第二十一章基因诊断与基因治疗

合集下载

基因诊断与基因治疗

基因诊断与基因治疗
18
(1)DNA模板的变性 DNA模板的变性 模板的
将待扩增DNA加热到95 左右,使双链DNA DNA解开成 将待扩增DNA加热到950C左右,使双链DNA解开成 DNA加热到
使模板DNA或延伸后的双链DNA DNA或延伸后的双链DNA发生热变性 为单链(即:使模板DNA或延伸后的双链DNA发生热变性 ),
PCR技术在模板、dNTP、Mg2+等条件下,用耐热 技术在模板、dNTP、 等条件下, 技术在模板 Taq酶代替DNA聚合酶 用合成的DNA引物代替RNA 酶代替DNA聚合酶, DNA引物代替RNA引 的Taq酶代替DNA聚合酶,用合成的DNA引物代替RNA引 经过DNA变性、引物与模板结合 复性)和延伸3 DNA变性 模板结合( 物,经过DNA变性、引物与模板结合(复性)和延伸3 个步骤的循环过程(25∼30个循环),目的DNA可 个循环),目的DNA 个步骤的循环过程(25∼30个循环),目的DNA可扩增 100万倍以上 万倍以上。 100万倍以上。
并游离于反应体系中作为模板; 并游离于反应体系中作为模板;
(2)模板与引物的结合(退火或复性) 模板与引物的结合(退火或复性)
将体系温度降至合适温度( 左右) 将体系温度降至合适温度 ( 550C 左右 ) , 使加入 的引物与模板DNA两端 碱基序列互补结合。 的引物与模板DNA两端(3ˊ端)碱基序列互补结合。 DNA两端(
固 相 支 持 物
B
本法优点: 本法优点:
16 特异性强,对样本纯度要求不高,定量较准确。 特异性强,对样本纯度要求不高,定量较准确。
situ) (6)原位杂交(nucleic acid hybridization in situ) 将标记探针与细胞或组织切片中的核酸进行杂交, 将标记探针与细胞或组织切片中的核酸进行杂交, 进而检测特异的DNA RNA序列 DNA或 序列。 进而检测特异的DNA或RNA序列。 有 细胞原位杂交 组织切片原位杂交 三类杂交

基因诊断与基因治疗+癌基因抑癌基因与生长因子章节习题答案解析.doc

基因诊断与基因治疗+癌基因抑癌基因与生长因子章节习题答案解析.doc

第二十一章基因诊断与基因治疗一、选择题A型题1、将致病基因的异常碱基进行纠正,而正常部分予以保留的方法为:A、基因矫正B、基因增补C基因置换D基因失活E基因诊断2、内源性基因结构突变发生在生殖细胞,可引起哪种疾病:A、肿瘤B、传染病C、遗传性疾病D、心血管疾病E、神经系统疾病3、常用的基因诊断的技术方法不包插:A、核酸分子杂交B、基因转移C、基因测序D、PCRE、PCR/RFLP4、基因结构突变不包括:A、点突变B、染色体易位C、基因重排D、基因表达异常E、基因扩增5、基因治疗的基本程序不包括:A、治疗基因的选择B、基因载体的选择C、靶细胞的选择D、基因转移E、基因测序6、非病毒介导的基因转移方法,下列哪一个是化学方法:A、DNA直接注射B、基因枪技术C、脂质体介导D、显微注射E、电穿孔7、在基因治疗中,目前一般多选用下列哪项作为基因载体:A、脂质体B、运载蛋白C、质粒D、病毒E、DEAE-«j聚糖8、基因治疗的临床实施屮,基因转移以下列哪项为主:A、病毒介导B、脂质体介导C、基因枪技术D、DNA直接注射E、显微注射9、某些病毒或细菌产生的酶可催化无毒性的药物前体转变成细胞毒性物质,从而导致细胞死亡,利用该酶基因进行的基因治疗属于:A、反义核酸技术B、自杀基因的应用C、基因敲除D、基因失活E、基因缺失10、基因诊断屮,最为确切的基因诊断方法为:A、RFLP 分析B、PCRC、PCR/SSCPD、PCR/ASOE、基因测序X型题1、内源基因变异主要有:A、外源基因入侵B、表达异常C、染色体易位D、基因扩增E、基因重排2、基因诊断屮,属于核酸分子杂交技术的是:A、限制性内切酶酶谱分析法B、RFLP分析C、ASO杂交法D、PCRE、基因测序3、基因诊断的应用有:A、遗传病的诊断B、肿瘤诊断C、检测传染性流行病D、器官移植配型E、法医4、符合下列哪些条件才能应用目前的基因治疗:A、已经在DNA水平上明确了该病为单基因缺陷疾病B、仅限于体细胞治疗C、治疗效果必须胜过对病人的危害D、表达水平无需严格调控即可使疾病得以改善, 且无副作用。

生物化学及分子生物学(人卫第九版)-26基因诊断与基因治疗

生物化学及分子生物学(人卫第九版)-26基因诊断与基因治疗
第26章
基因诊断与基因治疗
作者 : 李存保 单位 : 内蒙古医科大学
目录
第一节 基因诊断
第二节 基因治疗
重点难点
掌握
基因诊断与基因治疗的概念
熟悉
基因诊断技术、基因治疗的基本策略和基本程序
了解
基因诊断和基因治疗在医学中的应用
第1节
基因诊断
一、基因诊断的概念与特点
(1) 基因诊断的概念:
是指利用分子生物学技术和方法直接检测基因结构及其表达水平是否正常,从而 对疾病作出诊断的方法。
(2)直接体内疗法
临床上可用于基因诊断的样品有血液、组织块、羊水和绒毛、精液、毛发、唾液 和尿液等。
三、基因诊断的基本技术
(一)核酸分子杂交技术
1. Southern 印迹法 其可以区分正常和突变样品的基因型,并可获得基因缺失或插入片段大小等信息。 DNA印迹一般可以显示50 bp~20 kbp的DNA片段,片段大小的信息是该技术诊断基因缺 陷的重要依据。 2. Northern 印迹法 Northern印迹法(Northern blot)能够对组织或细胞的总RNA或mRNA进行定性 或定量分析,及基因表达分析。Northern印迹杂交对样品RNA纯度要求非常高,限制了 该技术在临床诊断中的应用。
是以改变人遗传物质为基础的生物医学治疗,即通过一定方式将人 正常基因或有治疗作用的DNA片段导入人体靶细胞以矫正或置换致病基因 的治疗方法。它针对的是疾病的根源,即异常的基因本身。
一、基因治疗的基本策略
(一)缺陷基因精确的原位修复
1.基因矫正 gene correction 致病基因的突变碱基进行纠正 2.基因置换 gene replacement 用正常基因通过重组原位替换致病基因 这两种方法属于对缺陷基因精确的原位修复,既不破坏整个基因组的结构,又可达到治 疗疾病的目的,是最为理想的治疗方法。

基因诊断与基因治疗

基因诊断与基因治疗
• 该方法是诊断已知点的突变:需分别合成野生型和
突变型探针.在基因诊断时,只需用PCR扩增受检者目 的DNA片段,再分别与上述探针杂交.
PCR-ASO
ASO1 ASO2
N
H M
N:正常基因;H:杂合子基因;M:突变基因
(三)单链构象多态性分析
(single-strand conformation polymorphism, SSCP)
repeats, STRs ,mini- satellites ) 1990s 单核苷酸多态性 (single-
nucleotide polymor-phisms SNPs)
RFLPs
• 由于DNA 变异产生新的酶切位点或原有的 酶切位点消失,在用限制性核酸内切酶消 化时产生不同长度或不同数量的片段。
(一)核酸分子杂交
(二) PCR在基因诊断中的应用
• RT-PCR • 荧光定量PCR • 多重-PCR • PCR-ASO • AS-PCR • PCR-SSCP • PCR-RFLP
PCR-ASO
Allele specific oligonucleotide, ASO 等位基因特异性寡核苷酸分子杂交
• 主要用于一些基因较大且突变类型不清楚 的单击因遗传病的诊断。
PCR-RFLP
镰状红细胞贫血的间接基因诊断
——β-珠蛋白RFLP标记的连锁分析
NH
7.6kb
正 常 HapⅠ
13kb
患 者 HapⅠ
HapⅠ
HapⅠ
P 13kb 7.6kb
Southern印迹杂交
N:正常;H:杂合子;P:患者(纯合子);黄色区域为探针
• 以SNP单倍型(多位点SNP 分析)为遗传标志,结合

第二十一章 基因诊断与基因治疗

第二十一章  基因诊断与基因治疗

第二十一章基因诊断与基因治疗Gene Diagnosis and Gene Therapy一、授课章节及主要内容:第二十一章基因诊断与基因治疗二、授课对象:临床医学、预防、法医(五年制)、临床医学(七年制)三、授课学时本章教学共1学时。

讲授安排如下:基因诊断0.5学时,基因治疗0.5学时。

四、教学目的与要求通过本章学习,从整体上了解基因诊断和基因治疗的基本概念、基本理论。

了解内源基因变异和外源基因入侵是导致人类致病的两大类因素。

了解基因诊断和基因治疗常用技术方法的类型和基本知识,了解基因治疗的基本程序。

五、重点与难点重点:掌握基因诊断、基因治疗的概念和理论。

难点:①限制性内切酶酶谱分析法原理。

②DNA限制性片段长度多态性及其用于基因诊断的原理。

③PCR/单链构象多态性分析。

④基因灭活的几种方法。

⑤基因治疗的载体。

六、教学方法及授课大致安排教学方法:主要是自学形式,讲授基因诊断与基因治疗的概念。

授课大致安排:前言3分钟,基因诊断概念2分钟,诊断方法15分钟;基因治疗概念2分钟,方法15分钟,基因治疗的基本程序8分钟。

七、主要外文专业词汇gene diagnosis,gene therapy,RFLP,SSCP,gene chip,RNAi,triplex approach八、思考题1.什么是基因诊断?介绍基因诊断的常用技术方法。

2.简单介绍基因诊断的应用。

3.什么是基因治疗?简述基因治疗的方法。

4.基因灭活的主要方法有哪些?简述灭活的原理。

5.简述基因治疗的基本程序。

九、教材与教具:人民卫生出版社《生物化学》第六版十、授课提纲(或基本内容)概述Introduction基因诊断与基因治疗是分子生物学理论和技术应用到临床医学所产生的新的诊断和治疗疾病的方法。

这些新方法是现有诊断和治疗疾病手段的补充和扩展。

随着分子生物学理论和技术的新进展不断应用于临床医学研究,人们对疾病发生、发展的分子机理的认识也不断深入;从基因水平诊断疾病和治疗疾病已成为现代基础医学和临床医学研究的重要内容。

基因诊断与基因治疗PPT课件

基因诊断与基因治疗PPT课件
• 用于探测点突变时一般需要合成两种探针,一种与正常基因 序列完全一致,能与之稳定地杂交,但不能与突变基因序列 杂交;另一种与突变基因序列一致,能与突变基因序列稳定 杂交,但不能与正常基因序列稳定杂交,这样,就可以把只 有一个碱基发生了突变的基因区别开来。
• PCR可结合ASO,即PCR-ASO技术,即先将含有突变点 的基因有关片段进行体外扩增,然后再与ASO探针作点杂交, 这样大大简化了方法,节约了时间,而且只要极少量的基因 组DNA就可进行。
• 根据探针的核酸性质不同又可分为DNA探 针、RNA探针、cDNA探针、cRNA探针及 寡核检测
• 核酸探针的常用酶促标记技术
–缺口平移 –DNA快速末端标记 –用T4多核苷酸酶标记DNA 5‘末端,随引物延伸 –聚合酶链反应
• 核酸探针的非放射性标记技术
1995年美国FDA批准Ad-P53肿瘤基因治疗等临床试验 的实施,标志着基因治疗已逐步进入一个正常的、目标明 确的理性化发展阶段。
• 18岁的格尔辛基(Jesse Gelsinger)因临床试验的某些 失误而于1999年9月17日死亡。格尔辛基是世界上首位由 基因治疗导致丧生的患者。他患先天性鸟氨酸甲酰氨基转 移酶(OTC)缺乏症(X连锁性遗传病)病症,在男性身 上较严重,往往引起新生男婴患者的死亡。
–光促生物素标记核酸 –酶促生物素标记核酸 –寡核苷酸的生物素末端标记 –酶标DNA –酶标寡核苷酸 –DNA半抗原标记
核酸分子杂交方法
• 核酸分子杂交可按作用环境大致分为固相杂 交和液相杂交两种类型
• 固相杂交是将参加反应的一条核酸链先固定 在固体支持物上,一条反应核酸链游离在溶 液中,固体支持物有硝酸纤维素滤膜、尼龙 膜、乳胶颗粒、磁珠和微孔板等。
胞培养。从1982年起采取妊娠8-12周的绒毛DNA 作产前诊断使产前基因诊断的时间提前。由于 PCR技术的应用,甚至在胚胎植入前(受精6d)也可 作产前诊断。

基因诊断与基因治疗

基因诊断与基因治疗

三、基因治疗
基因治疗中最核心的问题则是对细胞中的缺陷基因进行修正
或补充 注意: 由于外源遗传物质可能影响生物的群体遗传特征。因此, 目前的基因治疗主要限于生物的体细胞,而生殖细胞和受精 卵则禁止使用。
基因治疗类型
体外基因治疗
体内基因治疗
健康的(已经 过基因修饰) 和病变的基因 在细胞内并存




二、基因芯片技术
基因芯片概念:基因芯片,也叫
DNA芯片,是将大量特定序列的 DNA核酸分子(分子探针)固定在 经过处理后的尼龙膜,玻璃片,硅片 上 从而大量快速、平行高效地对碱 基序列进行测定和定量分析的一种 类似电脑的芯片。 原理:利用碱基的互补配对原则,分 子杂交原理 材料:分子探针,尼龙膜,玻璃片,硅片
基因治疗遗传病
1990年9月14日,安德森将经过改造的 含有健康基因的白血球输入因腺苷脱氨酶缺 乏造成先天性免疫功能不全,只能生活在无 菌的隔离帐里的4岁女孩的左臂静脉血管, 以后的10个月内她又接受了7次同样的治疗。 1991年1月,另一名患同样病的女孩也接受 了同样的治疗。两患儿经治疗后,免疫功能 日趋健全,走出了隔离帐,过上了正常人生 活,并进入普通小学上学。
基因治疗的发展
基因治疗3个阶段: 1980—1989年为准备期。在临床前研究和舆论 准备。 1990—1995年为狂热期。1990年9月第一例成 功,带来一片狂热。一些关键技术没有解决, 在临床应用中碰壁也是正常的。 1996年进入理性期。对临床试验进行评估,提 出关键问题进行研究,从狂热转入理性化的 正常轨道。
恶性肿瘤基因诊断过程
归纳: 从恶性肿瘤基因诊断了解基因诊断
的一般程序
1构建基因探针(已知该致病基因的核酸序列) 2获取待测组织单链DNA(进行PCR扩增,后 加热得到) 3将待测组织单链转到尼龙膜上(观察基因探针和它能 否进行杂交) 结果上:有杂交DNA分子的说明待测组织中 有已知该致病基因的核酸序列

基因诊断和基因治疗

基因诊断和基因治疗



(CCT GTG G)
×
正常基因


突变基因
镰状红细胞贫病的限制性内切酶谱分析
目录
正常人 突变携带者 患者 镰状红细胞贫血病的限制性内切酶谱分析
目录
PCR-SSCP技术检测DNA突变
传染病的基因诊断
Gene Diagnosis of Infectious Diseases
一、病毒性疾病
SNP与RFLP和STR标记的主要不同之处在于,它 不再以DNA片段的长度变化作为检测手段,而直接 以序列变异作为标记。
三、人类疾病与基因密切相关
1、基因结构改变导致蛋白质的结构或数量发 生变化导致疾病
2、基因表达异常 3、病原生物基因入侵导致疾病 4、可遗传的基因组变异导致人类疾病易感性
包装。
反转录病毒载体的特点
1)反转录病毒包膜上糖蛋白,能够被许多哺 乳动物细胞膜上的特异性受体识别,从而使 反转录病毒携带的遗传物质高效地进入靶细 胞。
2)前病毒通过LTR高效整合至靶细胞基因组中, 有利于外源基因在靶细胞中的永久表达。
3) 病毒颗粒以出芽的方式分泌至辅助细胞培 养的上清液中,易于分离制备。
定义:将“自杀”基因导入宿主细胞中,这种基 因编码的酶能使无毒性的药物前体转化为细胞毒 性代谢物,诱导靶细胞产生“自杀”效应,从而 达到清除肿瘤细胞的目的。
应用:是恶性肿瘤基因治疗的主要方法之一。
自杀基因的作用机制
(五)基因免疫治疗
通过将抗癌免疫增强的细胞因子或 MHC基因导入肿瘤组织,以增强肿瘤微 环境中的抗癌免疫反应。
定义:指将特定的目的基因导入特定细胞,通过 定位重组,导入的正常基因,以置换基因组内原 有的缺陷基因。

基因诊断和基因治疗

基因诊断和基因治疗
基因诊断和基因治疗
xx年xx月xx日
目 录
• 基因诊断 • 基因治疗 • 基因诊断和基因治疗的比较 • 基因诊断和基因治疗的研究方向 • 结论与展望
01
基因诊断
基因诊断的基本原理
01
基因诊断是基于人类基因组的变异和其他特征,利用分子生物学技术,对疾病 进行诊断和治疗的方法。
02
基因诊断的基本原理包括基因突变、基因表达和基因调控等方面,通过检测和 分析这些基因的变化,可以确定是否存在与特定疾病相关的基因变异或其他异 常。
疗的联合应用以及长期疗效和安全性等问题。
跨学科交叉研究方向
基因与表型组学研究
结合基因组学、表型组学等多种研究手段,深入探讨人类遗传和表型多样性的基础和机制 。
基因诊疗技术与其他技术的融合
将基因诊疗技术与细胞生物学、免疫学、生物材料学等领域的技术和方法相结合,开发更 加综合、高效、安全的技术和方法体系。
基因诊断的未来发展趋势
随着分子生物学技术的不断进步,基因诊 断将更加准确、快速和便捷,有望在更多 疾病的早期诊断和筛查中发挥作用。
VS
基因治疗的未来发展趋势
随着基因治疗研究的深入,未来有望应用 于更多遗传性疾病和复杂疾病的治疗,同 时也会与其它治疗手段相结合,形成更为 有效的综合治疗方案。
04
基因诊断和基因治疗的研究方向
基因诊断和基因治疗可以促进个体化医疗和精准医疗的发展, 提高医疗水平和效率。
未来研究和实践的挑战与机遇
• 挑战 • 基因诊断和基因治疗技术的研究和应用受到伦理、安全和法律等方面的限制。 • 基因诊断和基因治疗需要高昂的成本和技术支持,难以在广大患者中普及。 • 目前尚缺乏对基因诊断和基因治疗相关技术和方法的统一规范和标准。 • 机遇 • 随着科学技术的不断发展和创新,基因诊断和基因治疗技术将不断进步,并逐渐降低成本和技术门槛。 • 随着医疗保健意识的提高和医疗技术的普及,越来越多的人将接受基因诊断和基因治疗。 • 国家和地方政府逐渐加大对基因诊断和基因治疗技术的研究和投入,为相关领域的发展提供了有力支持。

基因诊断和基因治疗

基因诊断和基因治疗

技术挑战
检测灵敏度和特异性
提高基因诊断的灵敏度和特异性是关键技术挑战,以确保准确检 测出基因突变。
基因治疗载体
寻找安全、有效的基因治疗载体是另一个技术难题,以确保基因 能够准确传递至病变细胞。
基因编辑精度
提高基因编辑技术的精度,降低脱靶效应,是当前基因治疗领域 的重要挑战。
伦理挑战
01
02
03
人类基因编辑
02
03
技术创新驱动
政策支持
基因技术的不断创新和发展将进 一步推动基因诊断和基因治疗市 场的增长。
政府对基因诊断和基因治疗的政 策支持将有助于市场的快速发展 。
社会影响
提高疾病预防和治疗效果
基因诊断和基因治疗有助于更早发现遗传性疾病,提高预防和治 疗效果。
改变医疗模式
基因诊断和基因治疗将推动医疗模式从传统治疗向精准医疗转变。
体内基因治疗是将含有正常基 因的载体直接注射到患者体内 ,使载体感染病变细胞并导入 正常基因。
体外基因治疗则是将患者的病 变细胞取出,在体外进行基因 改造后再回输到患者体内。
基因治疗的应用
基因治疗在遗传性疾病、肿瘤 、感染性疾病等领域具有广泛
的应用前景。
在遗传性疾病方面,基因治疗 可以通过纠正缺陷基因的表达
基因诊断的原理
基因诊断基于遗传学和分子生物学原 理,通过检测基因序列的变异来分析 个体的遗传特征。
基因序列的变异包括点突变、插入、 缺失、重复等,这些变异可能导致蛋 白质表达异常或功能丧失,进而引发 疾病。
基因诊断的方法
01
基因诊断的方法包括基因测序、单基因遗传病检测、染色体异 常检测等。
02
基因测序是最常用的方法,它能够检测基因组中所有基因的序

12《基因诊断与基因治疗》课件1-文档资料

12《基因诊断与基因治疗》课件1-文档资料

临床 诊断
基因芯片
• 阅读课本,思考: – 什么是基因芯片? – 基因芯片与基因诊断有什么关系? – 基因芯片有什么优点? – 基因芯片有哪些应用?
基因治疗
1。基因治疗: 将特定外源基因导入有基因缺陷的细 胞来治疗疾病 2。基因治疗过程: 选择治疗基因 治疗基因与载体结合
治疗基因正常表达
科目一考试网 kmyks/ 科目一模拟考试2019
基因诊断与基因治疗
回顾:
1。细胞内决定生物性状的物质是什么?其功能
单位是什么?
2。不同的基因结构上的差异表现在哪些方面?
3。什么碱基互补配对原则?
4。现有某DNA片断上一条链上的碱基排列顺序 是AAGGCGTTA,你能写出另一条链上碱基 的排列顺序吗?
基因诊断
基因 蛋白质
性状
基因 诊断
ห้องสมุดไป่ตู้
生化 诊断
小 结
• 基本概念 基因诊断 PCR技术 基因芯片 • 基本理论 • 基因诊断过程 • 基因诊断及基因芯片的应用 • 基因治疗的过程 • 基因治疗的机理
基因治疗
金手指驾校网 jszjx/ 金手指驾驶员考试2019
基因治疗对癌症的治疗方案
• 抑制癌细胞增生基因 导入癌细胞 • 抑制癌细胞转录 DNA片断导入癌细胞
• 提高机体免疫力基因 导入免疫系统
阻断癌 细胞繁 殖
提高免 疫力
基因治疗的机理
• 基因置换:正常基因取代致病基因 • 基因修正:纠正致病基因的突变碱基序列 • 基因修饰:目的基因表达产物补偿致病基因 的功能 • 基因抑制:外源基因干扰、抑制有害基因的 表达 • 基因封闭:封闭特定基因的表达

基因诊断和基因治疗

基因诊断和基因治疗
临床诊断
根据解读结果进行临床诊断,为患者提供针对性 的治疗方案。
遗传咨询
为患者和家属提供遗传咨询服务,解释疾病遗传 特点、风险及预防措施等。
基因治疗概述
03
基因治疗的定义和目的
基因治疗的定义
基因治疗是指将正常或外源基因导入人体细胞,以纠正或补偿因基因缺陷引起的 疾病。
基因治疗的的目的
基因治疗旨在从根本上治疗疾病,而不是仅仅缓解症状。通过修复或替换缺陷基 因,可以消除疾病的根源,使患者获得更持久的治疗效果。
目的
基因诊断旨在预测和诊断遗传性疾病,指导精准医疗,以及实现个体化治疗。
基因诊断的技术方法
1 2
基于DNA测序的检测
包括直接测序、聚合酶链反应(PCR)、单链构 象多态性分析(SSCP)等。
基于生物芯片的检测
包括基因表达谱芯片、单基因突变检测芯片等。

基于细胞遗传学的检测
包括荧光原位杂交(FISH)、染色体微阵列分析 (CMA)等。
总结词
肿瘤的基因治疗是一种新型的治疗方法,通过纠正肿 瘤细胞中的异常基因,抑制肿瘤的生长和扩散。
详细描述
肿瘤的基因治疗是一种具有潜力的治疗方法,通过导 入外源基因或使用抑制基因的表达来抑制肿瘤的生长 和扩散。例如,利用病毒载体将抑癌基因导入肿瘤细 胞中,可以抑制肿瘤细胞的生长。此外,通过抑制某 些与肿瘤转移相关的基因的表达,也可以降低肿瘤的 转移能力。
未来,基因诊断和基因治疗将在肿瘤、遗传性疾病等领 域发挥重要作用,提高患者生存率和改善生活质量。同 时,随着技术的进步和应用范围的扩大,基因诊断和基 因治疗还将有助于解决人类面临的重大健康问题。
案例分析:基因诊
06
断和基因治疗的应
用实例

高二生物基因诊断和基因治疗1:基因治疗和基因诊断的区别

高二生物基因诊断和基因治疗1:基因治疗和基因诊断的区别

高二生物基因诊断和基因治疗1:基因治疗和基因诊断的区别第1节基因诊断和基因治疗【教学目标】知识与能力方面:1.简述基因诊断的基本含义和基本原理。

2.描述基因诊断在恶性肿瘤早期诊断中的重要作用。

3.举例说明基因治疗的基本含义和基本原理、优点及前景。

4.进一步体验科学的发展促进人类健康方面的重要作用。

过程与方法方面:情感态度、价值观方面:【教学重点】1.简述基因诊断的基本含义和基本原理。

2.描述基因诊断在恶性肿瘤早期诊断中的重要作用。

3.举例说明基因治疗的基本含义和基本原理、优点及前景。

【教学难点】基因诊断的原理,基因芯片的应用。

【教学方法】讲授法和学生自主合作学习相结合【教学课时】2课时。

【教学过程】教师:如何利用基因诊断来确认SARS病毒?哪些疾病可以基因诊断来检测?(学生活动)学生阅读教材解答问题。

基因诊断适应检测疾病:1.由入侵病原微生物基因的表达引起的疾病。

2.自身遗传物质变异引起的。

教师:什么是基因诊断?基因诊断的原理?基因诊断的过程是?DNA分子探针,DNA分子杂交原理,学生分组探究学习结束后,进行交流。

图示回答,并黑板展示:1.基因诊断(1)原理DNA分子杂交原理(2)过程(3)基因诊断现状基因诊断具有高度的敏感性和特异性,且简便、快捷,因此在病毒、细菌、支原体、衣原体、立克次体及寄生虫感染诊断中得到了广泛应用。

基因诊断本身是在分子遗传学的基础上发展起来的,在遗传病的诊断方面成绩最为突出,也最有发展前途,对许多已明确致病基因及其突变类型的遗传病诊断效果良好。

即使不明确致病基因,也可利用遗传标志进行连锁分析来诊断某些遗传病。

肿瘤是一类多基因病,其发展过程复杂,临床表现多样,涉及到多个基因的变化并与多种因素有关,因而相对于感染性疾病及单基因遗传病来说,肿瘤的基因诊断难度更大得多。

但肿瘤的发生和发展从根本上离不开基因的变化,所以基因诊断在肿瘤疾病中也会有广阔的前景。

专家认为,基因诊断至少应有三大原则:第一,基因诊断首先要有严格的实验室标准,保证基因不被污染;第二,诊断的敏感性和准确性需要设立标准线;第三,基因诊断必须有严格的伦理学要求,其中包括隐私保密、知情同意等等(3)基因芯片通过微技术手段将大量特定序列的DNA片段(探针)有序地固定在尼龙膜、玻片或硅片上,从而能大量,快速、平行地对DNA分子的碱基序列进行测定和定量分析。

“基因诊断与基因治疗”教案

“基因诊断与基因治疗”教案

“基因诊断与基因治疗”教案课程名称:基因诊断与基因治疗授课人:XXX授课时间:2023年XX月XX日授课地点:XXX大学XXX教室一、教学目标1.理解基因诊断与基因治疗的基本概念及原理。

2.掌握基因诊断与基因治疗的基本方法和技术。

3.了解基因诊断与基因治疗在医学中的应用。

4.培养学生的创新思维和实践能力。

二、教学内容1.基因诊断的基本概念及原理2.基因诊断的方法和技术3.基因治疗的基本概念及原理4.基因治疗的方法和技术5.基因诊断与基因治疗在医学中的应用三、教学方法1.讲授法:介绍基本概念和原理。

2.实验法:进行基因诊断和基因治疗的实验操作。

3.案例分析法:介绍基因诊断与基因治疗在医学中的应用案例。

4.小组讨论法:学生分组讨论,分享学习心得和体会。

5.课堂互动法:提出问题,引导学生思考,进行课堂讨论。

6.网络学习法:提供相关网络资源,鼓励学生自主学习。

四、教学步骤1.导入新课:介绍基因诊断与基因治疗的背景和意义。

2.讲解基本概念和原理:通过PPT和板书讲解基因诊断与基因治疗的基本概念和原理。

3.进行实验操作:演示并指导学生进行基因诊断与基因治疗的实验操作。

4.案例分析:介绍基因诊断与基因治疗在医学中的应用案例,并进行分析。

5.分组讨论:学生分组讨论,分享学习心得和体会。

6.课堂互动:提出问题,引导学生思考,进行课堂讨论。

7.小结:总结本节课的主要内容和学习成果。

8.布置作业:布置相关练习题和思考题,要求学生课下复习和思考。

9.网络学习:提供相关网络资源,鼓励学生自主学习。

10.下节课预告:介绍下节课的教学内容和重点。

五、教学评价1.课堂表现:观察学生在课堂上的表现,包括听讲、提问、回答问题等。

2.实验操作:检查学生的实验操作技能和实验结果。

3.作业完成情况:检查学生的作业完成情况和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章基因诊断与基因治疗基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。

所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。

因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。

可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。

第一节基因诊断一.基因诊断的含义传统对疾病的诊断主要是以疾病的表型改变为依据,如患者的症状、血尿各项指标的变化,或物理检查的异常结果,然而表型的改变在许多情况下不是特异的,而且是在疾病发生的一定时间后才出现,因此常不能及时作出明确的诊断。

现知各种表型的改变是由基因异常造成的,也就是说基因的改变是引起疾病的根本原因。

基因诊断是指采用分子生物学的技术方法来分析受检者的某一特定基因的结构(DNA水平)或功能(RNA水平)是否异常,以此来对相应的疾病进行诊断。

基因诊断有时也称为分子诊断或DNA诊断(DNA diagnosis)。

基因诊断是病因的诊断,既特异又灵敏,可以揭示尚未出现症状时与疾病相关的基因状态,从而可以对表型正常的携带者及某种疾病的易感者作出诊断和预测,特别对确定有遗传疾病家族史的个体或产前的胎儿是否携带致病基因的检测具有指导意义。

二.基因诊断的原理及方法(一)基因诊断的原理疾病的发生不仅与基因结构的变异有关,而且与其表达功能异常有关。

基因诊断的基本原理就是检测相关基因的结构及其表达功能特别是RNA产物是否正常。

由于DNA的突变、缺失、插入、倒位和基因融合等均可造成相关基因结构变异,因此,可以直接检测上述的变化或利用连锁方法进行分析,这就是DNA诊断。

对表达产物mRNA质和量变化的分析为RNA诊断(RNA diagnosis)。

(二)基因诊断的方法基因诊断是以核酸分子杂交(nucleic acid molecular hybridization)和聚合酶链反应(PCR)为核心发展起来的多种方法,同时配合DNA序列分析,近年新兴的基因芯片可能会发展成为一种很有用的基因诊断方法。

1.DNA诊断常用检测致病基因结构异常的方法有下列几种。

⑴斑点杂交:根据待测DNA 样本与标记的DNA探针杂交的图谱,可以判断目标基因或相关的DNA片段是否存在,根据杂交点的强度可以了解待测基因的数量。

⑵等位基因特异的寡核苷酸探针(allele-specific oligonucleotide probe, ASO probe)杂交:是一种检测基因点突变的方法,根据点突变位点上下游核苷酸序列,人工合成约19个核苷酸长度的片段,突变的碱基位于当中,经放射性核素或地高辛标记后可作为探针,在严格杂交条件下,只有该点突变的DNA样本,才出现杂交点,即使只有一个碱基不配对,也不可能形成杂交点。

一般尚合成正常基因同一序列,同一大小的寡核苷酸片段作为正常探针。

如果受检的DNA样本只能与突变ASO探针,不与正常ASO探针杂交,说明受检二条染色体上的基因都发生这种突变,为突变纯合子;如果既能与突变ASO探针又能与正常ASO探针杂交,说明一条染色体上的基因发生突变,另一条染色体上为正常基因,为这种突变基因的杂合子;如果只能与正常ASO探针杂交,不能与突变ASO杂交,说明受检者不存在该种突变基因,如图21-1所示。

若与PCR方法联合应用,即PCR/ASO探针杂交法(PCR/ASO probe hybridization),是一种检测基因点突变的简便方法,先用PCR方法扩增突变点上下游的序列,扩增产物再与ASO 探针杂交,可明确诊断突变的纯合子和杂合子。

此法对一些已知突变类型的遗传病,如地中海贫血、苯丙酮尿症等纯合子和杂合子的诊断很方便。

也可分析癌基因如H-ras和抑癌基因如p53的点突变。

⑶单链构象多态性(single strand conformation polymorphism, SSCP)分析相同长度的单链DNA因其序列不同,甚至单个碱基不同,所形成的构象不尽相同,在非变性聚丙烯酰胺凝胶电泳时速度就不同,若单链DNA用放射性核素标记,显影后即可区分电泳条带。

一般先设计引物对突变点所在外显子进行扩增,PCR产物经变性成单链后进行电泳分析。

PCR/SSCP方法,能快速、灵敏、有效地检测DNA突变点,如图21-2,此法可用检测点突变的遗传疾病,如苯丙酮尿症、血友病等,以及点突变的癌基因和抑癌基因。

⑷限制性内切酶图谱(restriction map)分析,如果DNA突变后改变了某一核酸限制性内切酶的识别位点,使原来某一识别位点消失,或形成了新的识别位点,那么相应限制性内切酶片段的长度和数目会发生改变。

一般基因组DNA经该种限制性内切酶水解,再做Southern 印迹,根据杂交片段的图谱,可诊断该点突变,如图21-3所示。

如果用PCR扩增该突变点的外显子,PCR产物经该种酶消化后,进行琼脂糖电泳,溴乙锭染色后可直接观察片段的大小及数目。

此法可用于检测有些限制性内切酶识别位点消失的遗传疾病,如镰状细胞贫血。

或基因缺失的疾病如α地中海贫血症,单纯性生长激素缺乏症等。

⑸限制性片段长度多态性(restriction fragment length polymorphism ,RFLP)遗传连锁分析人群中个体间DNA的序列存在差异,据估计每100-200个核苷酸中便有1个发生突变,这种现象称为DNA多态性。

有些DNA多态性可改变某一限制性内切酶的识别位点,因而产生了DNA限制性片段长度多态性。

RFLP按孟德尔方式遗传,在某一特定的家庭中,如果某一致病基因与特定的多态性片段连锁,可以遗传给子代,因此这一多态性片段可作为遗传标记,来判断该家庭成员或胎儿的基因组中是否携带该致病基因,见图21-4,此法可用于诊断甲型血友病、苯丙酮尿症、享延顿舞蹈病等。

⑹DNA序列分析对致病有关的DNA片段进行序列测定,是诊断基因异常(已知和未知)最直接和准确的方法。

2.RNA诊断RNA诊断主要是分析基因的表达功能,检测转录物的质和量,以判断基因转录效率的高低,以及转录物的大小。

⑴RNA印迹(Northern blot)RNA印迹是检测基因是否表达,表达产物mRNA的大小的可靠方法,根据杂交条带的强度,可以判断基因表达的效率。

⑵RT-PCR是一种检测基因表达产物mRNA灵敏的方法,若与荧光定量PCR结合可对RT-PCR产物量进行准确测定。

三.基因诊断的应用(一)遗传疾病现知遗传疾病有数千种,但多数遗传疾病属少见病例,有些遗传疾病在不同民族,不同地区的人群中发病率不同,例如镰状细胞贫血(sickle cell anemia),非洲黑色人种发病率高,而囊性纤维化症(cystic fibrosis)常见于美国白色人种,这二种遗传疾病在我国为罕见病例。

中国较常见的遗传疾病有地中海贫血、甲型血友病、乙型血友病、苯丙酮尿症、杜氏肌营养不良症(DMD)、葡萄糖-6磷酸脱氢酶(G-6PD)缺乏症、唐氏综合症(Down’s syndrome)等。

根据不同遗传疾病的分子基础,可采用不同的技术方法进行诊断,不但可对有症状患者进行检测,而且对遗传疾病家族中未发病的成员乃至胎儿甚至胚胎着床前(preimplantation)进行诊断是否携带有异常基因,这对婚育具有指导意义。

地中海贫血(地贫)是世界上最常见和发生率最高的一种单基因遗传疾病(monogenic disease),由于一种或几种珠蛋白合成障碍导致α类与β类珠蛋白不平衡造成的,临床以贫血、黄疸、肝脾肿大及特殊外貌为特征,地贫最常见的有两类:α地贫和β地贫。

α地贫(α-thalassemias)的分子基础主要为α珠蛋白基因缺失,也有部分病例是由于碱基突变造成的。

可采用限制性内切酶图谱方法检测α珠蛋白基因的缺失。

人α珠蛋白基因簇位于16号染色体,长度29 kb,包含7个连锁的α类基因或假基因。

α基因(α1及α2编码序列相同,仅非编码序列稍有差别,产物相同),该基因簇上有2个Eco RI 识别位点,经Eco RI酶解,进行Southern印迹,用标记的α基因片段作探针,得到一条23 kb 的杂交条带,Bam HI识别位点有4个,但只有14 kb片段能与mRNA基因探针杂交,见图21-5。

Hb Bart’s胎儿水肿综合征:由于该病患儿二条16号染色体的4个α珠蛋白基因均缺失,不能合成α链,胎儿全身水肿、肝脾肿大、四肢短小,常于妊娠30-40周死亡或早产后半小时内死亡。

样本DNA经限制性内切酶图谱分析不能显示α珠蛋白基因区带,RNA诊断也测定不出有α珠蛋白基因的mRNA。

缺失型HBH病:由于一条16号染色体上的两个α珠蛋白基因均缺失,另一条16号染色体上则缺失一个α珠蛋白基因,并缺失3.7 kb长度的DNA片段(右侧缺失型)或4.2 kb片段(左侧缺失型),DNA诊断只产生19 kb长度的Eco RI片段,或10kb Bam HI片段。

标准型α地贫:一条16号染色体上2个α珠蛋白基因全部缺失。

而另一条16号染色体上具有2个正常的α珠蛋白基因,DNA诊断结果,Eco RI和Bam HI都出现与正常一样的23 kb 或14 kb的条带,但杂交条带的放射性自显影较正常人浅。

β地贫(β-thalassemias)的基因诊断:β地贫的分子基础不同于α地贫,β珠蛋白基因通常并不缺失,而是由于基因点突变或个别碱基的插入或缺失。

每一民族和人群β珠蛋白基因点突变部位不尽相同,都有特定的类型谱。

(二)感染性疾病过去对感染性疾病(infectious diseases)的诊断,一是直接分离检查病原体,或者对患者血清学或生物化学的分析。

有些病原体不容易分离,有些需经过长期培养才能获得。

血清学对病原体抗体的检测虽然很方便,但是病原体感染人体后需要间隔一段时间后才出现抗体,并且血清学检查只能确定是否接触过该种病原体,但不能确定是否有现行感染,对潜伏病原体的检查有困难。

对感染性疾病的基因诊断具有快速、灵敏、特异等优点。

80年代建立的PCR技术已广泛应用于对病原体的检测。

一般根据各病原体特异和保守的序列设计引物,有的还合成ASO探针,对病原体的DNA可用PCR技术直接检查,而对RNA病毒,则采用RT-PCR。

现在市场已经有许多种病原体的测定药盒供应,每一盒包含扩增某种病原体的特异引物,所需的酶以及配妥的各种反应试剂,并附有可行的操作方法步骤。

1.病毒性感染:多种病毒性感染都可采用基因诊断检测相应的病原体,如甲型、乙型、丙型和丁型肝炎病毒,人免疫缺陷病毒、可萨奇病毒、脊髓灰质类病毒、腺病毒、EB病毒、疱疹病毒、人巨细胞病毒、乳头状病毒……等。

相关文档
最新文档