微生物的合成代谢PPT课件

合集下载

微生物的营养代谢PPT课件

微生物的营养代谢PPT课件
基本营养物质的培养基。
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2

《微生物次级代谢》课件

《微生物次级代谢》课件
通过调节转录起始和转录 效率来控制次级代谢基因 的表达。
转录后水平调控
通过控制mRNA的稳定性 、翻译效率和翻译后修饰 来影响次级代谢基因的表 达。
表观遗传调控
通过DNA甲基化、组蛋白 乙酰化等修饰来影响次级 代谢基因的表达。
酶活性调控
酶的合成与降解
通过调节酶的合成和降解来控制次级代谢产物的生成。
次级代谢产物的生物利用与开发
次级代谢产物在医药领域的应 用:如抗生素、激素、抗肿瘤
药物等。
次级代谢产物在工业领域的应 用:如生物塑料、生物燃料、 生物催化剂等。
次级代谢产物在农业领域的应 用:如植物生长调节剂、杀虫
剂、除草剂等。
次级代谢产物的开发前景:随 着生物技术的不断发展,次级 代谢产物在未来的应用前景将 更加广泛。
细胞密度与次级代谢
在达到一定细胞密度后,次级代谢产物开始生成,并 随着细胞密度的增加而增加。
04
次级代谢在生物工程中的应用
次级代谢产物的分离纯化
分离纯化方法
利用物理、化学和生物学方法,从微生物发酵液 中分离纯化次级代谢产物。
技术手段
采用色谱技术、沉淀法、结晶法等手段进行分离 纯化。
注意事项
需注意避免产物的降解和损失,提高产物的纯度 和收率。
05
次级代谢的研究进展与展望
次级代谢产物的发现与鉴定
次级代谢产物的发现
通过基因组学、转录组学和代谢组学技术,发现新的次级代 谢产物。
次级代谢产物的鉴定
利用色谱技术、光谱技术和质谱技术等手段,对次级代谢产 物进行分离、纯化和鉴定。
次级代谢的生物合成机制研究
生物合成途径
研究次级代谢产物的生物合成途径, 包括起始、延伸和终止等步骤。

微生物的代谢ppt课件

微生物的代谢ppt课件
6-磷酸葡萄糖酸→5-磷酸核酮糖→ 5-磷酸木酮 ↓
5-磷酸核糖→参与核酸生成
5-磷酸核酮糖→6-磷酸果糖 + 3-磷酸甘油醛(进入EMP)
HMP途径的重要意义
➢为核苷酸和核酸的生物合成提供戊糖-磷酸,途径中的赤藓 糖、景天庚酮糖等可用于芳香族氨基酸、碱基及多糖合成; ➢产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成 提供还原力,另方面可通过呼吸链产生大量的能量; ➢与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可 以调剂戊糖供需关系; ➢途径中存在3~7碳的糖,使具有该途径微生物的所能利用利 用的碳源谱更为更为广泛; ➢通过该途径可产生许多种重要的发酵产物;
ED途径的特点
ED途径的特征反应是2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG) 裂解为丙酮酸和3-磷酸甘油醛
ED途径的特征酶是2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)醛 缩酶
ED途径中的两分子丙酮酸来历不同,一分子由2-酮-3-脱氧-6磷酸葡萄糖酸直接裂解产生,另一分子由磷酸甘油醛经EMP 途径转化而来
1.2递氢和受氢
★经上述脱氢途径生成的NADH、NADPH、FAD等还原型辅 酶通过呼吸链等方式进行递氢,最终与受氢体(氧、无机或有 机氧化物)结合,以释放其化学潜能。 ★根据递氢特别是受氢过程中氢受体性质的不同,把微生物能量 代谢分为呼吸作用和发酵作用两大类。
发酵作用:没有任何外援的最终电子受体的生物氧化模式; 呼吸作用:有外援的最终电子受体的生物氧化模式; ★呼吸作用又可分为两类:
代谢:是微生物细胞与外界环境不断进行
物质和能量交换的过程,它是细胞内各种 化学反应的总和。 代谢=物质代谢+能量代谢
代谢的类型
按代谢过程考察的角度不同分:

微生物的新陈代谢优秀PPT

微生物的新陈代谢优秀PPT

生物固氮主要在三方面进行研究: 用实验的方法提高主要农作物的固氮能力。 模拟固氮酶,使工业生产N肥在常温、常压下进行。 选择利用高效、优质的固氮微生物做为生物肥料 (根瘤菌肥料和固氮菌肥料)。
2020/4/28
9
(一) 固氮微生物
80余属,全部为原核生物(包括古生菌),主要包 括细菌、放线菌和蓝细菌。根据固氮微生物与高等 植物及其他生物的关系,可将它们分为以下3类:
但大多数固氮菌都是好氧菌。
微生物如何解决既需要氧又须 防止氧对固氮酶损伤的矛盾?
2020/4/28
21
(三) 固氮微生物的避氧害机制
长期进化过程中,各种固氮微生物已进化出适 合在不同条件下保护固氮酶免受氧害的机制。
1. 好氧性自生固氮菌的抗氧保护机制 (1)呼吸保护
固氮菌科的菌种能以极强的呼吸作用迅速将周围环境中
18
固氮酶
固氮酶的特点:
1)还原N2、H+、C2H2等生物活性;
2)由固氮酶(组分I;钼铁蛋白;固二氮酶)和固氮
酶还原酶(组分II;铁蛋白;固二氮酶还原酶来自共同组成时才具有生物活性;
3)氧不可逆失活作用。
2020/4/28
19
固氮的生化途径细节
2020/4/28
20
思考
固氮酶对氧极端敏感(不可逆的失活); 组分II(铁蛋白):在空气中暴露45s后失活一半; 组分I(钼铁蛋白):活性半衰期10 min;
第三节 微生物独特合成代谢 途径举例
2020/4/28
1
一. 自养微生物的CO2固定 二. 生物固氮 三. 肽聚糖的合成 四. 次生代谢
2020/4/28
2
一. 自养微生物的CO2固定
各种自养微生物在其生物氧化中获取的能量主要用于CO2的 固定。在微生物中,至今已了解的CO2固定的途径有4条。

第五章微生物的酶与代谢ppt课件

第五章微生物的酶与代谢ppt课件
倍满沈杨落哦烁疗灾垂挽浙轩温袭拥竞寡兹用珍捣睡腰长衷蛙憾荤点刺苯第五章+微生物的酶与代谢第五章+微生物的酶与代谢
第二节 微生物的能量代谢
能量代谢––––微生物体内的能量转变过程 热力学第二定律 能量守恒 微生物的能量代谢是通过生物氧化反应来实现的 生物氧化–––微生物在细胞内酶作用下把营养物质氧化的过程
附窑睬胁淤豫穿般锑力恰炳应捧菏妥纱普清样掠跋铆祝应藏汉背厚丁吟帐第五章+微生物的酶与代谢第五章+微生物的酶与代谢
主要内容
微生物的酶 微生物的能量代谢 微生物的分解代谢
包熙候绵元赂吹迟俯瘸镑殷滴请浇辕咖颠希羹狐需疑西净汪雌珐歹伍横劫第五章+微生物的酶与代谢第五章+微生物的酶与代谢
第一节 微生物的酶
玫综闰惺查居亥巴卓肛斗具琶镇揽薯吻陈煌峨约戚艳演天穗革垢芽锤怔辨第五章+微生物的酶与代谢第五章+微生物的酶与代谢
3-磷酸甘油醛
(3-磷酸甘油醛脱氢酶)
1,3-二磷酸甘油酸
(磷酸甘油酸激酶)
3-磷酸甘油酸
(磷酸甘油酸变位酶)
2-磷酸甘油酸
烯醇式丙酮酸
磷酸烯醇式丙酮酸(PEP)
(丙酮酸激酶)
脱氢
氧化磷酸化
盒丹吃对虞它腾倾盈捉古句懂铺者射割惧付刽隐化烧仗溢射铱梭瞪御走谴第五章+微生物的酶与代谢第五章+微生物的酶与代谢
(1)在温和条件下进行(由酶催化) (2)反应步骤繁多,但相互配合、有条不紊、彼此协调,且逐步进行,表征了新陈代谢具有严格的顺序性 (3)对内外环境具有高度的调节功能和适应功能。
新陈代谢的特点
舍惊怔疫脚诉脸咕袁撩救锡蔓愈束昨黑镣馋麻霄碳矢茨剃慢霞亩阅牲馋灼第五章+微生物的酶与代谢第五章+微生物的酶与代谢

微生物的合成代谢

微生物的合成代谢

由葡萄糖合成N-乙酰葡糖胺和N-乙酰胞壁酸
ATP ADP
葡萄糖
葡萄糖-6-磷酸
Gln Glu 果糖-6-磷酸
乙酰CoA CoA
葡糖胺-6-磷酸
N-乙酰葡糖胺-6-磷酸
UTP PPi
N-乙酰葡糖胺-1-磷酸
N-乙酰葡糖胺-UDP
磷酸烯醇式丙酮酸 Pi NADPH NADP
N-乙酰胞壁酸-UDP
“Park”核苷酸 的合成
举例
氨基酸,单糖,单核苷酸 蛋白质,多糖,核酸
蛋白质,多糖,核酸,脂类 抗生素,激素,毒素,色素
初级代谢产物的合成 肽聚糖合成,固氮,微 生物次级代谢反应
微生物合成代谢的原料
微生物合成作用需要小分子物质、能量和还原力 NAD(P)H2
2020/7/18
来源:
小分子物质、 能量和还原力 NAD(P)H2
丙酮酸脱羧 脂肪氧化
在生物合成中的作用
核苷糖类 戊糖 多糖贮藏物 核苷酸 脱氧核糖核苷酸
芳香氨基酸 芳香氨基酸 葡萄糖异生 CO2固定
胞壁酸合成 糖的运输 丙氨酸 缬氨酸 亮氨酸 CO2固定
丝氨酸 甘氨酸 半胱氨酸 谷氨酸 脯氨酸 精氨酸 赖氨酸 天冬氨酸 赖氨酸 蛋氨酸 苏氨酸 异亮氨酸
脂肪酸 类异戊二烯 甾醇
菌。二者的区别是,甲基营养菌需要的碳化物比CO2的还原性高 ,有些种能够利用甲醇、甲胺进行生长,但不能利用甲烷,它们 属于化能有机营养微生物,如生丝微菌(Hyphomicrobium)、假单 胞菌、芽胞杆菌和弧菌等属中的一些种。甲烷营养菌则既能利用 甲烷,也能利用更为氧化的一碳化合物,如甲酸,但不能利用具 有C--C键的物质
• EMP • HMP • ED • WD
2020/7/18

代谢ppt课件

代谢ppt课件
在发酵条件下有机化合物只是部分地被氧化,故 8
发酵(fermentation) 在工业生产中常把好氧或兼性厌氧微生物 在通气或厌气的条件下的产品生产过程统 称为发酵。
9
异养微生物的生物氧化
发酵过程的氧化是与有机物的还原偶联在一起;被 还原的有机物来自于初始发酵的分解代谢,即不需 要外界提供电子受体。
光合色素:光合生物所特有的色素,是 将光能转化为化学能的关键物质。
无氧呼吸的最终电子受体不是氧,而是 象NO3-, NO2-,SO42-,S2O32-,CO2等这类外 源受体。
无氧呼吸也需要细胞色素等电子传递体, 并在能量分级释放过程中伴随着磷酸化 作用,也能产生较多的能量用于生命活 动。但由于部分能量随电子转移传给最 13
无氧呼吸
无氧呼吸的氧化底物一般为有机物,如葡 萄糖、乙酸和乳酸等。它们被氧化为CO2, 有ATP生成。
无氧呼吸的特点是底物按常规途径脱氢后,经
部分呼吸链递氢,最终由氧化态的无机物(个
别是有机物延胡索酸)受氢。
无机盐呼吸 无氧呼吸
硝酸盐呼吸
NO2-,N2O,NO,N2 NO3- SO32-,S3O62-,S2O32-,H2S
硫酸盐呼吸
硫呼吸
S2-
SO42-
S0 产乙酸细菌
CH3COOH
碳酸盐呼吸 产甲烷菌
基质(底物)水平磷酸化:厌氧微生物和兼 性厌氧微生物在此过程中,产生一种含高自 由能的中间体,如含高能键的1,3-二磷酸甘 油酸。这一中间体将高能键交给ADP,使 ADP磷酸化而生成ATP。
氧化磷酸化:好氧微生物在呼吸时,通过电 子传递体系产生ATP的过程叫氧化磷酸化。
3
代谢概论
有机物
最初能源

微生物学 第七章 微生物的代谢(共81张PPT)

微生物学 第七章 微生物的代谢(共81张PPT)
特点:
a 、不经EMP途径和TCA循环而得到彻底氧化,无ATP生成,
b、产大量的NADPH+H+还原力 ; c、产各种不同长度的重要的中间物(5-磷酸核糖、4-磷酸-赤藓糖 ) d、单独HMP途径较少,一般与EMP途径同存
e、HMP途径是戊糖代谢的主要途径。
3)ED途径
——2-酮-3-脱氧-6-磷酸-葡萄糖酸裂解途径 1952年 Entner-Doudoroff :嗜糖假单胞菌
过程: (4步反应) 1 葡萄糖 6-磷酸-葡萄糖
6-磷酸-葡糖酸
6-磷酸-葡萄糖-脱水酶
特点:
a、步骤简单 b、产能效率低:1 ATP
KDPG KDPG醛缩酶
3--磷酸--甘油醛 + 丙酮酸
c、关键中间产物 KDPG,特征酶:KDPG醛缩酶
细菌:铜绿、荧光假单胞菌,根瘤菌,固氮菌,农杆菌,运动发酵单胞 菌等。
——严格厌氧菌进行的 唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1) ——丙酮丁醇梭菌(Clostridium acetobutyricum)
2丙酮酸
2乙酰-CoA
缩合
乙酰-乙酰 CoA
(CoA转移酶)
丙酮 +CO2 丁醇
5)氨基酸的发酵产能(stickland反应)
发酵菌体:生孢梭菌、肉毒梭菌、斯氏梭菌、双 酶梭环(TCA 循环支路)
乙酸
乙酰-CoA
(乙酰--CoA合成酶)
异柠檬酸
(异柠檬酸裂合酶)
苹果酸 (苹果酸合成酶) 琥珀酸 + 乙醛酸
Ii 丙酮酸 、PEP等化合物固定CO2的方法 Iii 厌氧、兼性厌氧微生物获得TCA 中间产物方式
------通过TCA的逆过程

微生物的代谢ppt课件

微生物的代谢ppt课件

酶制剂发酵
利用微生物产生各种酶类的代谢过程 ,将酶提取后广泛应用于食品加工、 洗涤剂等领域。
微生物代谢在环境保护中应用
废水处理
利用微生物降解有机污染物的代 谢能力,将废水中的有害物质转 化为无害物质,达到废水处理的
目的。
生物脱硫脱氮
利用微生物分解有机垃圾的代谢 过程,将有机垃圾转化为稳定的 腐殖质,实现有机垃圾的资源化
也最快。
酸碱度对微生物代谢影响
酸碱度(pH值)对微生物的生长和 代谢有很大影响。
pH值通过影响微生物细胞膜的通透 性、酶的活性以及营养物质的吸收等 方式来影响微生物的代谢。
不同微生物对pH值的适应性不同, 有些微生物只能在酸性或碱性环境中 生长。
微生物在适宜的pH值范围内,其代 谢活动才能正常进行。
医疗健康
微生物代谢与人类健康密切相 关,研究微生物代谢有助于了 解疾病的发生机制并开发新的 治疗方法。
农业领域
微生物代谢在农业领域也有重 要作用,如生物肥料、生物农
药的研制和应用等。
02
微生物能量代谢
能量代谢基本概念
能量代谢
指生物体内能量的转移和转换过程, 包括能量的释放、传递、储存和利用 。
氧化还原反应
通过改变酶分子的数量来调节代谢速率,如酶合成和降解的速
率控制。
基因表达调控机制
转录水平调控
通过控制基因转录的速率来调节基因表达,如启动子和转录因子的 相互作用。
翻译水平调控
通过控制mRNA的翻译速率来调节基因表达,如核糖体结合位点和 翻译起始因子的作用。
转录后和翻译后调控
通过控制mRNA和蛋白质的修饰、加工和降解来调节基因表达,如 RNA剪接和蛋白质磷酸化。
微生物的代谢ppt课件

5微生物的代谢-PPT课件

5微生物的代谢-PPT课件
氧化型物质,在这个过程中偶联着ATP 的合成,这种产生ATP方式称底物水平 磷酸化
化学渗透偶联假说
1961年,英国,米切尔提出 电子传递过程中导致膜内外出现质子浓度 差,从而将能量蕴藏在质子势中,质子势由 膜外进入胞内,此过程中通过存在于膜上的 F1-F0ATP酶偶联ATP的形成
构象变化偶联假说
2. 生产菌种的来源 自学
3. 微生物工业发酵的一般过程
二、大规模发酵特征
1. 用于好氧菌的大型发酵罐的结构与应用 2. 厌氧菌大型发酵罐和其他生物反应器 3. 发酵过程的优化及后处理 4.发酵的逐级放大
自学
1. 用于好氧菌的大型发酵罐的结构与应用 2. 厌氧菌大型发酵罐和其他生物反应器 3. 发酵过程的优化及后处理
二、分支合成途径调节
特点: 每个分支途径的末端产物控制分 支点后的第一个酶,同时每个末 端产物又对整个途径的第一个酶 有部分的抑制作用
第五节 微生物次级代谢与次级代谢产物
一、次级代谢与次级代谢产物 1. 初级代谢 微生物从外界吸收各种营养物质,通过 分解代谢和合成代谢,生成维持生命活 动的物质和能量的过程
发酵的逐级放大
(1) 小试
实验室或小型设备 得小试最佳发酵条件 评估所发酵的产物是否具有生产可能性
(2) 中试 实验工厂或车间的小规模设备 对小试最佳发酵条件进行验证并放大 基本确定发酵产物能否进行工业大规 模生产
(3) 大试 试验性生产 对中试发酵条件的参数进行验证改进 确定发酵产物能否进行工业大规模生产
转移酶类的特异性决定次序 单糖单位——核苷糖为载体
核苷糖————核苷糖-单糖
能量来源:核苷糖中高能糖-磷酸键水解
5. 氨基酸的合成
碳骨架来自糖代谢产生的中间代谢产物 氨: ①直接从外界环境获得;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,7-二磷酸景天庚酮糖磷酸酯酶
13
14
2. 还原性三羧酸循环
厌氧性自养微生物中
TCA循环—有氧呼吸分解有机物的过程 (P82 图4-17)
还原性TCA循环与TCA循环的逆反应极其相似 (P119 图6-4),但存在两个关键的反应: 乙酰CoA的还原羧化 琥珀酰CoA的还原羧化
15
二个关键反应:
(2)ATP and NADPH are used to convert 3PG into G3P (glyceraldehyde 3 phosphate). Some of this product is shuttled out of the cycle to make sugars
(3)The remaining G3P is processed (using more ATP) to make RuBP again.
绝大多数光合生物(植物、蓝细菌、紫色 细菌和绿色细菌等) 部分异养微生物固定CO2的方式
9
The Calvin-Benson cycle(Ribulose biphosphate pathway)
1,5-二磷酸核酮糖
3-二磷酸甘油醛
1,3-二磷酸甘油酸
10
(1)Fixation of CO2 Ribulose 1,5-bisphosphate or RuBP is the CO2 acceptor, forming 3PG (3 phosphoglycerate). 5 carbon RuBP combines with 1 carbon CO2 to form a 6 carbon chain which immediately splits in 2- 3 carbon chains
1.乙酰-CoA的还原羧化反应 CH3CO - SCoA + CO2 + Fd (red ) CH3COCOOH + CoASH + Fd (ox)
2. 琥珀酰-CoA的还原羧化反应
琥珀酰 - CoA + CO 2 + Fd (red ) a - 酮戊二酸 + CoASH + Fd (ox )
还原性三羧酸循环
1)小分子前体碳架物质: 小分子物质指直接被机体用来合成细胞物质基本组成成 分的前体物(氨基酸、核苷酸及单糖等)。形成这些前体 物的小分子碳架主要有12种: 6-磷酸葡萄糖、6-磷酸果 糖、磷酸二羟丙酮、 3-磷酸甘油醛、 PEP、丙酮酸、4磷酸赤藓糖、 5-磷酸核糖、乙酰CoA、草酰乙酸、 α-酮 戍二酸及琥珀酸,它们可通过单糖酵解途径及呼吸途径 由单糖等物质产生。
3
在12种碳架前体中,有些是TCA循 环的中间体。若在微生物生长时这 些碳架被用于细胞物质合成,则导 致TCA中草酰乙酸等中间体不足, 造成TCA循环不能正常运转。微生 物通过特定回补途径合成草酰乙酸 或苹果酸,以补充TCA中中间体的
4
2)还原力--主要指还原型烟酰胺腺嘌呤核 苷酸类物质,即NADPH2或NADH2,这两 种物质在转氢酶作用下可以互换。
转氢酶
NADP+NADH
NADPH+NAD
5
还原力的来源:
在化能异养微生物中,还原力NADPH2或 NADH2通过发酵或呼吸过程形成。
在化能自养型细菌里,氢细菌中都存在可溶性 氢酶和颗粒性氢酶,分别催化形成NAD(P)H2和 ATP;其它的化能自养型细菌都是在消耗ATP的 前提下,电子通过在电子传递链上的逆转过程(由 高电位向低电位流动)产生NAD(P)H2。消耗大量 的ATP,故这类细菌生长缓慢。
蛋白质,多糖,核酸,脂类 抗生素,激素,毒素,色素
合成反应在生物 1.生物共有合成反应
体中的分布
2.微生物特有合成反

初级代谢产物的合成
肽聚糖合成,固氮, 微生物次级代谢反应
2
2. 微生物合成代谢的原料
微生物合成作用需要小分子物质、能量和还原力,三者 合称为“生物合成三要素”。这些物质和能量除直接自 外界环境中吸取外,均可以从分解代谢中获得。所以细 胞中的分解代谢是合成代谢的基础,二者密切相关。
Net yield- sugars to be used in cellular respiration
11
Carboxylation in Calvin cycle
12
Regeneration and key enzymes in Calvin cycle
⑩.5-磷酸核酮糖激酶
11
①.1,5-二磷酸核酮糖羧化酶
第七章 微生物的合成代谢
自养微生物的生物合成: CO2 异养微生物的生物合成: 小分子物质
第一节、生物合成三要素与合成代谢 的一般原则
1
一、微生物合成代谢的类型与原料
1.
分类依据
合成反应类型
举例
产物分子量
1.单体合成
氨基酸,单糖,单核苷酸
2.大分子聚合物合成 蛋白质,多糖,核酸
产物性质
1.初级代谢产物 2.次级代谢产物
19
二、异养微生物CO2的固定 三羧酸循环的补偿途径,弥补TCA循环的中 间产物的丧失。
20
①.PEP carboxykinas还原羧化
琥珀酰CoA的还原羧化
17
3. 还原性乙酰CoA途径
在辅因子四氢叶酸的参与下,微生物通过还原性 乙酰辅酶A途径固定CO2(图6-4)。
18
4. 三羟基丙酸途径
CO2分别通过乙酰CoA和丙酰CoA固定,经过甲 基丙二酰CoA 、琥珀酰CoA等中间产物形成苹果 酰CoA,该物质最终分解形成乙酰辅酶A和乙醛酸 (图6-6)。
7
第二节 二氧化碳的固定(CO2 fixation) 二氧化碳的固定:将空气或周围环境中的CO2 同化成细胞物质的过程。 CO2是自养微生物的唯一碳源,异养微生物也 能利用CO2 作为辅助碳源。
8
一、自养微生物二氧化碳的固定
1. The Calvin-Benson cycle(二磷酸核酮糖途径)
光合生物:蓝细菌通过非环式电子传递产生
还原力。紫色和绿色光合细菌,利用光能推动电
子逆流产生还原力。
6
3. 微生物合成代谢的特点
1)很少种类的分子单体 2)利用同样的酶同时催化合成代谢和分解代
谢的一些反应 3)关键酶催化合成代谢的关键步骤 4)总体上是不可逆的 5)局限于细胞中的不同区域 6)采用不同的辅基(辅酶)
相关文档
最新文档