高中数学《直线和圆的方程》常用公式
直线方程和圆的方程概念及知识点拓展(高中数学)
直线与圆的概念公式及拓展一.直线的倾斜角与斜率1.直线的倾斜角α的范围[)π,0。
当直线l 与x 轴重合或平行时,规定倾斜角为0。
注意几种角的范围:异面直线所成的角⎥⎦⎤ ⎝⎛2,0π; 直线和平面所成角⎥⎦⎤⎢⎣⎡20π,; 二面角[]π,0; 两向量的夹角[]π,0;2.斜率定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫做这条直线的斜率k , 即k=tan α(α≠90°);倾斜角为90°的直线没有斜率。
直线方程:Ax+By+C=0的斜率BAk -=。
方向向量:若()n m a ,=为直线的方向向量,则直线的斜率mn k =。
已知直线上两点:过两点()),(,,2211y x y x 的直线的斜率1212x x y y k --=。
二.直线方程的五种形式:1.点斜式:已知直线过点(x 0,y 0),斜率为k ,则直线方程)(00x x k y y -=-,它不包括垂直于x 轴的直线。
2.斜截式:已知直线斜率为k ,在y 轴上的截距b ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线。
3.两点式:已知直线过了P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2,y 1≠y 2)两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于x 轴的直线。
4.截距式:已知直线在x ,y 轴上的截距分别为a ,b ( a ≠0,b ≠0)则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。
5.直线的一般式方程:任何直线都可以写成Ax +By +C =0(其中A ,B 不同时为0)的形式。
拓展:1.直线在坐标轴上的截距可正,可负,也可为0。
直线的斜率为1或直线过原点,则直线两截距互为相反数; 直线的斜率为-1或直线过原点,则直线两截距相等。
2.设直线方程的一些常用技巧:(1)已知直线y 轴截距b ,常设其方程为y =kx +b 。
(完整版)高中数学解析几何公式大全
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
直线与圆的常用公式
直线与圆的常用公式直线和圆是几何学中的基本图形,它们的常用公式在解决几何问题和计算几何中非常重要。
本文将介绍直线和圆的各种常用公式,并给出详细的解释和示例。
一、直线的公式1.斜率公式直线的斜率表示了直线在平面内的倾斜程度。
设直线上两点的坐标分别为(x1,y1)和(x2,y2),则直线的斜率k可以通过以下公式计算:k=(y2-y1)/(x2-x1)2.点斜式点斜式是直线的一种表示方法,通过给出直线上一点的坐标和直线的斜率来表示直线。
设直线上一点的坐标为(x1,y1),直线的斜率为k,则点斜式的方程为:y-y1=k(x-x1)3.截距式截距式是直线的另一种表示方法,通过给出直线与x轴和y轴的截距来表示直线。
设直线与x轴和y轴的截距分别为a和b,截距式的方程为:y = kx + b4.两点式两点式通过给出直线上两点的坐标来表示直线。
设直线上两点的坐标分别为(x1,y1)和(x2,y2),则两点式的方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)5.法线式法线式是直线斜率的负倒数,表示了直线与其法线的关系。
设直线的斜率为k,直线上一点的坐标为(x1,y1),则法线式的方程为:y-y1=(-1/k)(x-x1)二、圆的公式1.圆的标准方程设圆的中心坐标为(h,k),半径为r,则圆的标准方程为:(x-h)^2+(y-k)^2=r^22.圆的一般方程设圆的一般方程为:x^2+y^2+Dx+Ey+F=0其中,D、E、F为常数,通过圆的一般方程可以确定圆的中心和半径。
3.圆的直径方程设圆的直径的两个端点的坐标分别为(x1,y1)和(x2,y2),圆的直径方程为:(x-x1)(x-x2)+(y-y1)(y-y2)=04.圆的切线方程圆的切线方程通过给出直线与圆的切点的坐标和切线斜率来表示切线。
设切点的坐标为(x1,y1),切线的斜率为k,则切线方程的方程为:y-y1=k(x-x1)5.圆的切线长度公式圆的切线长度是从切点到切线与圆心的连线的长度,设切点到圆心的距离为d,切线的长度为l,则切线长度公式为:l=2√(r^2-d^2)6.圆与直线的位置关系圆与直线的位置关系分为相离、相切和相交三种情况。
高中数学必修二-直线与圆的位置关系
直线与圆的位置关系知识集结知识元不含有参数的直线与圆位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲不含有参数的直线与圆位置关系例1.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d 2,则d1+d2的最小值是.例2.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ长的最小值为.例3.经过圆x2+y2﹣2x+2y=0的圆心且与直线2x﹣y=0平行的直线方程是()A.2x﹣y﹣3=0B.2x﹣y﹣1=0C.2x﹣y+3=0D.x+2y+1=0含有参数类型直线与圆的位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲含有参数类型直线与圆的位置关系例1.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上情况都有可能例2.直线ax﹣y+a=0(a≥0)与圆x2+y2=9的位置关系是()A.相交B.相切C.相离D.相切或相离例3.圆x2+y2+4x﹣2y﹣1=0上存在两点关于直线ax﹣2by+2=0(a>0,b>0)对称,则的最小值为()A.8B.9C.16D.18简单切线类型知识讲解1.圆的切线方程圆的切线方程一般是指与圆相切的直线方程,特点是与圆只有一个交点,且过圆心与切点的直线垂直切线.圆的切线方程的类型:(1)过圆上一点的切线方程:对于这种情况我们可以通过圆心与切点的连线垂直切线求出切线的斜率,继而求出直线方程(2)过圆外一点的切线方程.这种情况可以先设直线的方程,然后联立方程求出他们只有一个解(交点)时斜率的值,进而求出直线方程.例题精讲简单切线类型例1.设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=2例2.已知圆的方程是x2+y2=1,则经过圆上一点M(1,0)的切线方程是()A.x=1B.y=1C.x+y=1D.x﹣y=1例3.'已知圆C的方程为x2+y2﹣2x+4y﹣3=0,直线l:x﹣y+t=0.若直线l与圆C相切,求实数t的值.'简单弦长问题知识讲解弦长问题一、求直线与圆相交时的弦长有三种方法(1)交点法:将直线方程与圆的方程联立,求出交点A,B的坐标,根据两点间的距离公式|AB|=求解.(2)弦长公式:如图所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|==|x1-x2|=|y1-y2|(直线l的斜率k存在).(3)几何法:如图,直线与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有()2+d2=r2,即|AB|=2.通常采用几何法较为简便。
高中数学 第二章 直线和圆的方程 2.3.2 两点间的距离公式 2.3.3 点到直线的距离公式 2.
第二章直线和圆的方程2.3.2两点间的距离公式2.3.3点到直线的距离公式2.3.4两条平行直线间的距离课后篇巩固提升基础达标练1.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为()A.1B.-5C.1或-5D.-1或5|AB|=√(a+2)2+(3+1)2=5,得(a+2)2=9,解得a=1或-5.2.已知两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A.4B.2√1313C.5√1326D.7√1020直线3x+y-3=0与6x+my+1=0平行,∴63=a1≠1-3,解得m=2.∴两条直线方程分别为3x+y-3=0与6x+2y+1=0,即6x+2y-6=0与6x+2y+1=0.∴两条直线之间的距离为d=√22=7√1020.3.(多选题)已知点A(1+t,1+3t)到直线l:y=2x-1的距离为√55,则点A的坐标可以是() A.(0,-2) B.(2,4)C.(0,2)D.(1,1)l:y=2x-1可化为2x-y-1=0,依题意得√2=√55,整理得|t|=1,所以t=1或t=-1.当t=1时,点A的坐标为(2,4);当t=-1时,点A的坐标为(0,-2).综上,点A的坐标为(0,-2)或(2,4),故选AB.4.到点A(1,3),B(-5,1)的距离相等的动点P满足的方程是()A.3x-y-8=0B.3x+y+4=0C.3x-y+6=0D.3x+y+2=0P(x,y),则√(a-1)2+(a-3)2=√(a+5)2+(a-1)2,即3x+y+4=0.5.直线2x+3y-6=0关于点(1,-1)对称的直线方程是()A.3x-2y-6=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=0方法1)设所求直线的方程为2x+3y+C=0,由题意可知√22=√22,解得C=-6(舍去)或C=8.故所求直线的方程为2x+3y+8=0.(方法2)令(x0,y0)为所求直线上任意一点,则点(x0,y0)关于(1,-1)的对称点为(2-x0,-2-y0),此点在直线2x+3y-6=0上,代入可得所求直线方程为2x+3y+8=0.6.光线从点A(-3,5)射到x轴上,经x轴反射后经过点B(2,10),则光线从A到B的距离为()A.5√2B.2√5C.5√10D.10√5B(2,10)关于x轴的对称点为B'(2,-10),由对称性可得光线从A到B的距离为|AB'|=√(-3-2)2+[5-(-10)]2=5√10.选C.7.过点(1,3)且与原点的距离为1的直线共有条.x=1过点(1,3)且与原点的距离为1;再设直线方程为y-3=k(x-1),由√=1得,k=43,所以直线方程为4x-3y+2=0,因此满足条件的直线有两条.8.两平行直线l1:ax+4y=0,l2:3x+4y+m=0,若两直线之间的距离为1,则m=.,得到√25=1,解得m=±5.59.已知直线l1:x-y=0,l2:2x+y-3=0,l3:ax-2y+4=0.(1)若点P在直线l1上,且到直线l2的距离为3√5,求点P的坐标;(2)若l2∥l3,求l2与l3的距离.依题意可设P(t,t),由√5=3√5,得|t-1|=5,解得t=-4或t=6,所以点P的坐标为(-4,-4)或(6,6).(2)由l2∥l3得a=-4,∴l2:2x+y-3=0,l3:-4x-2y+4=0,即2x+y-2=0.∴l2与l3的距离d=√5=√55.10.已知△ABC 三边所在直线方程:l AB :3x-2y+6=0,l AC :2x+3y-22=0,l BC :3x+4y-m=0(m ∈R ,m ≠30). (1)判断△ABC 的形状;(2)当BC 边上的高为1时,求m 的值.因为直线AB 的斜率为k AB =32,直线AC 的斜率为k AC =-23,所以k AB ·k AC =-1,所以直线AB 与AC 互相垂直,因此△ABC 为直角三角形. (2)解方程组{3a -2a +6=0,2a +3a -22=0,得{a =2,a =6,即A (2,6).由点到直线的距离公式得d=√22=|30-a |5.当d=1时,|30-a |5=1,|30-m|=5,解得m=25或m=35.所以m 的值为25或35.能力提升练1.(多选题)若点P (x ,y )在直线4x+3y=0上,且x ,y 满足-14≤x-y ≤7,则点P 到坐标原点距离的取值可以是() A .6B .8.5C .10D .12点P (x ,y )在直线4x+3y=0上,且x ,y 满足-14≤x-y ≤7,∴-6≤x ≤3.∵线段4x+3y=0(-6≤x ≤3)过原点, ∴点P 到坐标原点的最近距离为0.又点(-6,8)在线段上,∴点P 到坐标原点的最远距离为√(-6)2+82=10. ∴点P 到坐标原点距离的取值X 围是[0,10].对照选择项知ABC 均可.2.已知直线l 在x 轴上的截距为1,又有两点A (-2,-1),B (4,5)到l 的距离相等,则l 的方程为.l ⊥x 轴时符合要求,此时l 的方程为x=1;当l 的斜率存在时,设l 的斜率为k ,则l 的方程为y=k (x-1),即kx-y-k=0.∵点A ,B 到l 的距离相等, ∴√=√,∴|1-3k|=|3k-5|,解得k=1,∴l 的方程为x-y-1=0. 综上,l 的方程为x=1或x-y-1=0.1或x-y-1=03.已知M(1,0),N(-1,0),点P在直线2x-y-1=0上移动,则|PM|2+|PN|2的最小值为.点P在直线2x-y-1=0上,可设P的坐标为(a,2a-1),∴|PM|2+|PN|2=(a-1)2+(2a-1)2+(a+1)2+(2a-1)2=10a2-8a+4=10a-252+125.∴|PM|2+|PN|2的最小值为125.4.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|AB|的值为.解析直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0过定点B-1,25,由两点间的距离公式,得|AB|=135.5.已知直线l1:2x-y+a=0,l2:4x-2y-1=0,若直线l1,l2的距离等于7√510,且直线l1不经过第四象限,则a=.l1,l2的方程可知,直线l1∥l2.在直线l1上选取一点P(0,a),依题意得,l1与l2之间的距离为√42+(-2)2=7√510,整理得2√5=7√510,解得a=3或a=-4.因为直线l1不经过第四象限,所以a≥0,所以a=3.6.已知Rt△ABC,角B为直角,AB=a,BC=b,建立适当的坐标系,写出顶点A,B,C的坐标,并求证斜边AC的中点M到三个顶点的距离相等.解取边BA所在的直线为x轴,边BC所在的直线为y轴,建立直角坐标系,如图所示,则三个顶点的坐标分别为A(a,0),B(0,0),C(0,b).由中点坐标公式,得斜边AC的中点M的坐标为a2,a 2.∴|MA|=√(a-a2)2+(0-a2)2=12√a2+a2,|MB|=√(0-a2)2+(0-a2)2=12√a2+a2,|MC|=√(0-a2)2+(a-a2)2=12√a2+a2,∴|MA|=|MB|=|MC|.7.在△ABC 中,A (1,1),B (m ,√a ),C (4,2)(1<m<4),求m 为何值时,△ABC 的面积S 最大.A (1,1),C (4,2),∴|AC|=√(4-1)2+(2-1)2=√10,直线AC 的方程为x-3y+2=0.根据点到直线的距离公式,可得点B (m ,√a )到直线AC 的距离d=√a +√10,∴S=12|AC|·d=12|m-3√a +2| =12|(√a -32) 2-14|.∵1<m<4,∴1<√a <2⇒-12<√a −32<12, ∴0≤√a −322<14,∴当m=94时,△ABC 的面积S 最大.素养培优练1.已知点P (a ,b )在线段AB 上运动,其中A (1,0),B (0,1).则(a+2)2+(b+2)2的取值X 围是.(a+2)2+(b+2)2联想两点间的距离公式,设点Q 的坐标为(-2,-2),又点P 的坐标为(a ,b ),则|PQ|=√(a +2)2+(a +2)2,于是问题转化为求|PQ|2的最大值、最小值.如图所示,当P 与A 或B 重合时,|PQ|取得最大值,即 √(-2-1)2+(-2-0)2=√13,当PQ ⊥AB 时,|PQ|取得最小值,此时|PQ|为Q 点到直线AB 的距离,由A ,B 两点坐标可得直线AB 的方程为x+y-1=0.则Q 点到直线AB 的距离d=√22=√2=5√22,所以252≤(a+2)2+(b+2)2≤13.答案252,132.在x 轴上求一点P ,使得(1)P 到A (4,1)和B (0,4)的距离之差最大,并求出最大值; (2)P 到A (4,1)和C (3,4)的距离之和最小,并求出最小值.如图,设直线BA 与x 轴交于点P ,此时P 为所求点,且|PB|-|PA|=|AB|=√(0-4)2+(4-1)2=5.∵直线BA 的斜率k BA =1-44=-34,∴直线BA 的方程为y=-34x+4.令y=0,得x=163,即P163,0.故距离之差最大值为5,此时P 点的坐标为163,0.(2)作A 关于x 轴的对称点A',则A'(4,-1),连接CA',则|CA'|为所求最小值,直线CA'与x 轴交点为所求点.又|CA'|=√(4-3)2+(-1-4)2=√26,直线CA'的斜率k CA'=-1-44-3=-5, 则直线CA'的方程为y-4=-5(x-3). 令y=0,得x=195,即P195,0.故距离之和最小值为√26,此时P 点的坐标为195,0.。
直线与圆的方程公式职高
直线与圆的方程公式职高在职高数学课程中,直线与圆的方程公式是一项重要的内容,掌握了这些公式,可以帮助我们解决与直线和圆相关的各种问题。
本文将介绍直线与圆的方程公式,帮助大家加深对这些知识的理解。
直线的方程公式直线是几何中最基本的图形之一,描述直线的方程公式有多种形式。
其中,我们常用的有斜截式、点斜式和截距式等。
1. 斜截式方程公式斜截式方程公式描述了一条直线的斜率和截距之间的关系。
假设直线的斜率为k,截距为b,则斜截式方程公式可以表示为:y = kx + b斜截式方程公式方便我们根据直线的斜率和截距画出直线,并且可以轻松计算出直线与坐标轴的交点等重要信息。
2. 点斜式方程公式点斜式方程公式描述了一条直线上的已知点和斜率之间的关系。
假设直线上一点的坐标为(x₁, y₁),直线的斜率为k,则点斜式方程公式可以表示为:y - y₁ = k(x - x₁)点斜式方程公式对于已知一点和斜率的情况下,可以方便地求出直线的方程。
3. 截距式方程公式截距式方程公式描述了一条直线与x轴和y轴的截距之间的关系。
假设直线与x轴的截距为a,与y轴的截距为b,则截距式方程公式可以表示为:x/a + y/b = 1截距式方程公式适用于已知直线与x轴和y轴的截距的情况下,可以方便地求出直线的方程。
圆的方程公式圆是一个几何图形,由一组到圆心的等距离点组成。
描述圆的方程公式同样有多种形式,在职高数学中,我们常用的有标准方程和一般方程。
1. 标准方程公式标准方程公式描述了圆的圆心和半径之间的关系。
假设圆的圆心坐标为(h, k),半径为r,则标准方程公式可以表示为:(x - h)² + (y - k)² = r²标准方程公式方便我们根据圆心和半径画出圆,并且可以轻松计算出圆的周长、面积等重要信息。
2. 一般方程公式一般方程公式描述了圆的一般性质,不直接给出圆的圆心和半径。
假设圆的一般方程为:x² + y² + Dx + Ey + F = 0一般方程公式适用于已知圆的一些性质,例如与已知直线的关系或与其他几何图形的关系等。
最新人教版高中数学必修2第四章《直线与圆的位置关系》
4.2.1 直线与圆的位置关系1.知道直线与圆的位置关系的分类.2.能根据方程,判断直线和圆的位置关系. 3.能够解决有关直线和圆的位置关系的问题.直线A x +B y +C =0与圆(x -a)2+(y -b)2=r 2的位置关系及判断【做一做】 直线3x +4y +12=0与圆(x -1)+(y +1)=9的位置关系是( ) A .过圆心 B .相切 C .相离 D .相交答案:两 一 零 < = > > = < 【做一做】 D代数法与几何法的比较剖析:代数法的运算量较大,几何法的运算量较小,并且也简单、直观.受思维定式的影响,看到方程就想解方程组,自然就想到代数法.【例】 若直线4x -3y +a =0与圆x 2+y 2=100:①相交;②相切;③相离,试分别求实数a 的取值范围.解法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8a x +a 2-900=0.则Δ=(8a)2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,解得-50<a <50; ②当直线和圆相切时,Δ=0,解得a =50或a =-50; ③当直线和圆相离时,Δ<0,解得a <-50或a >50. 解法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10,则圆心到直线4x -3y +a =0的距离d =|a|32+42=|a|5.①当直线和圆相交时,d<r ,即|a|5<10,所以-50<a <50;②当直线和圆相切时,d =r ,即|a|5=10,所以a =50或a =-50;③当直线和圆相离时,d>r ,即|a|5>10,所以a <-50或a >50.处理直线与圆的位置关系的代数法和几何法,都具有普遍性,都要熟练掌握.由这两种解法可看到,几何法比代数法运算量要小,也比较简单、直观.题型一:直线与圆的相交问题【例1】 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB|=8,求直线l 的方程.反思:(1)讨论直线与圆的相交问题时,通常情况下不求出交点坐标.利用半径、半弦和弦心距组成的直角三角形,由勾股定理能解决弦长问题.(2)解答本题时易出现漏掉x +4=0的错误结果,导致这种错误的原因是对直线点斜式方程存在的条件理解不透,从而思维不严密,分类不完整.题型二:直线与圆的相切问题【例2】 求经过点(1,-7)且与圆x 2+y 2=25相切的直线方程.反思:解决直线与圆的相切问题时,通常利用圆心到切线的距离等于半径来解决.答案:【例1】 解:将圆的方程配方得(x +1)2+(y -2)2=25,由圆的性质可得,圆心到直线l 的距离d =(25)2-⎝⎛⎭⎫822=3.当l 的斜率不存在时,x =-4满足题意.当l 的斜率存在时,设方程为y =k (x +4),即kx -y +4k =0.由点到直线的距离公式,得3=|-k -2+4k |1+k 2,解得k =-512.所以直线l 的方程为5x +12y +20=0.综上所述,直线l 的方程为x +4=0或5x +12y +20=0.【例2】 解:(1)当直线斜率不存在时,其方程为x =1,不与圆相切;(2)当直线斜率存在时,设斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴|-k -7|k 2+(-1)2=5,解得k =43或k =-34.∴所求切线方程为y +7=43(x -1)或y +7=-34(x -1),即4x -3y -25=0或3x +4y +25=0.1.(2011·山东济南一模)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-683.直线l:3x-4y-5=0被圆x2+y2=5所截得的弦长为__________.4.(2011·北京丰台高三期末)过点(-3,4)且与圆(x-1)2+(y-1)2=25相切的直线方程为__________.5.已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为C的方程.答案:1.A 2.B 3.4 4.4x-3y+24=05.解:∵圆心C在直线l1:x-3y=0上,∴可设圆心为C(3t,t).又∵圆C与y轴相切,∴圆的半径为r=|3t|.再由弦心距、半径、弦长的一半组成的直角三角形,可得2+2=|3t|2,解得t=±1.∴圆心为(3,1)或(-3,-1),半径为3.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。
高二数学直线与圆的知识点及公式
高二数学直线与圆的知识点及公式直线和圆是高二数学中的重要内容,它们在几何学和代数学中都有广泛的应用。
本文将介绍直线和圆的基本概念、性质以及相关的公式。
一、直线的知识点直线是由无数个点连成的轨迹,没有起点和终点。
在直线上可以确定无数个点,其中有一些特殊的点和直线的性质需要我们了解。
1. 直线的斜率直线的斜率是直线的重要性质之一,它表示了直线上各个点的变化率。
直线的斜率可以用以下公式表示:斜率k = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)是直线上两个不同的点的坐标。
2. 直线的截距直线的截距也是直线的一个重要性质,它表示了直线与坐标轴的交点位置。
设直线与x轴的交点为A,与y轴的交点为B,直线的截距可以用以下公式表示:x轴截距a = -y轴截距b = -c / b其中,c是直线的常数项。
3. 直线的方程直线可以由点斜式、一般式和截距式等不同的方程表示。
根据直线上已知的条件,我们可以选择适当的方程形式来表示直线。
下面是直线方程的一般形式:Ax + By + C = 0其中,A、B和C是常数,代表直线的斜率和截距。
二、圆的知识点圆是由平面内到一个固定点距离相等的所有点的轨迹,其中固定点称为圆心,距离称为半径。
圆的性质和相关公式如下:1. 圆的方程圆的方程可以表示为:(x - h)² + (y - k)² = r²其中,(h, k)是圆心的坐标,r是半径的长度。
2. 圆的直径圆的直径是通过圆心并且两端点处于圆上的一条线段。
圆的直径长度等于半径的2倍。
3. 圆的弦圆上任意两点之间所形成的线段称为圆的弦。
圆的直径是圆的一个特殊的弦,它同时也是最长的弦。
4. 圆的切线圆上的切线是与圆只有一个交点的直线。
切线和圆的半径垂直。
5. 圆的弧长和扇形面积圆的弧长可以用下面的公式计算:弧长 = 弧度 ×半径而圆的扇形面积则可以用以下公式计算:扇形面积 = 弧度 ×半径² / 2三、综合运用直线和圆在几何学和代数学中的运用非常广泛。
高中数学直线和圆知识点总结+习题
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x y a b +=(5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212k k b b ==相交:12k k ≠平行:1212 k k b b =≠垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A AB B +=相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d O O =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =例题:例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.例8圆心在原点且与直线x +y -2=0相切的圆的方程为____________________.例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.例10(1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.例13平面直角坐标系xoy 中,直线10x y -+=截以原点O (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上.(1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.。
2.4.1圆的标准方程 人教A版(2019版)高中数学选择性必修一
(1)几何法 它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆 的标准方程,从而得到圆的标准方程.
(2)待定系数法 由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数, 从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:
①设——设所求圆的方程为(x-a)²+(y-b)²=r²; ②列——由已知条件,建立关于a,b,r的方程组;
解:设所求圆的方程为:( x-a)²+(y-b)²=r²
因为A(5,1),B(7,-3),C(2,8) 都在圆上
所求圆的方程为 (x-2)²+(y+3)²=25
O
待定系数法
8
典型例题 例2△ABC 的三个顶点的坐标分别是A(5,1),
B(7,-3),C(2,-8) 求它的外接圆方程.
个y
A(5,1)
圆心(-1,0)半径1
6
典型例题
例1写出圆心为A(2,-3),半径等于5的圆的方程,并判断M₁ (5,-7),M₂(一2,一1) 是否在这个圆上 分析:根据点的坐标与圆的方程的关系,只要判断一个点的 坐标是否满足圆的方程,就可以得到这个点是否在圆上.
解:圆心为A(2,-3),半径为5的圆的标准方程是(x-2)²+(y+3)²=25.
√(a—1)²+(b—1)²=√(a—2)²+(b+2)²,
即 a—3b—3=0.②
由①②可得a=—3,b=—2.
所以圆心C
的坐标是(—3,—2). 圆的半径 r=|AC|=√(1+3)²+(1+2)²=5.
所以,所求圆的标准方程是(x+3)²+(y+2)²=25.
高中数学直线和圆知识点总结
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到0 2.直线方程(1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x ya b+= (5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:22122121()()PP x x y y =-+- (2)点00(,)P x y 到直线0Ax By C ++=的距离:0022||Ax By C d A B++=+(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:1222||C C d A B-=+4.位置关系(1)截距式:y kx b =+形式重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ⋅=- (2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++=的距离22||Aa Bb C d A B++=+与半径R 的大小关系当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d OO =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系 当12d R R >+时,两圆相离,有4条公切线; 当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线; 当12d R R =-时,两圆内切,有1条公切线; 当120d R R ≤<-时,两圆内含,没有公切线; 4.当两圆相交时,两圆相交直线方程等于两圆方程相减 5.弦长公式:222l R d =-例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3. 答案:(-3, 3)例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=0例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±33例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3.答案:2 3例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177.答案:1或177例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:1例8圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0)∴|2|1+1=a ,∴a =2,∴x 2+y 2=2.答案:x 2+y 2=2例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.圆C 的方程为x 2+y 2+Dx +F =0, 则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0.[答案] (1)C (2)x 2+y 2-4x -6=0例10 (1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5. 答案:(1)322(2)5+ 5 5- 5例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ 与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1.故△ABC 面积的最小值是12×22×⎝ ⎛⎭⎪⎫32-1=3- 2.答案:3- 2例13平面直角坐标系xoy 中,直线10x y -+=截以原点O 为圆心的圆所得的弦长为6(1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.解: ⑴因为O 点到直线10x y -+=的距离为12,所以圆O 的半径为2216()()222+=, 故圆O 的方程为222x y +=.⑵设直线l 的方程为1(0,0)x ya b a b+=>>,即0bx ay ab +-=,由直线l 与圆O 相切,得222ab a b =+,即221112a b +=,2222222112()()8DE a b a b a b =+=++≥,当且仅当2a b ==时取等号,此时直线l 的方程为20x y +-=. ⑶设11(,)M x y ,22(,)P x y ,则11(,)N x y -,22112x y +=,22222x y +=,直线MP 与x 轴交点122121(,0)x y x y y y --,122121x y x y m y y -=-, 直线NP 与x 轴交点122121(,0)x y x y y y ++,122121x y x y n y y +=+,222222221221122112211221222221212121(2)(2)2x y x y x y x y x y x y y y y y mn y y y y y y y y-+----====-+--,故mn 为定值2.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点. (1)当α=43π时,求AB 的长; (2)当弦AB 被点P 平分时,求直线l 的方程.解:(1)当α=43π时,k AB =-1, 直线AB 的方程为y -2=-(x+1),即x +y -1=0. 故圆心(0,0)到AB 的距离d =2100-+=22, 从而弦长|AB|=2218-=30. (2)设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2,y 1+y 2=4.由⎪⎩⎪⎨⎧=+=+,8,822222121y x y x两式相减得(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0, 即-2(x 1-x 2)+4(y 1-y 2)=0, ∴k AB =212121=--x x y y . ∴直线l 的方程为y -2=21(x +1),即x -2y +5=0.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.解: (1)依题意,可设动圆C 的方程为(x -a)2+(y -b)2=25,其中圆心(a,b)满足a -b+10=0.又∵动圆过点(-5,0),∴(-5-a)2+(0-b)2=25.解方程组⎪⎩⎪⎨⎧=-+--=+-25)0()5(01022b a b a ,可得⎩⎨⎧=-=010b a 或⎩⎨⎧=-=55b a ,故所求圆C 的方程为(x+10)2+y 2=25或(x+5)2+(y -5)2=25. (2)圆O 的圆心(0,0)到直线l 的距离d=1110+=52.当r 满足r+5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相外切的圆;当r 满足r+5>d 时,r 每取一个数值,动圆C 中存在两个圆与圆O :x 2+y 2=r 2相外切; 当r 满足r+5=d,即r=52-5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切.题目1.自点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,则切线l 的方程为 .2.求与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程.3.若点P 在直线l 1:x +y +3=0上,过点P 的直线l 2与曲线C :(x -5)2+y 2=16相切于点M ,则PM 的最小值 .4.设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足OP ·OQ =0. (1)求m 的值;(2)求直线PQ的方程.5.已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.6. 已知曲线C:x2+y2-4ax+2ay-20+20a=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上;(3)若曲线C与x轴相切,求a的值.。
高中数学直线与圆知识点总结
高中数学直线与圆知识点总结1. 直线直线是数学中最基本的几何概念之一。
在高中数学中,直线是研究的重点之一,我们先来总结一下与直线相关的知识点。
1.1 直线的斜率直线的斜率是直线特征的一个重要指标。
对于直线上的两个点(x1,y1)和(x2,y2),直线的斜率可以用以下公式来计算:$$k = \\frac{y_2 - y_1}{x_2 - x_1}$$其中,k表示直线的斜率。
斜率可以告诉我们直线的倾斜程度,斜率为正表示直线向上倾斜,斜率为负表示直线向下倾斜,斜率为零表示直线是水平的。
1.2 直线的方程直线的方程通常可以用斜截式、点斜式和一般式来表示。
•斜截式:斜截式方程形如y=kx+b,其中k表示斜率,b表示截距。
斜截式方程直观地表示了直线的斜率和与y轴的截距。
•点斜式:点斜式方程形如y−y1=k(x−x1),其中(x1,y1)是直线上的一点,k是斜率。
点斜式方程通过直线上的一个点和直线的斜率来表示直线。
•一般式:一般式方程形如Ax+By+C=0,其中A、B和C是常数,且A和B不同时为零。
一般式方程是直线方程的标准形式,可以很方便地得到直线的斜率和截距。
1.3 直线的性质直线具有许多重要的性质:•平行和垂直:两条直线平行,意味着它们的斜率相等;两条直线垂直,意味着它们的斜率的乘积为-1。
•距离:从一点到直线的距离是从点到直线上的垂直线段的长度。
•截距:直线与y轴的交点称为截距。
直线的斜截式方程中,截距即为b。
2. 圆圆是另一个重要的几何概念。
在高中数学中,圆的性质和相关定理也是数学教学的重点。
2.1 圆的定义圆是指平面上到一个固定点距离等于一个固定长度的所有点的集合。
固定点称为圆心,固定长度称为半径。
2.2 圆的方程圆的方程通常可以用标准方程和一般方程来表示。
•标准方程:标准方程形如(x−a)2+(y−b)2=r2,其中(a,b)是圆心的坐标,r是半径的长度。
•一般方程:一般方程形如x2+y2+Dx+Ey+F=0,其中D、E和F 是常数,且D和E不同时为零。
高中数学直线与圆距离公式
高中数学直线与圆距离公式引言在高中数学中,我们学习了许多与几何相关的概念和公式。
其中,直线和圆是两个基础的几何图形。
直线是由无数个点组成的,而圆则是由一个固定点到平面上所有与该点距离相等的点构成的。
在解决几何问题时,我们常常需要计算直线与圆之间的距离。
本文将介绍高中数学中关于直线与圆距离的公式和解题方法。
直线与圆的方程在介绍距离公式之前,我们首先需要了解直线和圆在坐标系中的表示方法。
直线可以通过方程y = mx + c或者ax + by + c = 0来表示,其中m是直线的斜率,c是直线的截距。
圆可以通过方程(x - h)^2 + (y - k)^2 = r^2表示,其中(h, k)是圆心的坐标,r是半径。
这两种表示方法在计算直线与圆的距离时都会有所帮助。
直线与圆的距离在解决直线与圆距离的问题时,我们需要根据具体情况选用不同的公式和方法。
下面将介绍几种常见的情况。
1. 直线与圆心的距离首先考虑直线与圆心的距离。
如果我们知道直线的方程和圆的圆心坐标,那么可以通过计算直线上某一点到圆心的距离来得到直线与圆心的距离。
设直线的方程为ax + by + c = 0,圆的圆心坐标为(h, k),直线上一点(x_0, y_0)到圆心的距离为d,那么我们可以利用点到直线距离公式来计算:d = | a*x_0 + b*y_0 + c | / sqrt(a^2 + b^2)2. 直线与圆的切点接下来考虑直线与圆的切点。
切线是与圆有且仅有一个交点的直线。
如果我们已知直线的方程和圆的方程,并且想要求出切线与圆的切点坐标,可以通过以下步骤进行计算:1.将直线的方程和圆的方程联立,得到一个二元一次方程组。
2.利用方程组求解的方法,得到切点的坐标。
3.计算切点与圆心之间的距离,即为直线与圆的距离。
3. 直线与圆的两个交点最后考虑直线与圆的两个交点。
如果我们已知直线的方程和圆的方程,并且想要求出直线与圆的两个交点的坐标,可以通过以下步骤进行计算:1.将直线的方程和圆的方程联立,得到一个二元二次方程。
直线和圆的方程知识点总结职高
直线和圆的方程知识点总结职高直线和圆是数学中非常重要的概念,在职业高中的数学课程中也占据着重要的位置。
本文将对直线和圆的方程进行总结和概述,帮助职高学生更好地理解和掌握这些知识点。
一、直线的方程1. 斜率截距公式斜率截距公式是表示直线方程的常用形式之一。
对于一条直线,我们可以用直线上一点的坐标以及直线的斜率来确定直线的方程。
斜率截距公式的一般形式为:y=mx+b其中,m表示直线的斜率,b表示直线与 y 轴的交点。
2. 两点式另一种表示直线方程的常用形式是两点式。
通过直线上的两个点的坐标,我们可以得到直线的方程。
两点式的一般形式为:$(y - y_1) = \\frac{{y_2 - y_1}}{{x_2 - x_1}}(x - x_1)$其中,(x1,y1)和(x2,y2)分别表示直线上的两个点的坐标。
3. 截距式和一般式除了斜率截距公式和两点式之外,还有截距式和一般式两种表示直线方程的方式。
截距式的一般形式为:ax+by=c其中,a和b表示直线的系数,c表示常数。
一般式的一般形式为:Ax+By+C=0其中,A、B和C表示直线的系数。
二、圆的方程1. 标准方程圆的标准方程是表示圆方程的一种常用形式。
标准方程可以通过圆心和半径来确定圆的方程。
标准方程的一般形式为:(x−ℎ)2+(y−k)2=r2其中,(ℎ,k)表示圆心的坐标,r表示圆的半径。
2. 一般方程除了标准方程之外,还有一般方程的表示方法。
一般方程的一般形式为:x2+y2+Dx+Ey+F=0其中,D、E和F分别表示圆的系数。
三、直线和圆的关系1. 直线与圆的位置关系直线和圆的位置关系有三种可能性:直线与圆相交、直线与圆外切、直线与圆相离。
•当直线与圆有两个不同的交点时,我们称之为直线与圆相交。
•当直线与圆有且仅有一个交点时,我们称之为直线与圆外切。
•当直线与圆没有交点时,我们称之为直线与圆相离。
2. 直线与圆的方程求解要确定直线与圆的位置关系,我们需要将直线的方程代入圆的方程中,然后解方程组得到结果。
高中数学直线与圆的方程知识点总结
高中数学直线与圆的方程知识点总结公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1>0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121yy x x ++ 靠近A 的三分点坐标)32,32(2121y y x x ++ 靠近B 的三分点坐标中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《直线和圆的方程》常用公式
1.直线的五种方程
(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).
(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).
(3)两点式
112121
y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b
+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 2.两条直线的平行和垂直
(1)若111:l y k x b =+,222:l y k x b =+
①121212||,l l k k b b ⇔=≠;
②12121l l k k ⊥⇔=-.
(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222
||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;
3. 1l 到2l 的角公式 (1)2121
tan 1k k k k α-=
+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212
tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).
直线12l l ⊥时,直线l 1到l 2的角是2π.
4.斜率公式
2121
y y k x x -=-(111(,)P x y 、222(,)P x y ).
5.夹角公式 (1)2121
tan |
|1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212
tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).
直线12l l ⊥时,直线l 1与l 2的夹角是2π. 6.四种常用直线系方程
(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线
0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.
(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.
(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.
(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.
7. 圆的四种方程
(1)圆的标准方程 222
()()x a y b r -+-=.
(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ
=+⎧⎨
=+⎩.
(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).
8.点到直线的距离
d =(点00(,)P x y ,直线l :0Ax By C ++=).
9. 0Ax By C ++>或0<所表示的平面区域
设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.
若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.
10. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域
设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则
111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:
111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;
111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.
11.点与圆的位置关系
点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种
若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.
12.直线与圆的位置关系
直线0=++C By Ax 与圆2
22)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;
0=∆⇔⇔=相切r d ;
0>∆⇔⇔<相交r d .
其中22B A C
Bb Aa d +++=.
13. 圆系方程
(1)过点11(,)A x y ,22(,)B x y 的圆系方程是
1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.
(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程
是22
()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.
(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的
系数.
14.两圆位置关系的判定方法
设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21
条公切线外离421⇔⇔+>r r d ;
条公切线外切321⇔⇔+=r r d ;
条公切线相交22121⇔⇔+<<-r r d r r ;
条公切线内切121⇔⇔-=r r d ;
无公切线内含⇔⇔-<<210r r d .
15.圆的切线方程
(1)已知圆22
0x y Dx Ey F ++++=.
①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022
D x x
E y y x x y y
F ++++
++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.
②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.
③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.
(2)已知圆222
x y r +=.
①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k
的圆的切线方程为y kx =±.。