高速激光熔覆加工参数

合集下载

高速激光熔覆技术介绍

高速激光熔覆技术介绍

高速激光熔覆技术介绍高速激光熔覆技术是一种通过高功率激光束对材料表面进行加工的现代先进技术。

该技术可以获得较高的熔覆效率和良好的成形质量,因此在制造行业中得到了广泛应用,例如汽车、航空航天等领域。

下面将从几个方面介绍高速激光熔覆技术的特点和应用。

1. 工作原理在高速激光熔覆技术中,激光束将被聚焦在待加工材料的表面上,使材料表面瞬间达到高温状态,并快速熔化。

同时,高温下的材料同时与粉末喷射器喷出的粉末形成液态态。

随着激光束移动,形成的液态材料被迅速凝固,由此形成一层高品质的熔覆层。

2. 特点高速激光熔覆技术具有多项明显特点。

首先,它可以处理多种各样的材料,例如金属、陶瓷、复合材料等。

其次,技术具有很高的加工效率,一般以mm/min为单位计算熔覆速度。

另外,该技术制作出来的熔覆层厚度可以达到几百至几千微米,质量精度和表面质量也非常高。

最后,与传统热处理技术相比,高速激光熔覆技术对原材料的热影响区域较小,可以避免热变形等问题,从而获得更好的几何精度。

3. 应用领域高速激光熔覆技术在制造行业中应用广泛。

在汽车制造领域,该技术可以制造出高强度、高硬度、高粘附性的汽车零部件,例如活塞、凸轮轴、齿轮等。

在航空航天领域,技术可用于制造航空发动机的涡轮齿轮、叶片等部件。

此外,高速激光熔覆技术还可以制造散热器和管道、液压和气动元件、刀具等。

总的来说,高速激光熔覆技术已成为现代先进制造技术中的一项重要技术。

随着科技的发展,它将持续发展和创新,为制造业的进一步发展注入新的活力。

简述工艺参数对激光熔覆的影响

简述工艺参数对激光熔覆的影响

简述工艺参数对激光熔覆的影响激光熔覆技术是一种先进的表面强化工艺,可以有效地提高金属表面的硬度、耐磨性和耐腐蚀性。

工艺参数作为激光熔覆过程中的重要因素,对最终的熔覆质量和性能有着重要的影响。

本文将对工艺参数对激光熔覆的影响进行简要描述。

激光熔覆技术是一种利用高能密度激光束对金属表面进行加热熔化,并在凝固过程中与基体金属混合的技术。

通过控制激光熔覆过程中的工艺参数,可以实现对熔覆层的组织结构、成分和性能的调控,从而满足不同工件的表面强化要求。

激光功率是影响激光熔覆过程的重要参数之一。

激光功率的大小直接影响着熔池的温度和深度,过高或过低的激光功率都会导致熔覆层的质量不理想。

过高的激光功率会导致熔池过热,容易产生裂纹和气孔,过低的激光功率则无法完全熔化添加材料和基体金属,影响熔覆层的结合强度。

合理选择激光功率对于保证熔覆层的质量至关重要。

激光扫描速度也是影响激光熔覆过程的重要参数之一。

激光扫描速度的快慢直接影响着熔池的凝固速度和熔覆层的组织结构。

通常情况下,较快的激光扫描速度会导致熔池的凝固速度加快,晶粒尺寸变小,组织更加细密,硬度更高,但是会降低熔覆层的厚度;而较慢的激光扫描速度则会导致熔池的凝固速度减慢,晶粒尺寸变大,组织较粗,硬度较低,但是可以保证熔覆层的厚度。

根据具体的工件和表面强化要求,合理选择激光扫描速度是非常重要的。

激光熔覆过程中的激光焦点位置也是影响熔覆质量的重要参数。

激光焦点位置与添加材料的进料位置、基体金属的表面形貌等因素密切相关,不同的焦点位置会导致熔池的形状和尺寸不同,影响熔覆层的成形性能和质量。

激光熔覆过程中的激光束直径、激光束形状、激光束的成形方式、激光束与工件表面的角度等参数也会对熔覆质量产生一定的影响。

合理选择和控制这些工艺参数,可以有效地提高激光熔覆的加工效率和加工质量。

工艺参数对激光熔覆的影响是十分显著的。

通过合理选择和控制激光功率、扫描速度、焦点位置等工艺参数,可以实现对熔覆层的微观组织、成分和性能的调控,从而满足不同工件的表面强化要求。

超高速激光熔覆Ni625

超高速激光熔覆Ni625

第52卷第11期表面技术2023年11月SURFACE TECHNOLOGY·237·超高速激光熔覆Ni625/WC复合涂层的耐磨性能李宝程1,崔洪芝1,2*,宋晓杰1,殷泽亮1,朱于铭1(1.山东科技大学 材料科学与工程学院,山东 青岛 266590;2.中国海洋大学 材料科学与工程学院,山东 青岛 266100)摘要:目的提高高铁制动盘用24CrNiMo铸钢的耐磨性和高温性能。

方法在24CrNiMo铸钢表面,通过超高速激光熔覆技术,制备Ni625/碳化钨(WC)复合涂层,并设计多层梯度熔覆,使得WC颗粒在涂层中呈均匀分布。

通过X 射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析涂层的物相组成、微观组织结构和元素分布。

分别采用显微硬度计、摩擦磨损试验机、三维形貌仪等测试涂层的硬度、室温及600 ℃的摩擦系数和耐磨性,分析涂层的摩擦磨损机理。

通过同步热分析仪(TGA-DSC)测试涂层的抗高温氧化性能和组织的高温稳定性能。

结果涂层主要由γ-Ni固溶体、WC以及含W增强相W2C和M23C6等组成。

WC分布较为均匀,涂层平均显微硬度达440HV0.2~610HV0.2,是基体硬度的1.25~1.7 倍。

在室温条件下,体积磨损率仅为基体24CrNiMo铸钢的 4.2%~20.8%,摩擦系数略低于基体;在600 ℃条件下,体积磨损率为基体24CrNiMo铸钢的 80.1%~180.8%,摩擦系数高于基体,且稳定性好,熔覆涂层显著提高了24CrNiMo铸钢基体的耐磨性。

磨痕分析表明,涂层在室温下主要为磨粒磨损,600 ℃下除了磨粒磨损之外,并还伴随着轻微的氧化磨损,其中复合涂层S3的性能最佳。

结论在以高速强力磨损为主的工况下,Ni625/WC复合涂层具有优异的耐磨性能和抗高温氧化性能,球形WC颗粒在提高涂层耐磨方面发挥了重要作用。

关键词:高铁制动盘;超高速激光熔覆;摩擦磨损,Ni基涂层中图分类号:TH117 文献标识码:A 文章编号:1001-3660(2023)11-0237-11DOI:10.16490/ki.issn.1001-3660.2023.11.018Wear Resistance of Ultra-high Speed Laser CladdingNi625/WC Composite CoatingsLI Bao-cheng1, CUI Hong-zhi1,2*, SONG Xiao-jie1, YIN Ze-liang1, ZHU Yu-ming1(1. School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590,China; 2. School of Materials Science and Engineering, Ocean University of China, Shandong Qingdao 266100, China) ABSTRACT: High-speed train brake disc is one of the important components to ensure the safe and reliable operation of收稿日期:2022-10-30;修订日期:2023-03-08Received:2022-10-30;Revised:2023-03-08基金项目:国家自然科学基金(51971121,U2106216);山东省重大创新工程项目(2019JZZY010303,2019JZZY010360)Fund:The National Natural Science Foundation of China (51971121, U2106216); Major-special Science and Technology Projects in Shandong Province (2019JZZY010303, 2019JZZY010360)引文格式:李宝程, 崔洪芝, 宋晓杰, 等. 超高速激光熔覆Ni625/WC复合涂层的耐磨性能[J]. 表面技术, 2023, 52(11): 237-247.LI Bao-cheng, CUI Hong-zhi, SONG Xiao-jie, et al. Wear Resistance of Ultra-high Speed Laser Cladding Ni625/WC Composite Coatings[J]. Surface Technology, 2023, 52(11): 237-247.*通信作者(Corresponding author)·238·表面技术 2023年11月high-speed trains. Its main failure form is thermal damage and wear that occurs on or near the friction surface. The use of ultra-high-speed laser melting and other surface strengthening technologies to improve the wear resistance and high-temperature performance of brake discs and other key components is an effective way to ensure the safe operation of high-speed trains. At present, there are many studies on the wear performance of Ni-based WC coatings, but there are relatively few studies on the application of key parts such as brake discs in high-speed trains.In this paper, Ni625/WC composite coatings was prepared on the surface of 24CrNiMo cast steel for high-speed train brake discs using ultra-high-speed laser melting technology. Since the high specific gravity of WC affected the quality and wear resistance of the coatings, a three-layer gradient coating design was used to improve the distribution of WC particles in the coatings.The phase composition, microstructure and element distribution of the coatings were analyzed by an X-ray diffractometer (XRD), a transmission electron microscope (TEM) and a scanning electron microscope (SEM). The hardness, coefficient of friction and wear resistance of the coatings at room temperature and 600 ℃were tested with a microhardness tester, a friction and wear tester and a 3D morphology tester, respectively, and the friction and wear mechanisms of the coatings were analyzed. The high-temperature oxidation resistance and tissue stability of the coatings were investigated with a TGA-DSC simultaneous thermal analyzer.The results showed that the coatings are well bonded to the substrate, metallurgically, and the total thickness of the coatings was about 300 μm. The coatings were mainly composed of γ-Ni solid solution, WC, W2C and M23C6 phases. The partial melting and decomposition of WC particles generated different types and multi-scale secondary carbide phases distributed in the intergranular region of the γ-Ni solid solution. In addition, there were lamellar fine eutectic tissues composed of γ-Ni and secondary carbides generated. The hardness distribution of the coatings were relatively uniform, and the average microhardness reached 440HV0.2~610HV0.2, which was 1.25~1.7 times of the matrix hardness (360HV0.2), and the thickness of the heat-affected zone was about 200 μm with a hardness of 410HV0.2. With the increase of WC content, the main wear mechanism at room temperature was abrasive wear, and the volume of wear decreased to 20.8%, 6.8%, 4.4% and 4.2% of the matrix, and the corresponding coefficients of friction were slightly lower than that of the matrix. At 600 ℃, it was mainly abrasive wear and slight oxidation wear, and the coefficients of friction were higher than that of the matrix. The high toughness γ-Ni was firmly combined with WC, diffusely distributed secondary carbides and other reinforcing phases, which played the role of wrapping and supporting WC particles, and the multi-scale carbides, mainly WC particles, could effectively resist the indentation of grinding balls, thus reducing plastic deformation and wear. The coatings have good oxidation resistance and tissue stability, which are beneficial to the stability of frictional wear at high temperature. The spherical WC particles play an important role in improving the wear resistance of the coatings.KEY WORDS: brake discs of high-speed trains; ultra-high-speed laser cladding; frictional wear; Ni-based coating高铁制动盘是保证高速列车安全可靠运行的重要部件之一。

机器人高精度激光焊接与激光熔覆系统技术参数

机器人高精度激光焊接与激光熔覆系统技术参数
3.提供设备出厂精度检验证书、性能检测报告或记录。
4.设备终身免费提供系统应用软件的升级更新服务。
5.自设备安装调试验收合格后,十二个月内免费保修;12小时内响应;24小时内到达现场为用户解决维修问题。
6.在保修期外,只收取设备零部件的成本费,不得收取任何附加费用。
交货期限
在签订技术协议后1周内,提供机器人的外形与安装尺寸、安装说明文件。签订合同后一个月内在本地交货。
5.预留远程服务功能
6.示教编程,并配备离线编程软件
机器人设备安装空间
≤4m×4m×4m
机器人设备总重量
≤800KG(机器手臂+示教器+控制系统)
机器人操作模式
机器手可用控制器进行手动控制也可通过软件进行自动控制
★机器人应用扩展性
适应机械加工、弧焊、激光焊、激光3D打印的应用场景对负载(≥50KG)﹑位置重复精度(≥+/-0.05mm)﹑轨迹精度(≥+/-0.15mm)﹑工作空间半径(≥1500mm)以及电气控制方面的需求,需要提供详细的解决方案,以便后期对机器人进行应用扩展。
备注:标记★项目为必须满足的技术指标
3.数字输入输出通道≥12,模拟输出通道≥2
4.单套同步控制轴的数量:≥10
5.程序可方便进行备份及恢复,随时进行系统的更新,长期存储相关操作和系统日志。
6.噪音等级:50-67dB(根据DIN 45635-1)
7.环境温度:0℃- 45℃,最大湿度95%
8.保护等级:IP54
9.具有开放的二次开发接口,便于需方自行开发定制必要的功能及用户界面。
机器人高精度激光焊接与激光熔覆系统技术参数
参数指标
数值
★机器人手臂
1.负载:≥50KG

超高速激光熔覆工艺参数对熔覆层组织和性能的影响

超高速激光熔覆工艺参数对熔覆层组织和性能的影响

超高速激光熔覆工艺参数对熔覆层组织和性能的影响,郑红彬X王淼辉2,葛学元2,王欣2(1.机械科学研究总院,北京100083$.北京机科国创轻量化科学研究院有限公司,北京100083)摘要:超高速激光熔覆技术与传统激光熔覆有所不同,可大幅提高熔覆效率,制备无缺陷的均匀薄涂层。

为研究超高速激光熔覆主要工艺参数对熔覆层组织与性能的影响,采用超高速激光熔覆技术,分别 以不同激光功率、熔覆速度、熔覆道间距在9Cr2Mo钢基体表面制备M2高速钢涂层,对熔覆层微观组织及力学性能进行表征。

结果表明:熔覆层以细小等轴晶为主,晶间存在网状碳化物;熔覆层主要由crFe、2-Fe以及少部分的MC和M2C碳化物组成;随着激光功率的增大、熔覆速度的减小、熔覆道间距的减小,激光束对熔覆层输入的能量密度随之增大,熔覆层平均晶粒尺寸呈现增大趋势;改变超高速激光熔覆工艺参数,提高对熔覆层的输入能量密度,熔覆层的显微硬度也更加均匀,平均硬度明显提高。

关键词:激光技术;超高速激光熔覆;工艺参数;涂层;微观组织;显微硬度中图分类号:TG174.4文献标志码:AInfluence of Ultra-high-speed Laser Cladding Process Parameters on the Structure and Propertiesof the Cladding LayerZHENG Hongbin1,WANG Miaohui,GE Xueyuan2,WANG Xin2(1.China Academy of Machinery Science and Technology Group Co.,Ltd.,Beijing100083,China;2.Beijing National Innovation Institute of Lightweight Co.,Ltd.,Beijing100083,China)Abstract:Ultra-high-speed laser cladding technology was different from traditional laser cladding,which could greatly improve the cladding efficiency and prepare a uniform thin coating without defects.In order to study the influence of the mainprocessparameGersofulGra-high-speedlasercladdingonGhesGrucGureandperformanceofGhecladdinglayer ulGra-high-speedlasercladdingGechnology wasusedGoprepare M2high-speedsGeelcoaingonGhesurfaceof9Cr2MosGeelsubsGraGe wihdi f erenGlaserpower claddingspeed andcladdingchannelspacing.The microsGrucGureand mechanicalproperGiesof the cladding layer were represented.The results showed that the cladding layer was mainly composed of small equiaxed crys­tals andtherewerenetworkEarbidesbetweentheErystals.TheEladdinglayerwas mainlyEomposedof1-Fe2-Feanda sma l partofMCand M2CEarbides withtheinEreaseoflaserpower EladdingspeeddeEreased andEladdingEhannelspaE-ing also decreased,the energy density of laser beam input to the cladding layer would increase ,and the average grain size of thecladdinglayerincreased;changingtheultra-high-speedlasercladdingprocessparameterscouldincreasetheinputenergy densitytothecladdinglayer themicrohardnessofthecladdinglayerwasalso moreuniform andtheaveragehardnesswas significantlyimproved.Key words:laser technology ,ultra-high-speed laser cladding,process parameters,coating,microstructure ,microhard-激光熔覆是指将熔覆材料以不同方式添加到熔覆基体表面,并以激光束作为热源,将熔覆材料熔化凝固到基体表面制备与基体具有冶金结合的表面涂层,从而实现材料的表面改性以及产品的表面修复等的工艺方法%13&。

激光深熔焊接的主要工艺参数(精)

激光深熔焊接的主要工艺参数(精)

(一)激光深熔焊接的主要工艺参数1)激光功率。

激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。

如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。

而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深波动很大。

激光深熔焊时,激光功率同时控制熔透深度和焊接速度。

焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。

一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。

2)光束焦斑。

光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。

但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。

光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。

最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。

这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。

3)材料吸收值。

材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。

影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光表面的吸收率测量发现,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的表面状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。

CO2激光器的输出波长通常为10.6μm,陶瓷、玻璃、橡胶、塑料等非金属对它的吸收率在室温就很高,而金属材料在室温时对它的吸收很差,直到材料一旦熔化乃至气化,它的吸收才急剧增加。

采用表面涂层或表面生成氧化膜的方法,提高材料对光束的吸收很有效。

4)焊接速度。

焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。

合金钢超高速激光熔覆铁基涂层工艺

合金钢超高速激光熔覆铁基涂层工艺

合金钢超高速激光熔覆铁基涂层工艺一、实验材料及方法(一)实验材料本试验采用27SiMn辊作为基体材料,直径为53mm、长度为800mm。

釆用的熔覆粉末为含Cr量很高的431不锈钢粉末,粉末通过等离子旋转极法制备,粉末颗粒度在25~45um之间。

(二)实验方法与步骤1.材料准备采用磨床将辊表面锈迹磨光,为了提高不锈钢粉末与基体的冶金效果,所以基体表面尽可能光滑。

熔覆前用酒精对基体试样进行擦拭,以除去表面的油污。

熔覆材料采用431不锈钢粉末。

试验前将粉末放在烘干炉中干燥,除去其中的水分且保温温度为110℃,保温時间为2小时。

2.试样处理将激光熔覆试验后的27SiMn辊,用线切割将改钢板切成大约8mm8mm12mm的立方钢块,利用金相镶嵌机对试样进行镶嵌。

采用金相磨抛机分别使用400目、600目、800目、1000目的水砂纸对试样进行处理,最后通过抛光和腐蚀之后对试样进行金相观察等分析。

本试验采用的腐蚀液为4%硝酸酒精溶液。

3.试样分析(1)微观组织分析:利用电子显微镜观察分析试样横截面的显微组织和表面形貌,并观察其有无缺陷。

(2)性能分析:采用HVS-100型显微硬度计。

对涂层、热影响区、基体进行硬度测试;应用盐雾试验箱测定涂层的耐蚀性,试验溶液配置为:溶解试剂氯化钠于水中,调配成浓度为5%的盐水液,盐水液的PH值应在6-7之间。

并以冰醋酸调整溶液的酸碱值,使其腐蚀液的PH值为3.0-3.2。

二、工艺参数对涂层样貌的影响(一)激光功率对涂层样貌的影响激光功率是影响激光熔覆层质量的最关键的因素,也是发挥激光熔覆的优势所在。

对于一定厚度的涂层,功率过小,会造成涂层熔化不完全、表面不平整,功率过大则会造成合金粉末过烧、有气孔、表面褶皱、熔覆深度深、稀释率大等问题。

采用控制变量的方法,线速度20m/min、送粉速度4r、搭接率50%为保持不变,激光功率分别为2500W、3000以及3500W,通过实验发现功率为2500W时功率明显不足,粉末未完全融化,功率为3000W时粉末完全融化,成型平整,无缺陷,当功率增加至3500W时,粉末过烧,造成熔覆层表面褶皱。

超高速激光熔覆技术介绍

超高速激光熔覆技术介绍

超高速熔覆是可实现不同厚度、冶金结合、大面积涂层的快速制备,它以经济、环保的方式克服了其他涂层制备方法的缺点,这种新的方法也可以用于异种材料之间的结合,如在铝合金或铸铁表面制备耐磨和防腐涂层等,在增材制造行业内应用广泛。

超高速率熔覆技术是通过同步送粉添料方式,利用高能密度的束流使添加材料与高速率运动的基体材料表面同时熔化,待快速凝固后形成稀释,与基体呈冶金结合的熔覆层,大大提高熔覆速率,从而显著改善基体材料表面的耐磨、耐蚀、耐热、抗氧化等工艺特性的工艺方法。

超高速激光熔覆是一种快速激光表面处理技术,主要涉及技术参数分为两个方面,一是激光熔覆过程中,设备的设置参数,称为加工参数;二是熔覆完成后,对熔覆效果质量的测评衡量参数,称为检测参数。

与此同时,激光熔覆是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。

该产品与堆焊、喷涂、电镀和气相沉积相比,激光熔覆具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多以及粒度及含量变化大等特点,因此激光熔覆技术应用前景很广阔。

以上即是南京中科煜宸激光技术有限公司为大家带来的内容介绍,希望对大家能够有所帮助,中科煜宸已成功研发超高速激光熔覆装备,装备配备超高速熔覆专用送粉器、高可靠性送粉喷嘴等核心器件,与煤机、冶金、汽车、航空航天等行业深入合作,与众多企业建立了良好的合作关系。

45钢激光熔覆

45钢激光熔覆

45号钢的激光熔覆Ni/TiC的性能研究摘要:用LWS—500型激光焊接机对45号钢进行激光熔覆处理,熔覆粉末采用添加不同质量分数TiC的Ni60合金粉末,测量试块的表面硬度,并观察截面组织。

结果表明,采用Ni60+20%TiC合金粉末进行激光熔覆得到的质量最佳。

关键词:激光熔覆;Ni/TiC;显微组织;表面硬度激光熔覆是通过在基材表面添加高性能的熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝的方法,在基层表面形成与基体表面为冶金结合的熔覆层,可以显著改善基体表面的耐磨、耐蚀、耐热、抗氧化及电气特性,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。

激光熔覆技术作为一种新型的材料加工与表面改性技术,已经在汽车行业、航空航天工业、石油工业中得到了大量的应用【激光制造技术基础课本】。

45钢作为在工业中常用的中碳钢,具有强度高、韧性、塑性好等优良的机械性能,是轴类零件是主要材料,在工业生产中应用广泛。

但在实际应用中,为了得到更好的使用效果,往往要对45钢进行表面强化处理。

本论文主要研究了45钢激光熔覆Ni基合金粉末时,TiC粉末的添加对试块组织硬度、显微组织和硬化效果的影响。

1实验材料及激光设备实验所用的基体材料为45钢,试块尺寸5mm*10mm*30mm,首先对试块进行调质处理,把试块放入电炉中加热到860℃,保温30分钟后出炉水冷,然后把试块放入电炉中加热到600℃,保温60分钟,开炉空冷,得到调质后的试块。

将调质后的试块打磨清洗,用维氏硬度计测量试块的硬度,得到基体表面的显微硬度值为实验采用LWS—500YAG型激光焊接机进行激光熔覆,采用维氏硬度计测量熔覆层的显微硬度,采用扫描电镜观察熔覆层的截面组织。

激光熔覆层合金为Ni60自熔性合金粉末,添加一定质量分数的TiC颗粒作为硬质增强相,熔覆粉末共有四组,分别为:Ni60粉末、Ni60+10%TiC合金粉末、Ni60+20%TiC合金粉末、Ni6030%+TiC合金粉末,并用球磨机球磨使粉末混合均匀。

激光熔覆工艺参数对熔覆层形貌的影响及优化

激光熔覆工艺参数对熔覆层形貌的影响及优化

激光熔覆工艺参数对熔覆层形貌的影响及优化于天彪;宋博学;郗文超;马哲伦【摘要】应用IPG-500激光器对45号钢进行了激光熔覆,研究了工艺参数对熔覆层形貌的影响,采用极差分析找出影响熔覆层形貌的关键因素.在此基础上,提出采用灰色关联度分析不同参数组合下的熔覆层质量与理想的熔覆层质量之间的关联度,从而找出最佳的激光熔覆工艺参数组合.结果表明,激光功率与扫描速度是影响熔覆层形貌的主要因素,并且在激光功率为400 W,扫描速度为7 mm/s及送粉速率为0.7 r/min的条件下,所获得的熔覆层质量最优,为激光熔覆工艺参数的选择提供理论支持.【期刊名称】《东北大学学报(自然科学版)》【年(卷),期】2019(040)004【总页数】6页(P537-542)【关键词】再制造;激光熔覆;极差分析;参数优化;灰色关联度【作者】于天彪;宋博学;郗文超;马哲伦【作者单位】东北大学机械工程与自动化学院,辽宁沈阳 110819;东北大学机械工程与自动化学院,辽宁沈阳 110819;东北大学机械工程与自动化学院,辽宁沈阳110819;东北大学机械工程与自动化学院,辽宁沈阳 110819【正文语种】中文【中图分类】TH17对废旧机械零部件进行再制造,能够实现巨大的经济与社会效益,是实现资源节约与可持续发展的重要手段之一[1-2].近年来,随着我国再制造产业的发展,逐步形成了包括再制造成形技术、拆解与清洗技术及检测与评估技术在内的再制造技术体系[3],有力推动了再制造技术的柔性化、智能化发展[4].激光熔覆作为一种高效的再制造成形技术,已经被应用于多种不同类型的废旧零部件的修复实践中[5-6].然而,激光熔覆所产生的的熔覆层质量与激光熔覆工艺参数的选取密切相关,针对不同材料的基体与金属粉材,恰当的激光熔覆工艺参数的选取是获得高质量熔覆层的关键.目前已有诸多学者从不同角度对激光熔覆参数进行了研究.朱刚贤等[7]研究了激光功率、扫描速率及送粉气流量对熔覆层表面平整度的影响;张庆茂等[8]从稀释率的角度出发,研究了稀释率与扫描速度和送粉速率之间的关系;Wang等[9]采用有限元建模分析熔池温度场的分布情况,并指出激光功率与扫描速度均对熔池温度场有较大影响;Fan等[10]对不同工艺参数下的熔覆层形貌、组织和性能等进行了研究,指出加入Mo2C可提高熔覆层硬度;Ansari[11]通过分析镍基合金粉末下的激光熔覆参数对熔覆层形貌的影响,提出利用回归模型对熔覆层形貌进行预测,并取得了良好的预测效果.在激光熔覆工艺参数优化方面,已经有诸多学者针对包括齿轮钢[12]、316 L不锈钢[13]等不同种类的基体材料与不同种类的合金粉末进行了研究.根据以上分析,目前研究大多集中于激光功率参数与熔覆层形貌特征及微观组织等之间的关系,以实验研究为主,尚缺乏基于统计学的激光功率参数优化选择的相关研究.本文在研究不同激光功率参数对熔覆层形貌影响的基础上,探究影响熔覆层质量的主要因素.在此基础上,提出采用灰色关联度分析研究不同实验参数的组合与理想的熔覆层质量之间的关系,进而找出适应于当前实验材料的最佳激光功率参数.1 灰色关联度分析激光熔覆形成的熔覆层质量由多个工艺参数共同决定,而不同工艺参数之间存在复杂的相互关系.因此,激光熔覆是信息不完备系统,属于灰色系统,应采用灰色关联度分析不同工艺参数下熔覆层质量与理想质量之间的不确定性.若激光熔覆实验结果包含n个评价指标,则第i个评价对象可描述为Xi={xi1,xi2,…,xij,…,xin},i=1,2,…,m.(1)式中,m为实验组数.同时定义理想实验指标为X0={x01,x02,…,x0n} .(2)通过式(3)与式(4)对由激光熔覆实验结果组成的决策矩阵进行标准化处理:(3)(4)其中,正向指标由式(3)进行标准化处理,负向指标由式(4)进行标准化处理.在激光熔覆系统中,熔宽属于正项指标,熔深与熔高属于负向指标.在指标标准化后计算各个指标与理想指标之间的差值:i=1,2,…,m;j=1,2,…,n .(5)因此可得两级最大差与两级最小差:(6)(7)则第i个实验组的各个指标的关联系数为(8)式中,ρ为分辨系数,一般在0~1之间,通常取0.5.可得第i组实验与理想指标的关联度:i=1,2,…,m .(9)因此,与理想指标关联度最大的实验组对应的实验参数为理想实验参数.2 实验设计本实验采用的粉末为铁基合金粉末,主要成分如表1所示.表1 铁基合金粉末主要成分(质量分数)Table 1 Main components of Fe-based alloy powder %CSiMnBCrNiMoNbFe0.071.100.400.2315.25.101.000.31余量在使用粉末之前,需对其进行至少24 h的干燥过程,从而降低粉末氧化产生的成分变化,并保证送粉过程中粉末不会黏着于送粉管内壁,从而影响送粉速率.实验所用的基材为45号钢,其主要成分如表2所示.表2 基体主要成分(质量分数)Table 2 Main components ofsubstrate %CSiMnPSCrNiCuFe0.460.300.550.030.021.000.250.26余量实验中钢板尺寸为110 mm×120 mm×10 mm.进行熔覆实验前,应先用砂纸将基板表面摩擦光滑,防止表面存在锈迹与杂质等对熔覆质量产生负面影响.实验使用IPG-500光纤激光器,激光头由一台库卡机器人进行控制.实验采用氩气作为运送粉末的送粉气及激光熔覆过程中的保护气,防止激光熔覆过程中熔池元素由于高温而产生的氧化作用.激光光斑直径固定为1.1 mm,离焦量为12 mm.本次实验设计了3因素4水平的单道激光熔覆正交试验,如图1所示,各因素水平如表3所示.图1 单道激光熔覆实验Fig.1 Single-track laser cladding experiment表3 各因素实验水平Table 3 Experiment levels of factors因素水平 1水平2水平3水平4激光功率/W350375400425扫描速率/(mm·s-1)5.566.57送粉速率/(r·min-1)0.60.70.80.9其中,由于本实验所采用的送粉器为转盘式送粉器,金属粉末由粉盘旋转送入管道,因此送粉速率由粉盘的旋转速度控制.实验完成后的基板如图2所示,每组实验均重复多次并取其均值.在进行后处理时,首先沿着熔道的横截面方向进行线切割,获得其熔道横截面;然后采用目数由小到大的砂纸对横截面进行摩擦,并对其进行镜面抛光处理;最后通过配制的盐酸-氯化铁腐蚀液对横截面进行腐蚀处理.获取熔道横截面的形貌后,通过显微镜获取熔道形貌的微观图像,并测量其熔宽、熔深及熔高.最终的实验结果如表4所示.图2 实验后的基板Fig.2 Substrate after laser cladding3 实验结果分析与优化3.1 极差分析通过极差分析可以得到影响熔覆层形貌的主要因素.若令Sij为i因素在j水平下的结果之和,则(10)式中:vij为i因素j水平的实验结果;m为水平数.令D为极差,则有(11)其中:Di为极差;n为因素数量.各因素的极差如表5所示.表4 实验结果Table 4 Experiment results组数激光功率W扫描速率mm·s-1送粉速率r·min-1熔宽μm熔深μm熔高μm13505.50.61005.00133.00341.2623506.00.71018.78126.28306.7433506.50.8880.06120.00264.7143507.00.9903.76115.01266.5153755.50.71085.0214 2.57362.2463756.00.61027.51136.37338.7773756.50.91005.17126.27271.28 83757.00.8954.35120.03282.6494005.50.81216.25151.74377.28104006.00.9 1076.25139.85355.69114006.50.61107.87121.29320.00124007.00.71076.25 118.21297.50134255.50.91177.54159.68410.03144256.00.81135.06146.524 03.80154256.50.71140.01133.27371.25164257.00.61122.73125.58333.77 由表5可知,熔宽主要受激光功率的影响,其次为扫描速率,而送粉速率对熔宽的影响较小.熔深主要由扫描速率决定,而激光功率对熔深也有一定影响,送粉速率对熔深的影响较小.熔高主要由激光功率与扫描速率所决定,而送粉速率对熔高影响较小.由正交实验可知,熔覆层形貌由不同的工艺参数共同决定,因此,在选取工艺参数时应综合考虑不同的工艺参数对熔覆层形貌所造成的不同影响.基于此,通过对影响熔覆层形貌较大的前两个工艺参数进行交互作用分析,以确定单一的工艺参数对熔覆层的影响.3.2 单因素分析1) 熔宽:对于熔宽,由表5可知其主要由激光功率与扫描速率所决定.由于激光功率是影响熔宽的主要因素,因此绘制在不同扫描速率下的激光功率趋势曲线,如图3所示.表5 极差分析Table 5 Range analysis水平熔宽/μm熔深/μm熔高/μm激光功率扫描速率送粉速率激光功率扫描速率送粉速率激光功率扫描速率送粉速率1951.91120.951065.79123.57146.75129.06294.81372.70333.4521018.01106 4.401080.02131.31137.26130.08313.73351.25334.4331119.161033.281046. 43132.77125.21134.57337.62306.81332.1141143.841014.271040.68141.261 19.71135.20379.71295.11325.88极差191.94106.6839.3417.6927.046.1484.9177.588.56由图3可知,在扫描速率一定的前提下,随着激光功率的增加,熔宽呈现增加的趋势.这是由于,随着激光功率的增加,主要影响两个方面:一是输入到基板的能量增加,导致熔池的面积增大,熔宽随着熔池面积的增加而增加;二是激光熔化的金属粉材的数量增加,导致参与形成熔覆层的材料增加,这同样会增加熔宽.2) 熔深:对于熔深而言,由表5可知其主要取决于激光功率与扫描速率.由于扫描速率是影响熔深的主要因素,因此,绘制在不同激光功率下的扫描速率趋势曲线,如图4所示.图4 扫描速率对熔深的影响Fig.4 Effect of scanning speed on cladding depth 由图4可知,在激光功率一定的前提下,随着扫描速率的提高,熔深逐渐减小.随着扫描速率的提高,激光能量在单位时间内在某一区域的停留时间逐渐降低,因此该区域吸收的激光能量同样随之降低,因此激光能量所能熔化的基板材料随之降低,造成熔深随之降低.较低的熔深有助于降低稀释率,从而提高熔覆层质量.3) 熔高:对于熔高,由表5可知激光功率与扫描速率对熔高均有较大影响.由于激光功率与扫描速率的影响相当,因此分别绘制二者的影响趋势曲线,如图5与图6所示. 图5 扫描速度对熔高的影响Fig.5 Effect of scanning speed on cladding height 由图5可知,在激光功率一定的前提下,熔高随着扫描速率的增加而减小.通过分析可知,由于提高了扫描速率,激光在基板熔道的某一位置的停留时间缩短,造成激光能够熔化的金属粉末数量降低,即参与形成熔覆层的粉末数量降低,造成熔高的下降.同理,如图6所示,在扫描速率一定的前提下,随着激光功率的提高,熔高随之增加.在激光光斑直径一定的条件下,增加激光功率即增加了单位能量密度,使激光能够熔化的金属粉末的数量增加,进而使参与形成熔覆层的粉末数量增加,最终提高了熔高.然而,过高的熔高不利于零件的成型.因此,结合激光功率对熔宽的影响,在保证一定大小的熔宽前提下,应找出适当的激光功率使熔覆层不至于过高.3.3 实验结果优化根据单因素分析结果,理想的熔覆层应在具有较大熔宽的同时,适当降低熔高与熔深,结合实际需求与先前对齿轮导轨等零部件的修复经验,确定所需熔覆层的宽度为1 120 μm,高度为300 μm,深度为120 μm.对表4中的实验数据所组成的决策矩阵按照式(3)与式(4)进行标准化处理,并由式(5)计算差值.由式(6)与式(7)可得两级最大差与两级最小差:Δmax=0.888 3 ,Δmin=0 .由式(8)计算出第i个实验组各个指标的关联系数,从而由式(9)得各个实验组的灰色关联度,如图7所示(ρ=0.5).图7 灰色关联度Fig.7 Grey relational degree由图7可知,第12实验组对应的激光熔覆工艺参数为最佳工艺参数组合,与理想工艺指标最为接近.第12组实验对应的熔道横截面如图8所示.图8 熔覆层形貌Fig.8 Morphology of cladding layer通过观察其熔覆层形貌可知,其熔宽达到了1 000 μm以上,有利于搭接以形成大面积的熔覆层,并且其熔高小于350 μm,有利于零件的成型工艺.因此,无论从实验的角度分析,还是理论计算,该工艺参数组合具备较高的实践性.4 结论1) 通过极差分析可知熔宽主要取决于激光功率,熔深主要取决于扫描速度,而熔高主要取决于激光功率与扫描速度的共同作用.通过单因素分析可知,熔宽随着激光功率的增加而增加,熔深随着扫描速度的增加而减小,而熔高随着激光功率的增加而增加,随着扫描速度的增加而降低.2) 通过对各个实验组进行灰色关联度分析,可知激光功率400 W,扫描速度7 mm/s,送粉速率0.7 r/min为最佳激光熔覆工艺参数组合.参考文献:【相关文献】[1] McMath I.Remanufacturing:sustaining industry in the 21st century[J].Engineering Technology,2005,8(2):18-20.[2] 徐滨士,李恩重,郑汉东,等.我国再制造产业及其发展战略[J].中国工程科学,2017,19(3):61-65. (Xu Bin-shi,Li En-chong,Zheng Han-dong,et al.The remanufacturing industry and its development strategy in China [J].Engineering Sciences,2017,19(3):61-65.)[3] Yao J K,Zhu S,Cui P Z.Study on flexible remanufacturing system andframework[C]//Intelligent Computation Technology andAutomation(ICICTA).Changsha:IEEE Computer Society,2010:516-519.[4] 朱胜,周超极.面向“中国制造2025” 的增材再制造技术[J].热喷涂技术,2016(3):1-4.(Zhu Sheng,Zhou Chao-ji.Additive remanufacturing for “made in China 2025”[J].Thermal Spray Technology,2016(3):1-4.)[5] Wu G P,Hu Y Z,Zhu W N,et al.Research status and development trend of laser additive manufacturing technology[C]//4th International Conference on Information Science and Control Engineering(ICISCE).Changsha:Institute of Electrical and Electronics Engineers Inc.,2017:1210-1213.[6] Qin H,Cai Z H,Zhang P,et al.Development status of laser cladding technologies[C]// 4th International Conference on Civil Engineering,Architecture and BuildingMaterials.Haikou,2014:1500-1503.[7] 朱刚贤,张安峰,李涤尘.激光熔覆工艺参数对熔覆层表面平整度的影响[J].中国激光,2010(1):296-301.(Zhu Gang-xian,Zhang An-feng,Li Di-chen.Effect of process parameters on surface smoothness in laser cladding[J].Chinese Journal of Lasers,2010(1):296-301.)[8] 张庆茂,刘文今,钟敏霖,等.送粉式激光熔覆层质量与工艺参数之间的关系[J].焊接学报,2001,22(4):51-54.(Zhang Qing-mao,Liu Wen-jin,Zhong Min-sen,et al.The relationship between the processing parameters and the qualities of the coatings formed by powder feeding laser cladding [J].Transactions of the China Welding Institution,2001,22(4):51-54.)[9] Wang X J,Su S C.Modeling and parameter calculation for laser cladding silicon films [J].Optics and Precision Engineering,2011,19(2):60-63.[10] Fan D,Li X,Zhang J.Influence of processing parameters of laser clad Mo2C-Co-basedalloy on its microstructure[J].Journal of Lanzhou University of Technology,2012,38(2):1-5.[11] Ansari M,Shoja R R,Barekat M.An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy [J].Optics and LaserTechnology,2016(86):136-144.[12] Shi Y,Li Y F,Liu J,et al.Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel [J].Optics and Laser Technology,2018(99):256-270. [13] Goodarzi D M,Pekkarinen J,Salminen A.Analysis of laser cladding process parameter influence on the clad bead geometry[J].Welding in the World,2017,61(5):883-891.。

激光熔覆冷水机工作参数-概述说明以及解释

激光熔覆冷水机工作参数-概述说明以及解释

激光熔覆冷水机工作参数-概述说明以及解释1.引言1.1 概述概述部分的内容:激光熔覆冷水机是一种重要的工业设备,广泛应用于金属材料的表面改性处理中。

它通过激光束将金属粉末溶解在基体表面,形成一层致密的涂层,以提高金属材料的硬度、耐磨性和耐腐蚀性能。

在激光熔覆冷水机的工作过程中,工作参数的选择和控制对于确保涂层的质量和性能起着至关重要的作用。

本文将重点讨论激光熔覆冷水机的工作参数。

首先,我们将介绍激光熔覆冷水机的基本原理和结构,以便读者对该设备有一个基本的了解。

然后,我们将详细介绍几个关键的工作参数,包括激光功率、速度、保护气体流量等。

我们将解释它们对涂层性能的影响,并提供一些建议来优化这些参数的选择。

在实际应用中,不同的材料和工艺要求会对工作参数的选择提出不同的要求。

因此,我们还将介绍一些常见材料和工艺对工作参数的要求,以帮助读者根据具体情况进行参数的选择和调整。

总之,激光熔覆冷水机是一项技术含量较高的工艺,在冶金、航空航天、汽车制造等领域有着广泛的应用前景。

充分理解和掌握工作参数的选择和控制是保证涂层质量和性能的关键。

通过本文的介绍和分析,希望能够帮助读者更好地理解和应用激光熔覆冷水机工作参数,提升涂层处理的效果和质量。

文章结构部分应包括对整个文章的组织和结构的描述。

可以按照以下方式编写1.2文章结构部分的内容:在本文中,我们将按照以下结构来组织和呈现有关激光熔覆冷水机工作参数的内容。

在引言部分,我们将首先概述激光熔覆冷水机的基本原理和应用,并介绍相关背景知识。

其次,我们将简要描述本文的结构,以便读者更好地理解整个文章的组织和内容。

最后,我们还将明确阐述本文的目的和研究问题,从而为后续的讨论奠定基础。

在正文部分,我们将重点介绍两个关键的工作参数,即工作参数1和工作参数2。

对于每个工作参数,我们将详细说明其定义、重要性以及如何调整和控制。

同时,我们还将提供相关数据和实验结果的分析和讨论,以支持我们对这些工作参数的描述和解释。

高速熔覆技术介绍

高速熔覆技术介绍
技术特点:效率高、热输入小、稀释率较小、可熔覆薄层、表面平整、后续加工量小
煤矿液压支柱高速熔覆
文档仅供参考,如有不当之处,请联系改正。
高速激光熔覆与常规激光熔覆原理比较
常规:粉末汇聚熔池
高速:粉末汇聚熔池之上
3
文档仅供参考,如有不当之处,请联系改正。
常规激光熔覆与高速激光熔覆工艺比较(4000W)
文档仅供参考,如有不当之处,请联系改正。
谢 谢!
量大
孔;铜、铝基体上熔覆难度大
磨、抛,加工量小
铁基、镍基、钴基、NiWC类材料。熔覆 部分陶瓷材料、WC-10Co-4Cr、NiCrCr3C2,对高硬度、易裂材料有较大优势 如:M2、Stellite20、Ni60等;在铜、
铝基体上熔覆优势明显
4
文档仅供参考,如有不当之处,请联系改正。
高速熔覆与热喷涂、电镀工艺比较
合作
文档仅供参考,如有不当之处,请联系改正。
自高速激光熔覆技术推出以来,我企业已与众多科研机构、煤机、喷涂等行业客户形成合作如西安 交大、华北电力大学、山东能源、西安宇丰等,在冶金、工程机械、造纸、模具等行业众多客户在 亲密推动中。
西安中科中美致力于高速熔覆技术旳推广,针对前期引导、示范性旳项目,中科中美持开放旳姿态 ,能够共同探讨多种多样旳合作模式。
常规激光熔覆
文档仅供参考,如有不当之处,请联系改正。
常规激光熔覆:预置送粉在金属表面上放置特定旳涂层材料,经激光照射后,基体和粉末同步
熔化并迅速凝固,形成与基体成冶金结合旳表面涂层。
常规激光熔覆自推出以来,在国内各行业取得广泛应用,但因效率、熔覆薄层受限、表面粗糙等原因使其进一步旳市场应用受限。 为提升熔覆效率,常规激光熔覆只能依托增长聚焦光斑尺寸来提升熔覆效率,但高功率激光器旳应用同步造成投资加大、稀释率增长、热影响区加

激光熔覆课件

激光熔覆课件
稀释效应
稀释效应是指由于基体材料的熔化,使得熔覆层的成分和组织发生变化的现象。稀释效应对熔覆层的性能有重要 影响。
熔覆层组织与性能
组织
激光熔覆层的组织主要由熔化的基体材料和熔覆材料组成,其组织结构取决于熔覆工艺 参数和熔覆材料成分。
性能
激光熔覆层的性能主要取决于其成分、组织和热处理状态。常见的性能指标包括硬度、 耐磨性、耐腐蚀性和高温性能等。
激光熔覆技术用于修复受损的模具钢,通过 熔覆高熔点合金粉末,使模具表面获得优良 的耐磨、耐热和耐腐蚀性能,显著提高了模 具的使用寿命。
案例二:激光熔覆制备耐磨涂层
总结词
高耐磨性,延长设备寿命
详细描述
利用激光熔覆技术在设备表面制备耐磨涂层,如合金 钢、不锈钢等材料表面熔覆硬质合金粉末,显著提高 了设备的耐磨性能,延长了设备使用寿命。
熔覆层与基体结合强度
影响因素
影响熔覆层与基体结合强度的因素主要 包括基体表面的处理状态、熔覆材料的 成分和熔覆工艺参数等。
VS
结合强度
结合强度是指熔覆层与基体材料之间的粘 附力,是评价激光熔覆层质量的重要指标 之一。
06
激光熔覆案例分析
案例一:激光熔覆修复模具钢
总结词
修复效果好,提高使用寿命
详细描述
粉末或丝材的粒度和纯度对熔覆层的组织和性能有重要影响,需要 选用合适粒度和纯度的粉末或丝材。
粉末或丝材的流量与稳定性
粉末或丝材的流量和稳定性对熔覆层的厚度和均匀性有重要影响, 需要保证粉末或丝材的稳定供给。
加工头与光路系统
加工头的结构与功能
加工头的冷却与保护
加工头是实现激光熔覆加工的核心部 件,其结构与功能对熔覆层的表面质 量和加工效率有重要影响。

激光熔覆修复工艺参数对熔合区成形质量的影响 (1)

激光熔覆修复工艺参数对熔合区成形质量的影响 (1)

激光熔覆修复工艺参数对熔合区成形质量的影响智 翔 赵剑峰 蔡 军(南京航空航天大学机电学院,江苏南京210016)摘要 采用FG H95镍基高温合金粉末对航空发动机叶片铸造材料G H4169基体进行了激光熔覆修复的实验。

通过改变激光熔覆修复过程中抽运电流、离焦量、扫描速度以及扫描间距等工艺参数,研究了各工艺参数对激光熔覆修复件成形质量的影响。

实验结果表明,G H4169高温合金和FG H95镍基高温合金粉末可以实现良好的冶金结合,当抽运电流300A 、离焦量+8mm 、扫描速度180mm/min 、扫描间距1.0mm 时,激光熔覆修复件熔合区能获得最少缺陷的成形质量。

关键词 激光技术;激光熔覆修复;镍基合金;工艺参数;成形质量中图分类号 T N 249;T G174.44 文献标识码 A doi :10.3788/LOP 48.101403Effect of Process Paramete rs on Forming Quality of Fusion Zonein Lase r CladdingZhi Xiang Zhao Jianfeng Cai Jun(College of M echan ical a n d Elect r onic En gineer in g ,Na njin g U niv er sity of Aer ona u tics a nd Astr on au tics ,Na njin g ,Jia ngsu 210016,Chin a )Abstract The powerful laser sintering experim ent is performed on the foundry material G H 4169of an aircraft engine blade by using FGH 95which is one of nicke -l based metal powder material.By c hanging the technology parameters such as pump current,defocusing distanc e,scanning speed and scanning line spac ing in the laser sintering process,the effect on the forming quality of fusion zone of the sintered spec imens is studied.It has been found that the foundry materia l GH 4169c an ac hieve a good metallurgic al bonding with nicke-l based metal powder material FGH 95.When the pump current is 300A,the defocusing distance is 8mm,the sc anning speed is 180mm/min,the scanning line spacing is 1.0mm,and the fusion zone in laser cladding has a better forming quality.Key wo rds laser technique;la ser cladding composite to repair;nic kels -based alloy;proc ess parameters;forming qualityOCIS co des 140.3390;350.3390;350.3850收稿日期:2011-03-21;收到修改稿日期:2011-04-23;网络出版日期:2011-08-06基金项目:南京航空航天大学青年科技创新基金(N S2010144)资助课题。

激光熔覆的工艺参数

激光熔覆的工艺参数

激光熔覆的工艺参数包括:
1.激光功率P:表示单位时间内激光器输出的能量,单位是W。

高速激光熔覆一般采用KW级激光器。

2.光斑形状:分为圆形和矩形两种,影响着熔覆效果和成形质量。

用户应根据加工对象的特点选择使用。

3.光斑大小:是指光束被扫描到基板表面的面积,主要影响光功率密度,即单位面积的光能。

相同功率条件下,光斑尺寸越小,光功率密度越大。

4.加工距离:也叫搭接率,是指激光熔覆时,激光束从熔池中吸收热量所需的距离。

实际加工中,光斑距离一般控制在3-5 mm范围内,可获得
良好的熔覆层质量。

5.扫描速度V:表示激光扫描的速度,单位是mm/s。

6.光斑直径D和铺粉层厚H:影响着熔覆层的质量和性能。

在某一具体的工艺中,激光能量密度可以通过公式E=P/DVH计算得出,单位为J/mm³。

在实际应用中,需要根据具体的熔覆材料和基材、熔覆层厚度、熔覆效果等因素来选择合适的工艺参数。

请注意,以上参数仅供参考,具体参数需要根据实际情况进行调整和优化。

激光熔覆技术

激光熔覆技术

激光熔覆技术特点
• 激光熔覆复合层由底层、中间层 以及面层各具特点的梯度功能材 料组成(图 3),底层具有与基 体浸润性好、结合强度高等特点; 中间层具有一定强度和硬度、抗 裂性好等优点;面层具有抗冲刷、 耐磨损和耐腐蚀等性能,使修复 后的设备在安全和使用性能上更 加有保障。
• 激光熔覆技术可以任意仿形修复 和制造零件,熔覆层厚度可以按 需要达到预定的几何尺寸要求。
• 影响变形的一个主要因素为基材自身的应力状态,基材存在内应力 会引起材料的变形。
激光熔覆工艺
• 激光熔覆按熔覆材料的供给方式大概可分为两大类,即预置式激光熔 覆和同步式激光熔覆。
• 预置式激光熔覆是将熔覆材料事先置于基材表面的熔覆部位,然后采 用激光束辐照扫式最为常用。
激光熔覆技术特点
• 激光熔覆层与基体为冶金结合, 结合强度不低于原基体材料的 90%,因此可以用于一些重载条 件下零件的表面强化与修复, 如大型轧辊、大型齿轮、大型 曲轴等零件的表面强化与修复。
• 基体材料在激光加工过程中表 面微熔,微熔层仅0.05~0.1 mm。 基体热影响区极小,一般为 0.1~0.2 mm。 如图 1。
激光熔覆技术特点
• 激光加工过程中基体温升不超过 80℃,激光加工后热变形小。因此 适合强化或者修复一些高精度零件 或者对变形要求严格的零件。
• 激光熔覆技术可控性好,易实现自 动化控制,可以对几何形状复杂的 产品零部件进行修复,如涡轮动力 叶片等。
• 熔覆层与基体均无粗大的铸造组织, 熔覆层及其界面组织致密, 晶体 细小,无孔洞、夹杂、裂纹等缺陷, 金相组织如图 2 所示。
• 对于易变形的材料在工艺上可采用消除基材应力、选择较薄的熔覆层、 预热和后热工艺或者工装夹具固定等方法。

高速激光熔覆与传统表面处理工艺对比

高速激光熔覆与传统表面处理工艺对比

高速激光熔覆与传统表面处理工艺对比高速激光熔覆技术作为目前比较先进的绿色金属表面处理技术,可用来取代电镀、热喷涂、等离子熔覆等传统工艺技术,本文主要就各工艺的特点进行说明,重点介绍高速激光熔覆工艺特点。

(1)电镀工艺硬铬电镀工艺发展非常成熟,是过往被广泛采用的防腐耐磨涂层技术之一。

其制备过程是将工件浸泡于铬酸溶液中,通过电化学方式进行涂层沉积。

制备的硬铬涂层一般伴随有微裂纹,涂层与基体结合力差,在服役过程中往往出现开裂和剥落现象。

由于电镀巨大的耗电量,其利润空间被一再压缩。

而生产过程中产生的废气与废液还对环境造成了污染。

目前电镀行业已成为夕阳产业,受到欧盟、美国及中国等国家工业部门的严格限制。

超高速激光熔覆过程不涉及化学过程,对环境绿色友好,可选用的硬面涂层种类繁多,包括铁基、镍基和钴基等合金涂层,该方法制备的涂层无缺陷,结合强度高,耐用度远高于电镀涂层。

目前超高速激光熔覆是替代硬铬电镀的首选技术。

(2)热喷涂工艺热喷涂涂层沉积速率虽高,但粉体利用率仅为50%。

涂层存在1%~2%孔隙率,腐蚀介质可以通过这些空隙对基体造成腐蚀。

热喷涂涂层与基体结合强度一般低于150 MPa,在重载服役条件下有可能发生涂层剥离现象(机械结合)。

再者热喷涂在工作中容易产生噪音及粉尘污染,影响环境及人员身体健康。

超高速激光熔覆制备涂层组织致密、无气孔,且涂层与基体为冶金结合方式,结合强度高。

(3)堆焊技术堆焊技术可制备高质量无缺陷的金属涂层,如钨极氩弧焊和等离子喷焊,界面为冶金结合,结合强度高,单层沉积厚度可达2mm~3 mm。

相比于热喷涂单层25-50 μm,和传统激光熔覆单层0.5mm~1 mm 的沉积厚度,堆焊技术沉积效率极高。

但是,高沉积效率伴随高能量输入,这会诱发基体材料的组织性能转变和热损伤。

(4)超高速激光熔覆技术与传统激光熔覆比较超激光熔覆后工件表面Ra ~ 5-10um;熔覆后直接磨抛0.15-0.20mm,表面可达镜面,Ra≤0.4;加工效率高,中科中美6000W高速激光熔覆设备加工0.8mm厚度涂层,加工效率0.8m2/h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速激光熔覆相关技术参数介绍
高速激光熔覆是一种快速激光表面处理技术,主要涉及技术参数分为两个方面,一是激光熔覆过程中,设备的调试设置参数,称为加工参数;二是熔覆完成后,对熔覆效果质量的测评衡量参数,称为检测参数。

加工参数主要包括激光功率、光斑形状、光斑尺寸、加工距离、搭接率、熔覆速度、送粉方式、保护气气压共8项关键参数。

(1)激光功率,激光器单位时间内输出的能量。

高速激光熔覆一般用KW级激光器,如ZKZM-2KW和ZKZM-4KW在市场上推广应用较多,可满足大部分的领域使用需求。

(2)光斑形状,常见的光斑形状分圆形和矩形两种,用户根据加工对象特点选择使用。

(3)光斑尺寸,光斑尺寸主要影响光功率密度,即单位面积的光能量大小,同等功率条件下,光斑尺寸越小,光功率密度越大,高功率密度光斑适宜熔覆高熔点的金属粉末。

(4)加工距离,指激光出光口距基体表面的距离。

加工距离过远,金属粉末容易发散,粉末利用率低;加工距离近,激光熔覆头受激光辐射表面温度过高,严重造成粉末堵塞。

(5)搭接率,搭接率是影响熔覆层表面粗糙度的主要因素,搭接率提高,熔覆层表面粗糙度降低。

但搭接部分的均匀性很难得到保证。

每道熔覆层之间相互搭接区域的深度与每道熔覆层正中的深度有所不同,从而影响了整个熔覆层。

高速熔覆的搭接率高达70%-80%(普通熔覆的搭接率为30%-50%)。

(6)熔覆速度,熔覆线速度和熔覆面积速率均可表示熔覆速度大小。

中科中美高速激光熔覆实测线速度为30m/min-100m/min,在熔覆厚度0.2-0.5mm时,熔覆效率每小时0.7-1.2平方米。

(7)送粉方式,高速激光熔覆送粉方式主要有环形送粉和中心送粉两种方式,中心送粉较环形送粉粉末利用率高,但设计难度较大,光束需呈环形围绕送粉管一周,目前市场上环形送粉应用较多。

(8)保护气气压,保护气压力大小加工时可调。

保护气一般使用氮气或氩气,主要用于送粉以及在激光熔覆熔池周围形成保护区域,减少氧化。

检测参数是在高速熔覆完成后,对熔覆层质量好坏的衡量参数,主要包括孔隙率、硬度、结合强度、稀释率、冷热疲劳性能、表面粗糙度等。

(1)孔隙率,高速激光熔覆在熔覆过程中不可避免存在着孔隙,孔隙度的大小与金属粉末温度和速度以及粉末运动角度有关,一般来说粉末运动速度慢熔覆层的孔隙率会大。

(2)硬度,由于高速激光熔覆层在形成时的激冷和高速撞击,熔覆层晶粒细化以及晶格产生畸变,使涂层得到强化,因此,激光熔覆层的硬度比一般材料的硬度要高。

ZKZM高速熔覆激光设备熔覆粉末,熔覆层表面硬度可达 HRC。

(3)结合强度,高速激光熔覆层与基体为冶金结合,即熔覆层和基体的界面间原子相互扩散而形成结合,这种结合是在激光作用基体和金属粉末产生高温以及粉末高速运动的状态下形成的。

中科中美高速激光熔覆层与基体结合强度可高达360MPa。

(4)稀释率,指熔敷金属被稀释的程度,用基材在熔覆层中所占的百分比来表示。

稀释率对熔覆层性能有较大的影响,高速熔覆工艺中,可通过金属粉末流量、光功率密度、熔覆速率调节来控制稀释大小。

中科中美高速激光熔覆的稀释率极低,约为1%左右。

(5)冷热疲劳性能,是指熔覆层的抗冷热疲劳或热震性能。

熔覆层的抗热震性能不好,会在使用中开裂形成裂纹。

熔覆层的抗热震性能的好坏主要取决于金属粉末与基体的热膨胀系数差异的大小和熔覆层与基体结合强度。

(6)表面粗糙度,熔覆层表面的平整程度,工艺测试中,激光光能量密度、送粉量大小和载气流压力均会影响表面粗燥度,三者都存在一个最佳参数值区间,数值设置过高或过低均会导致表面平整程度降低。

实际对基材进行高速激光熔覆加工时,需根据粉末基材特性,进行合适的加工参数设置从而使各项检测参数达标,满足应用需求。

相关文档
最新文档