高中数学《直线和圆的方程》常用公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《直线和圆的方程》常用公式

1.直线的五种方程

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).

(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

112121

y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 2.两条直线的平行和垂直

(1)若111:l y k x b =+,222:l y k x b =+

①121212||,l l k k b b ⇔=≠;

②12121l l k k ⊥⇔=-.

(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222

||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;

3. 1l 到2l 的角公式 (1)2121

tan 1k k k k α-=

+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212

tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1到l 2的角是2π.

4.斜率公式

2121

y y k x x -=-(111(,)P x y 、222(,)P x y ).

5.夹角公式 (1)2121

tan |

|1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212

tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1与l 2的夹角是2π. 6.四种常用直线系方程

(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线

0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.

(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.

(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.

(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.

7. 圆的四种方程

(1)圆的标准方程 222

()()x a y b r -+-=.

(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ

=+⎧⎨

=+⎩.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).

8.点到直线的距离

d =(点00(,)P x y ,直线l :0Ax By C ++=).

9. 0Ax By C ++>或0<所表示的平面区域

设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.

若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.

10. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域

设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则

111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:

111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;

111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.

11.点与圆的位置关系

点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种

若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.

12.直线与圆的位置关系

直线0=++C By Ax 与圆2

22)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;

0=∆⇔⇔=相切r d ;

0>∆⇔⇔<相交r d .

相关文档
最新文档