应用
关系在数据库、人工智能和自然语言处理等领域都有广泛的应用。
等价关系与划分
定义
等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。自反性指任何元素都 与自己有这种关系,对称性指如果a与b有这种关系,则b与a也有这种关系,传递性指如 果a与b有这种关系,b与c也有这种关系,则a与c也有这种关系。
证明数学定理

高一数学集合ppt课件最新版

高一数学集合ppt课件最新版

05
02
解析
对于A,解方程(x-1)(x+2)=0得到x=1或x=2,所以A={1,-2};对于B,解方程x^2-2x3=0得到x=3或x=-1,所以B={3,-1}。
04
解析
1.5不是自然数,所以1.5∉N;√2是 无理数,所以√2∉Q;π是实数,所以 π∈R。
06
解析
解方程x^2-4=0得到x=2或x=-2,所以 A={2,-2},又B={-2,2},所以A=B。
03
不等式与区间表示法
一元一次不等式解法
03
移项法
将不等式中的常数项移至右侧,使左侧只 含有一个未知数。
系数化为1
将未知数的系数化为1,得到标准形式的 不等式。
求解集
根据不等式的性质,求解出未知数的取值 范围。
一元二次不等式解法
配方法
通过配方将一元二次不等 式转化为完全平方形式, 从而求解。
公式法
解析
(1)因为f(-x)=(-x)^2=x^2=f(x), 所以f(x)=x^2是偶函数;(2)因为 sin(-x)=-sinx=-f(x),所以f(x)=sinx 是奇函数;(3)因为|-x|=|x|=f(x), 所以f(x)=|x|是偶函数。
05
指数函数与对数函数
指数函数性质及应用
指数函数定义及图像特征 指数函数的值域和定义域
练习题与解析
解析
1. 由等差数列求和公式得 $S = frac{n}{2} times (a_1 + a_n)$,其中 $a_1 = 2, a_n = 29, n = 10$(因为 $29 = 2 + (n - 1) times 3$),所以 $S = frac{10}{2} times (2 + 29) = 155$。

集合的含义及表示ppt课件.ppt

集合的含义及表示ppt课件.ppt

思考3:我们用符号“ A B”表示集合A与B的 并集,并读作“A并B”,那么如何用描述法 表示集合A B? A B { x |x A ,或 x B }
思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合A B的关系如何? A B与B A的关系如何?
AA B BA B ABBA
理论迁移
例1 写出满足 { 1 ,2 } A { 1 ,2 ,3 ,4 }的所有集 合A.
{1,2},{1,2,3},{1,2,4},{1,2,3,4}
例2 已知集合 A{y|y(x1 )2,x0 }, B {y|yx2x 1 ,x R },试确定集合A与 B的关系.
A B
例3 设集合 A {2, a2} ,B{1,2,a},若 A B , 求实数 a 的值. -1或0
1.1.1 集合的含义与表示
第二课时 集合的表示
问题提出
1.集合中的元素有哪些特征?
确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的, 如“在平面直角坐标系中以原点为圆心,2 为半 径的圆周上的点”组成的集合,那么,我们可以 用什么方式表示集合呢?
称集合A是集合B的真子集.
思考4:如果集合A是集合B的真子集,我们怎 样用符号表示?
AB或 B A
思考5:若集合A是集合B的子集,则集合A一 定是集合B的真子集吗?若集合A是集合B的 真子集,则集合A一定是集合B的子集吗?
知识探究(二)
考察下列集合: (1){x|x是边长相等的直角三角形}; (2){xR|x210} ; (3){xR||x|20}.
思考1:上述三个集合有何共同特点? 集合中没有元素

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

集合的概念与表示ppt课件

集合的概念与表示ppt课件
由此能总结出集合元素有什么特性?
互异性 一个集合中的任何两个元素都互不相同。
也就是说,集合中的元素互不相同
探究3: 将某学校高一(1)班全体学生组成的集合记为集合A, 改变这个班同学的座次,集合A是否发生改变?
集合A不发生改变,即不管班里的学生怎么改变座次,学生改 变座次后的集合仍然还是学生改变座次之前的集合.
描述法 通过描述元素满足的条件表示集合的方法叫作描述法。
一般地可将集合表示为{x及x的范围|x满足的条件}
例如,集合 D={x∈R|x<10}也可表示为D={x|x<10}; 集合E={x∈Z|x=2k+1,k∈Z}也可表示为E={x|x=2k+1,k∈Z}.
思考:你能用列举法表示不等式 x-7<3的解集吗?
如上述思考中不等式x-7<3的解是x<10,因为满足x<10的实数 有无数个,所以x-7<3的解集无法用列举法表示,
但是,我们可以利用解集中元素的共同特征,即:x是实数, 且x<10,因此把解集表示为{x|x<10}.
整数集Z可以分为奇数集和偶数集。 对于每一个x∈Z,如果它能表示为x=2k+1(k∈Z)的形式,那么它 是一个奇数;反之,如果x是一个奇数,那么它能表示为x=2k+1(k∈Z) 的形式。 所以,x=2k+1(k∈Z)是所有奇数的一个共同特征,于是奇数集可 以表示为:{x|x=2k+1,k∈Z}.
5、集合的表示方法
思考:从上面的例子看到,我们可以用自然语言描述一个集合。 除此之外,还可以用什么方式表示集合呢? 列举法 把集合的所有元素一一列举出来,并用花括号“{ }”括起来 表示集合的方法叫做列举法。
“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋, 印度洋,北冰洋}; “方程x2-3x+2=0的所有实数根”组成的集合可以表示为{1,2}.

集合的概念与表示方法ppt课件

集合的概念与表示方法ppt课件

③互异性,即同一集合中的元素是互不相同的.
能够确定的不同的对象所构成的整体叫做集合(简称集)。
练习1
1、下列说法中,正确的有______.(填序号)
2
①单词 book 的所有字母组成的集合的元素共有 4 个;
②集合 M 中有 3 个元素 a,b,c,其中 a,b,c 是△ABC 的三
边长,则△ABC不可能是等腰三角形;
5

A
集合与元素的关系
集合与元素的关系:
①属于,如果 a 是集合 A 的元素,就说 a 属于集合 A,记作a∈A

②不属于,如果 a 不是集合 A 中的元素,就说 a 不属于集合 A,记
作 a∉A.
0

Ф
集合的三大特性
集合三要素:
①确定性,即同一集合中的元素必须是确定的;
②无序性,即同一集合中的元素之间不考虑顺序;
4
6
习题:
能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}
关系的Venn 图是(B)。
总结
集合
THANK YOU
习题:
1、被 3 除余 2 的正整数集合;
解:(1)
{x|x=3n+2,n∈N}
2、平面直角坐标系中坐标轴上的点组成的集合.
(2)
{(x,y)|xy=0}
三、韦恩图:用平面上封闭曲线的内部代表集合,这种图称
为韦恩图,一般画成椭圆或矩形.
问题3 使用韦恩图表示中0-10之间的偶数集合。
0
10
2
8ቤተ መጻሕፍቲ ባይዱ
集合
集合的概念与表示方法
你眼中的
集合
你眼中的
集合

数学集合课件ppt课件

数学集合课件ppt课件
无限集
具有无限数量元素的集合。例如,自 然数集合N包含无限多的元素,因此N 是一个无限集。
幂集的性质
幂集是原集合所有子集的集合。
对于任何集合A,其幂集记为 P(A),包含了A的所有子集。
幂集的性质表明,一个集合的元 素个数等于其幂集中元素的个数 。因此,一个集合的幂集总是比
原集合大或相等。
04
集合的应用
数学集合课件ppt
目录 Contents
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用基本概念
集合的定义
总结词
集合是由确定的、不同的元素所组成的总体。
详细描述
集合是数学中一个基本概念,它是由一组确定的、不同的元素所组成。这些元 素可以是数字、字母、图形等,它们被用来描述具有某种特性的事物。
集合中的元素具有互异性,即集合中不会有重复的元素。此外,集合中的元素是 无序的,即集合中元素的排列顺序并不影响集合本身。
02
集合的运算
集合的交集
01
02
03
总结词
表示两个集合中共有的元 素组成的集合
详细描述
设集合A和集合B,它们的 交集记作A∩B,表示同时 属于A和B的元素组成的集 合。
举例
若A={1,2,3,4}, B={3,4,5,6},则 A∩B={3,4}。
在计算机科学中的应用
数据结构与算法
集合在计算机科学中被广泛应用于数据结构和算法的设计 。例如,集合可以用来表示动态数据结构中的元素,如哈 希表和并查集等。
数据库系统
在数据库系统中,集合用来表示数据表中的行或记录,通 过集合操作来实现数据的查询、插入、删除和更新等操作 。
离散概率论与离散随机过程
离散概率论和离散随机过程是计算机科学中研究随机现象 的重要工具,集合在这个领域中也被广泛应用。

集合的概念ppt课件

集合的概念ppt课件
A.中央电视台著名节目主持人
B.我市跑得快的汽车
C.上海市所有的中学生
D.香港的高楼
(
)
C
)
3.若以方程x2-3x+2=0和x2-5x+6=0的所有解为元素组成集合A,则A中元素的
个数为
(
A.1
B.2
C.3
D.4
C )
解析: 方程x2 - 3x +2=0的解为1,2,方程x2 -5x+6=0的解为2,3由于两方程有相
借助判别式的符号求解.
素养形成
典例 已知集合A是由方程ax2+2x+1=0(a∈R)的实数解作为元素构成的集合.
(1)1是A中的一个元素,求集合A中的其他元素;
(2)若A中有且仅有一个元素,求a的值组成的集合B中元素的个数;
(3)若A中至多有一个元素,试求a的值.
【规范答题】
解 (1)若1是A中的一个元素,则只需a+2+1=0,
于不确定的概念,因此“2020年高考数学难题”不能构成集合;由于任意给一
个数都能判断是否为有理数,故能构成集合;小于π的正整数分别为1,2,3,能
够组成集合.故选B.
探究二
元素与集合的关系
例2. (1)已知不等式2x-5<0的解集为M,则以下表示方法正确的是(
A.0∈M,3∈M
B.0∉M,3∈M

可能只含有一个元素.
素养形成
利用分类讨论思想求解一类关于x的方程ax2+bx+c=0的解集
一般地,形如ax2+bx+c=0是关于x的方程,当a≠0时,该方程是关于x的一元
二次方程,当a=0,b≠0时是关于x的一元一次方程,求解此类方程的解集问题,

集合的概念ppt课件

集合的概念ppt课件

(2) 设x B, 则x是整数,则x Z,且10 x 20. 因此, 用描述法表示为: B { x Z | 10 x 20}
因此,用列举法表示为 B {11, 12, 13, 14, 15, 16, 17, 18, 19}.
学习新知
我们约定, 如果从上下文的关系看, x R, x Z 是明确的, 那么, x R, x Z 可以省略, 只写其元素x.
学习新知
在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如:
自然数的集合
有理数的集合
不等式的解的集合
到一个定点的距离 等于定长的点的集合
到一条线段的两个端点 距离相等的点的集合
......
学习新知
观察下列实例:
1 1~10以内的所有奇数 2 方程x2-9=0的实数根 3 小于8的素数
集合
设A是一个集合,我们把集合A中,所有具有共同特征P(x)的元素x所组成的
集合表示为:
x A P(x)
我们称这种方法为描述法。
x为该集合的代表元素
P(x)表示该集合中的元素x所具有的性质
学习新知
例如,实数集R 中,有限小数和无限循环小数都具有 q ( p, q Z, p 0) 的 p
形式,这些数组成有理数集,我们将它表示为:
{0}.
(4) b
{a,b,c}.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系。
总结新知 判断元素与集合关系的两种方法
直接法:
如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否 出现即可,此时应先明确集合是由哪些元素构成的。
总结新知 思考:除字母表示法和自然语言之外,还能用什么方法表示集合?

集合及其表示方法ppt课件

集合及其表示方法ppt课件
D.2, 4 用集合可表示为{x | 2 x 4}
解析:{x | x 1} 用区间表示应该为 (1, ) ;{x | 3 x 2} 用区间表示应该为 (3,2] ; (,3]用集合表示应该为{x | x 3} ;故选 D.
D 5.将集合{1,5,9,13,17} 用描述法表示,其中正确的是 ( )
上述区间中,a,b分别称为区间的左、右端点,b-a称为区间的 长度.区间可以用数轴形象地表示.例如,区间[-2,1)可用下图表 示,注意图中-2处的点是实心点,而1处的点是空心点.
在用数轴表示区间时,实心点代表取得到,空心点代表取不到.
如果用“ ”表示“正无穷大”,用“ ”表示“负无穷大”,则: 实数集 R 可表示为区间 (, ) ; 集合{x | x a}可表示为区间[a, ) ;集合{x | x a} 可表示为区间(a, ) ; 集合{x | x a}可表示为区间 (,a] ;集合{x | x a} 可表示为区间(,a) .
类似地,上述区间也可用数轴来形象地表示.例如,区间[7,+∞)可以用下图表示.
例 2 用区间表示不等式 2x 1 x 的所有解组成的集合 A. 2
解:由
2x
1 2
x
可知
x
1 2
,所以
A
1 2

.
A 1.下列命题中,正确的有( )
①很小的实数可以构成集合;
②集合 y | y x2 1 与集合{(x, y) | y x2 1} 是同一个集合;
(1)所有非负整数组成的集合,称为自然数集,记作 N.
值得注意的是, 0N ,即 0 是自然数集 N 中的一个元素.
如果
a
N

b
N
,则一定有

高一数学集合ppt课件

高一数学集合ppt课件

03
集合的性质
集合的无序性
总结词
集合中的元素无顺序要求,即集合中元素的排列顺序不影响集合本身。
详细描述
在集合中,元素的顺序并不重要,无论元素以何种顺序排列,它们都属于同一个集合。例如,集合 {1,2,3}和集合{3,2,1}表示的是同一个集合。
集合的确定性
总结词
集合中的元素具有明确性,每个元素都属于或者不属于某个集合。
集合的并集
总结词
表示两个集合中所有的元素(不考虑重复)
详细描述
并集是指两个集合中所有的元素组成的集合,记作A∪集
总结词
表示属于某个集合但不属于另一个集 合的元素组成的集合
详细描述
补集是指属于某个集合但不属于另一 个集合的元素组成的集合,记作A-B 。补集的概念对于理解集合之间的关 系非常重要。
是小于5的偶数}。
基础习题2
判断以下两个命题的真假:P1:5 不属于集合A,P2:集合A和集合 B的交集为空集。
基础习题3
已知集合M = {x | x = 3k, k ∈ Z}, N = {x | x = 2k, k ∈ Z},求M和N 的交集。
进阶习题
进阶习题1
已知集合U = {x | x 是小于10的正整数} ,A ⊆ U,B ⊆ U,且A和B的并集等于U ,求A和B的交集。
集合的表示方法
总结词
集合可以用大括号{}、圆括号()、尖 括号<>或方括号[]来表示。
详细描述
在数学中,我们通常用大括号{}、圆括 号()、尖括号<>或方括号[]来表示集 合。例如,集合A可以表示为{a, b, c} 。
集合的分类
总结词
根据元素的特点和性质,集合可以分为有限集、无限集和空 集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习目标
掌握集合的表示方法--列举法和描述法, 并能进行自然语言与集合语言间的相互转 换。
会用集合语言表示有关的数学对象。 了解有限集与无限集的概念。
(1)列举法
把集合的元素一一列举出来,并用花括号 “{}”括起来表示集合的方法称为列举 法. 1.优点:可以明确集合中具体的元素及元素的个数.
1.1.1 集合的含义与表示(2)
复习提问:
(1)集合元素的特性有哪些?
(2)元素与集合的关系及表示怎样?
复习题

1.下列对象能组成集合的是( ) A.大于6而小于9的整数。 B.长江里的大鱼。 C.某地所有高大的建筑群。 D.3的近似数。 2. a , a , b , b , 2a , 2b 构成的集合M,则M中元素的个数 最多是( ) A.6 B.5 C.4 D.3 3.设M={平行四边形},p表示某个矩形,q表示某个梯形, 则 p_M,q_M.
(2)数轴 在数学中,表示实数取值范围的集合,我 们往往借助于数轴直观地表示。
集合相等
设C={x|x是两条边相等的三角形}, D={x|x是等腰三角形}。 如果集合A是集合B的子集,且集合B是集 合A的子集,此时,集合A于集合B中的元 素是一样的,因此,集合A与集合B相等, 记作 A=B。
描述法具有以下两种基本形式:
(1)一般形式: {x∈A|x适合的条件},其中x为代 表元素,A为x的变化范围.
如果从上下文看,x∈A是明确的,那么x∈A可以省 略,只写其元素x.
例如:A={x∈R|1≤x<2}也可以表示为

A={x|1≤x<2}
又如:E={x∈Z|x=2k+1,k∈Z}也可以表示 为 E={x|x=2k+1,k∈Z} (2)简化形式: 简化形式只是把元素的性质写在大括 号内.
真子集
如果集合,但存在元素x∈B,且x A我们 称集合A是集合B的真子集,记作AB(或BA)。 例如A={1,2},B={1,2,3},则有AB。 子集与真子集的区别:“AB”允许“A=B” 或AB,而“AB”就不允许“A=B”的,所有若
使用描述法必须注意:
①写清该集合中元素的代表符号。 ②准确说明该集合中元素的特征。 ③应对代表元素进行说明。 ④多层描述时,应当准确使用“且”,“或”。 ⑤所有描述的内容都要写在“{}”内。 ⑥集合符号“{}”已包含有“所有”的意 思,因而大括号内的文字描述,不应该再用 “全体”,“全部”,“所有”或“集”等 词语。
课堂练习(一)
请大家认真看课本 P4 中例1的内容,并仿照例题, 完成以下的练习:
1.用列举法完成 课本P6,练习的第2题的(1) (2) (3)
2.认真思考课本P4的 “思考?”
(2)描述法 把集合中的元素的公共属性描述出来, 写在大括号内表示集合的方法.
具体方法是:
在花括号内先写上表示这个集合元素 的一般符号及取值(或变化)范围,再画 一条竖线,在竖线后写出这个集合中元 素所具有的共同特征.
一般地,对于两个集合A,B,如果集合A 中任意一个元素都是集合B中的元素,我 们就说这两个集合有包含关系,称集合A 为集合B的子集,记作 A B ( 或 B A ) 读作“A含于B”(或“B包含A”)
图示法表示集合
(1)Venn图(文氏图或韦恩图) 在数学中,我们经常用平面上的封闭曲线 的内容代表集合,这种图称为Venn图。
(2)无限集:集合中的元素个数是无限个的。
如:集合A={ x∈R| 1≤x<2},便是一个无限集。 又如:集合A={1,2,3,4,……}
布置作业
课本P13的第1,2,3,4题。
请同学们做在,3} , B={1,2,3,4,5}; (2)设A为新华中学高一(2)班全体女生组成的 集合,B为这个班全体学生组成的集合;
①元素间用“,”分隔. ②集合中元素必须满足三个特性. ③元素不能遗漏. ④适用范围:ⅰ.含有有限个元素且个数较少的集合. ⅱ.元素个数较多或无限个且构成集合的元素有明显规 律.
2.使用列举法必须注意:

例如:不超过100的正整数构成的集合可表示为 {1,2,3, …,100}
课堂练习(二)
请大家认真看课本 P5 中例2的内容,并仿照例 题,完成以下的练习: 1.用描述法表示课本P4例1中的(1)(2)小 题 2. 完成 课本P6,练习的第1题和 第2题的(1) (4)(用描述法)
有限集与无限集
(1)有限集:集合中的元素个数是有限个的。
如:集合A={ -1, 2, 4 },是含有3个元素的有限集。
相关文档
最新文档