主传动系统设计 ppt课件
合集下载
机床设计-传动系统
1400r/min 1000 710 500 355 250 180 125 90 63 45 31.5
转速图的绘制
主传动系统的传动路线表达式:
36
1
主电机 440r / min
φ126 φ256
I
3306 4224
II
42
4222 62
III
60
1380 72
IV(主
轴)
48
主轴的转速计算:
126
n主轴
=
n电机
× 256
×uI-II
×uII-III
×uIII-IV
a
126
n主轴max
=
n电机
× 256
×uI
-II
max
×uII -III max
×uIII-IVmax
126
n主轴min
=
n电机
× 256
×uI
-II
min
×uII -III min
×uIII-IVmin
直接标出转速值 。 注意: 转速格线间距大小并不代表公比ф的
数值大小。
转速图一点三线 转速点——传动轴上的圆点,表示该轴具有的转速。
如轴Ⅳ(主轴)上有12个圆点,表示具有12级转速。
传动线——相邻两轴的相关两个 转速点之间的连线。
传传动比大于1其对数值为正,传 动线向右上倾斜;
应用: 普通机床应用最为广泛的一种变速方式。
变速方式的选择
主传动系统的变速方式分为无级变速和有级变速两种。
(1)有级变速 变速机构——是指在输入轴转速不变的条件下,使输出轴获得不 同转速的传动装置。 有级(或分级)变速机构
➢滑移齿轮变速机构 ➢交换齿轮变速机构 ➢多速电动机 ➢离合器变速机构 ➢摆移变速机构
转速图的绘制
主传动系统的传动路线表达式:
36
1
主电机 440r / min
φ126 φ256
I
3306 4224
II
42
4222 62
III
60
1380 72
IV(主
轴)
48
主轴的转速计算:
126
n主轴
=
n电机
× 256
×uI-II
×uII-III
×uIII-IV
a
126
n主轴max
=
n电机
× 256
×uI
-II
max
×uII -III max
×uIII-IVmax
126
n主轴min
=
n电机
× 256
×uI
-II
min
×uII -III min
×uIII-IVmin
直接标出转速值 。 注意: 转速格线间距大小并不代表公比ф的
数值大小。
转速图一点三线 转速点——传动轴上的圆点,表示该轴具有的转速。
如轴Ⅳ(主轴)上有12个圆点,表示具有12级转速。
传动线——相邻两轴的相关两个 转速点之间的连线。
传传动比大于1其对数值为正,传 动线向右上倾斜;
应用: 普通机床应用最为广泛的一种变速方式。
变速方式的选择
主传动系统的变速方式分为无级变速和有级变速两种。
(1)有级变速 变速机构——是指在输入轴转速不变的条件下,使输出轴获得不 同转速的传动装置。 有级(或分级)变速机构
➢滑移齿轮变速机构 ➢交换齿轮变速机构 ➢多速电动机 ➢离合器变速机构 ➢摆移变速机构
《机械传动系统设计》课件
链传动的类型
根据链条的结构和用途,链传动可分 为滚子链、齿形链等类型。
链传动的特点
链传动具有结构简单、传动效率高、 耐冲击等优点,但也有噪声较大、链 条磨损较严重等缺点。
链传动的应用
链传动广泛应用于需要承受较大载荷 和冲击的场合,如摩托车、自行车等 。
04
机械传动系统的优化与改进
提高传动效率
优化齿轮设计
异常噪音和振动检测
定期监测齿轮的运行状态,发现异常噪音或 振动应及时排查原因并处理。
带传动的维护与保养
皮带张紧度调整
定期检查皮带的张紧度,保持适当的张紧以 减少皮带打滑或磨损。
皮带检查
定期检查皮带的表面,发现磨损或损伤应及 时修复或更换。
滑轮检查
定期检查皮带的滑轮,确保其转动灵活,无 卡滞现象。
异常噪音和振动检测
02
机械传动系统设计基础
齿轮设计
01
02
03
齿轮类型
直齿、斜齿、锥齿等,根 据传动需求选择合适的类 型。
齿轮材料
选择耐磨、耐冲击、耐高 温的材料,如铸钢、锻钢 、铜合金等。
齿轮精度
根据传动要求确定齿轮精 度等级,确保传动的平稳 性和准确性。
带传动设计
带类型
平带、V带、多楔带等,根据工作条件选择合适的 带类型。
定期监测链条的运行状态,发现异常噪音或振动应及时排查原因并处理。
THANKS
感谢观看
机械传动的应用
工业领域
机械传动系统广泛应用于各种工业领 域,如汽车、航空、船舶、能源等, 是实现机械设备运动和转矩传递的关 键部件。
农业领域
军事领域
在军事领域,坦克、装甲车等武器装 备的传动系统对于提高武器性能和战 斗力具有重要意义。
数控车床的主传动系统设计PPT
详细描述
在进行动态特性分析时,需要考虑主轴的转速、转矩和刚度等参数,以及传动系统的固有频率和阻尼比等特性。 通过分析这些参数,可以评估主传动系统在加工过程中的稳定性,预测可能出现的振动和噪声问题,并采取相应 的措施进行优化设计。
强度与刚度分析
总结词
强度与刚度分析是评估主传动系统在承受外力和变形时的性能表现,以确保系统的可靠性和稳定性。
总结词:传统设计
详细描述:该实例介绍了一种传统的数控车床主传动系统设计,主要采用齿轮传 动和链传动组合的方式,具有结构简单、可靠性高的优点,但效率较低,适用于 一般加工需求。
实例二:主传动系统的改进设计
总结词:优化设计
详细描述:该实例针对传统主传动系统的不足,进行了优化改进。采用新型轴承和材料,提高了传动效率和稳定性,减少了 维护成本,适用于高精度、高效率的加工需求。
设计目的和意义
设计目的
设计出高效、稳定、可靠的数控车床主传动系统,满足加工精度和效率的要求, 提高生产效率和产品质量。
意义
主传动系统设计的优劣直接影响到数控车床的性能和加工精度,进而影响到整个 机械制造行业的生产水平和产品质量。因此,对数控车床主传动系统进行合理设 计,对于提高机械制造行业的整体水平具有重要意义。
要点二
详细描述
在进行热特性分析时,需要考虑主轴的转速、切削力和材 料导热系数等参数。通过建立热传导模型,可以预测主传 动系统在不同工况下的温度变化和热变形情况。根据分析 结果,可以采取相应的散热措施和热补偿技术,提高系统 的热稳定性和加工精度。
06 主传动系统实例分析
实例一:某型号数控车床主传动系统设计
高耐磨材料
选用高耐磨材料,如陶瓷和硬质 合金,以提高主传动系统的使用 寿命和可靠性,减少维护成本。
在进行动态特性分析时,需要考虑主轴的转速、转矩和刚度等参数,以及传动系统的固有频率和阻尼比等特性。 通过分析这些参数,可以评估主传动系统在加工过程中的稳定性,预测可能出现的振动和噪声问题,并采取相应 的措施进行优化设计。
强度与刚度分析
总结词
强度与刚度分析是评估主传动系统在承受外力和变形时的性能表现,以确保系统的可靠性和稳定性。
总结词:传统设计
详细描述:该实例介绍了一种传统的数控车床主传动系统设计,主要采用齿轮传 动和链传动组合的方式,具有结构简单、可靠性高的优点,但效率较低,适用于 一般加工需求。
实例二:主传动系统的改进设计
总结词:优化设计
详细描述:该实例针对传统主传动系统的不足,进行了优化改进。采用新型轴承和材料,提高了传动效率和稳定性,减少了 维护成本,适用于高精度、高效率的加工需求。
设计目的和意义
设计目的
设计出高效、稳定、可靠的数控车床主传动系统,满足加工精度和效率的要求, 提高生产效率和产品质量。
意义
主传动系统设计的优劣直接影响到数控车床的性能和加工精度,进而影响到整个 机械制造行业的生产水平和产品质量。因此,对数控车床主传动系统进行合理设 计,对于提高机械制造行业的整体水平具有重要意义。
要点二
详细描述
在进行热特性分析时,需要考虑主轴的转速、切削力和材 料导热系数等参数。通过建立热传导模型,可以预测主传 动系统在不同工况下的温度变化和热变形情况。根据分析 结果,可以采取相应的散热措施和热补偿技术,提高系统 的热稳定性和加工精度。
06 主传动系统实例分析
实例一:某型号数控车床主传动系统设计
高耐磨材料
选用高耐磨材料,如陶瓷和硬质 合金,以提高主传动系统的使用 寿命和可靠性,减少维护成本。
第三章数控机床的主传动系统
要使润滑油突破这层旋转气流很不容易,采用突入滚 道式润滑方式则可以可靠地将油送人轴承滚道处。
第三章 数控机床的主传动系统
(3)突入滚道式润滑方式 如图3—10所示为适应该要求而设计的特殊轴承。 润滑油的进油口在内滚道附近,利用高速轴承的泵 效应,把润滑油吸人滚道。
若进油口较高,则泵效应差,当进油接近外滚道 时则成为排放口了,油液将不能进入轴承内部。
第三章 数控机床的主传动系统
3.冷却润滑技术的研究 过去,加工中心机床主轴轴承大都采用油脂润滑方 式,为了适应主轴转速向更高速化发展的需要,新 的冷却润滑方式相继开发出来,见表3—2。
第三章 数控机床的主传动系统
第一章 数控机床概述
(1)油气润滑方式 这种润滑方式不同于油雾方式, 油气润滑是用压缩空气把小油滴送进轴承空隙中, 油量大小可达最佳值,压缩空气有散热作用,润滑 油可回收,不污染周围空气。图3—8是油气润滑 原理图。
1.主轴部件常用滚动轴承的类型 图3—13a为锥孔双列圆柱滚子轴承,内圈 为1:12的锥孔,当内圈沿锥形轴颈轴向移 动时,内圈胀大以调整滚道的间隙。滚子数 目多,两列滚子交错排列,因而承载能力大, 刚性好,允许转速高。它的内、外圈均较薄, 因此,要求主轴颈与箱体孔均有较高的制造 精度,以免轴颈与箱体孔的形状误差使轴承 滚道发生畸变而影响主轴的旋转精度。该轴 承只能承受径向载荷。
第一章 数控机床概述
(2)热变形 电动机、主轴及传动件都是热源。低温升、小
的热变形是对主传动系统要求的重要指标。 (3)主轴的旋转精度和运动精度
主轴的旋转精度是指装配后,在无载荷、低速转 动条件下测量主轴前端和距离前端300mm处的径 向圆跳动和端面圆跳动值。主轴在工作速度旋转时 测量上述的两项精度称为运动精度。数控机床要求 有高的旋转精度和运动精度。
第三章 数控机床的主传动系统
(3)突入滚道式润滑方式 如图3—10所示为适应该要求而设计的特殊轴承。 润滑油的进油口在内滚道附近,利用高速轴承的泵 效应,把润滑油吸人滚道。
若进油口较高,则泵效应差,当进油接近外滚道 时则成为排放口了,油液将不能进入轴承内部。
第三章 数控机床的主传动系统
3.冷却润滑技术的研究 过去,加工中心机床主轴轴承大都采用油脂润滑方 式,为了适应主轴转速向更高速化发展的需要,新 的冷却润滑方式相继开发出来,见表3—2。
第三章 数控机床的主传动系统
第一章 数控机床概述
(1)油气润滑方式 这种润滑方式不同于油雾方式, 油气润滑是用压缩空气把小油滴送进轴承空隙中, 油量大小可达最佳值,压缩空气有散热作用,润滑 油可回收,不污染周围空气。图3—8是油气润滑 原理图。
1.主轴部件常用滚动轴承的类型 图3—13a为锥孔双列圆柱滚子轴承,内圈 为1:12的锥孔,当内圈沿锥形轴颈轴向移 动时,内圈胀大以调整滚道的间隙。滚子数 目多,两列滚子交错排列,因而承载能力大, 刚性好,允许转速高。它的内、外圈均较薄, 因此,要求主轴颈与箱体孔均有较高的制造 精度,以免轴颈与箱体孔的形状误差使轴承 滚道发生畸变而影响主轴的旋转精度。该轴 承只能承受径向载荷。
第一章 数控机床概述
(2)热变形 电动机、主轴及传动件都是热源。低温升、小
的热变形是对主传动系统要求的重要指标。 (3)主轴的旋转精度和运动精度
主轴的旋转精度是指装配后,在无载荷、低速转 动条件下测量主轴前端和距离前端300mm处的径 向圆跳动和端面圆跳动值。主轴在工作速度旋转时 测量上述的两项精度称为运动精度。数控机床要求 有高的旋转精度和运动精度。
汽车传动系PPT课件
40
CVT的工作原理
工作时通过主动轮与从 动轮的可动盘作轴向移 动来改变主动轮、从动 轮锥面与V型传动带啮合 的工作半径,从而改变 传动比。主动轮和从动 轮的工作半径可以通过 调节液压泵油缸压力改 变可动盘的轴向移动量 实现连续调节,从而实 现了无级变速。
41
变速器动画
变速器动画一 变速器动画二 变速器动画三 变速器动画四 同步器动画 操纵机构
56
2)对称式齿轮差速器
对称式齿轮差速器具有平均分配扭矩的特点。
57
个人观点供参考,欢迎讨论!
动力性能降低、前桥结构及工艺复杂、制造 成本高、维修保养困难等。
适用车型:轿车(含微型、经济型汽车)上比较盛行。
7
后置后驱 (RR = Rear-engine Rear-drive )
优势: 传动效率高、有利于车身内布置、车厢内 振动和噪声小、车厢内面积利用率大等。
弊端: 高速转向不稳定、水箱布置困难、发动机防 尘困难、远程操纵机构较复杂、维修保养困难等。
21
3、摩擦离合器
1)摩擦离合器的分类 2)摩擦离合器的组成 3)摩擦离合器的工作原理
22
1)摩擦离合器的分类
23
2)摩擦离合器的组成
24
3)摩擦离合器的工作原理
25
4、离合器操纵机构
机械式操纵机构 液压式操纵机构 助力式和气压式操纵机构
26
机械式操纵机构(杆系传动、绳索传动)
杆系传动机构 结构简单,工作可靠。但机械效率低, 质量大,布置比较困难。如EQ1090E汽车离合器。 绳索传动机构 可采用吊挂踏板,但寿命较短。如桑塔纳 轿车、捷达轿车。 。
52
3、主减速器(Final Drive)
(1)功能: 减速增扭,改变传动方向
CVT的工作原理
工作时通过主动轮与从 动轮的可动盘作轴向移 动来改变主动轮、从动 轮锥面与V型传动带啮合 的工作半径,从而改变 传动比。主动轮和从动 轮的工作半径可以通过 调节液压泵油缸压力改 变可动盘的轴向移动量 实现连续调节,从而实 现了无级变速。
41
变速器动画
变速器动画一 变速器动画二 变速器动画三 变速器动画四 同步器动画 操纵机构
56
2)对称式齿轮差速器
对称式齿轮差速器具有平均分配扭矩的特点。
57
个人观点供参考,欢迎讨论!
动力性能降低、前桥结构及工艺复杂、制造 成本高、维修保养困难等。
适用车型:轿车(含微型、经济型汽车)上比较盛行。
7
后置后驱 (RR = Rear-engine Rear-drive )
优势: 传动效率高、有利于车身内布置、车厢内 振动和噪声小、车厢内面积利用率大等。
弊端: 高速转向不稳定、水箱布置困难、发动机防 尘困难、远程操纵机构较复杂、维修保养困难等。
21
3、摩擦离合器
1)摩擦离合器的分类 2)摩擦离合器的组成 3)摩擦离合器的工作原理
22
1)摩擦离合器的分类
23
2)摩擦离合器的组成
24
3)摩擦离合器的工作原理
25
4、离合器操纵机构
机械式操纵机构 液压式操纵机构 助力式和气压式操纵机构
26
机械式操纵机构(杆系传动、绳索传动)
杆系传动机构 结构简单,工作可靠。但机械效率低, 质量大,布置比较困难。如EQ1090E汽车离合器。 绳索传动机构 可采用吊挂踏板,但寿命较短。如桑塔纳 轿车、捷达轿车。 。
52
3、主减速器(Final Drive)
(1)功能: 减速增扭,改变传动方向
数控机床的主传动系统
联轴器直接与主轴联接
其优点是结构紧凑,传动效率高,但主轴转速的变化及转矩的输出完全 受电机的限制,随着主轴电机性能的提高,这种形式越来越多地被采用;
内装电机主轴
这种主传动方式大大简化了主轴箱体与主轴的结构,有效地提高了主轴 部件的刚度,主轴转速高,但主轴输出扭矩小,电机发热对主轴的精度 影响较大。
数控机床的主传动系统
1.1 主传动系统的结构与特点 1.数控机床的传动系统 在数控机床的主轴电机、传动元件和主轴构成的具有运动 传动联系的系统称为主传动系统。由于现代数控机床常采用直 流或交流调速电机作为主运动的动力源,主要由电机实现主运 动的变速,使得数控机床的主传动系统的结构大大简化。
1)带有变速齿轮的主传动
排油泵强制排油到恒温邮箱,以达到润滑、冷却的目的。
2.主轴的密封
主轴的密封有接触式和非接触式两种。 接触式: 有摩擦和磨损,发热严重,用于低速主轴。 非接触式: 迷宫式和隙缝式,发热很小,应用广泛。 为保证密封作用,旋转部分与固定部分之间的径向间隙应小于
(a)主轴准停换刀
4.主轴组件的润滑与密封
1)主轴润滑 主轴润滑的作用减少摩擦,降低机床温度,是带走摩擦所产生的热量,
减少机床热变形。机床的润滑凡是主要有以下两种: (1)油气润滑方式。油气润滑是定时定量地把油雾送进轴承空隙中,这
种送油方式是间歇式的;而油雾润滑则是连续供给油雾。 (2)喷注润滑方式。它用较大流量的恒温油喷注到主轴轴承上,然后由
合机床的镗孔车端面头主轴组件。 (5)主轴作旋转运动又作行星运动的主轴组件。
2)主轴端部的结构
主轴端部用于安装刀具或夹持安装工件的夹具。其结构应保证 定位准确,夹紧牢固可靠,能传递足够大的扭矩,安装、拆卸 方便。主轴端部的结构已经标准化,如图3-4所示为六种通用 的结构形式。
数控机床主传动系统
伺服驱动系统通常由伺服电机、控制器和驱动器组成,通过调整电机的输入电压或 电流实现主轴的精确位置和速度控制。
伺服驱动系统的性能决定了数控机床的动态特性和加工精度。
主轴与卡盘
主轴是数控机床主传动系统的输 出部件,它能够带动刀具或工件
旋转。
主轴通常采用高精度轴承和刀具 夹紧装置,以确保加工过程中的
稳定性和精度。
类型与分类
类型
数控机床主传动系统根据其结构和工作原理的不同,可以分为多种类型,如机械主传动系统、液压主 传动系统、电气主传动系统等。
分类
数控机床主传动系统还可以根据其传动方式的不同进行分类,如带传动、链传动、齿轮传动等。不同 类型的数控机床主传动系统具有不同的特点和应用范围,需要根据具体的加工需求和加工条件进行选 择。
主轴定位精度与重复定位精度
主轴定位精度
主轴在特定位置的准确度,决定了加 工零件的尺寸精度。定位精度越高, 加工精度越好。
重复定位精度
主轴在相同位置的重复精度,反映了 主轴运动的稳定性。重复定位精度越 高,主轴运动越稳定。
热稳定性与动态特性
热稳定性
主轴在切削过程中抵抗温度变化的能力,热稳定性越高,加工过程中主轴的性能越稳定。
动态特性
主轴在动态切削过程中的表现,包括振动、噪声等。动态特性越好,切削过程越平稳,加工表面质量越高。
04
主传动系统的控制技术
数控编程与加工技术
数控编程
根据加工需求,使用数控编程语言(如G代码)对机床进行编程,以控制主轴的运动轨 迹和加工过程。
加工工艺
根据工件材料、加工要求和刀具特性,选择合适的加工工艺,如粗加工、半精加工和精 加工等,以确保加工质量和效率。
特点
数控机床主传动系统具有高精度、高 效率、高稳定性等特点,能够满足复 杂、高效、高ห้องสมุดไป่ตู้度的加工需求。
伺服驱动系统的性能决定了数控机床的动态特性和加工精度。
主轴与卡盘
主轴是数控机床主传动系统的输 出部件,它能够带动刀具或工件
旋转。
主轴通常采用高精度轴承和刀具 夹紧装置,以确保加工过程中的
稳定性和精度。
类型与分类
类型
数控机床主传动系统根据其结构和工作原理的不同,可以分为多种类型,如机械主传动系统、液压主 传动系统、电气主传动系统等。
分类
数控机床主传动系统还可以根据其传动方式的不同进行分类,如带传动、链传动、齿轮传动等。不同 类型的数控机床主传动系统具有不同的特点和应用范围,需要根据具体的加工需求和加工条件进行选 择。
主轴定位精度与重复定位精度
主轴定位精度
主轴在特定位置的准确度,决定了加 工零件的尺寸精度。定位精度越高, 加工精度越好。
重复定位精度
主轴在相同位置的重复精度,反映了 主轴运动的稳定性。重复定位精度越 高,主轴运动越稳定。
热稳定性与动态特性
热稳定性
主轴在切削过程中抵抗温度变化的能力,热稳定性越高,加工过程中主轴的性能越稳定。
动态特性
主轴在动态切削过程中的表现,包括振动、噪声等。动态特性越好,切削过程越平稳,加工表面质量越高。
04
主传动系统的控制技术
数控编程与加工技术
数控编程
根据加工需求,使用数控编程语言(如G代码)对机床进行编程,以控制主轴的运动轨 迹和加工过程。
加工工艺
根据工件材料、加工要求和刀具特性,选择合适的加工工艺,如粗加工、半精加工和精 加工等,以确保加工质量和效率。
特点
数控机床主传动系统具有高精度、高 效率、高稳定性等特点,能够满足复 杂、高效、高ห้องสมุดไป่ตู้度的加工需求。
数控机床主传动系统
图3-1 VMC-15型加工中心的外形图 1—对刀仪 2—工作台(X,Y轴进给) 3—第四轴旋转头 4—刀库 5—防护装置 6—主轴箱(Z轴进给) 7—操作面板
数控机床主传动系统
• 课程导引 • (1)主传动系统
如图3-2所示为VMC-15加工中心的主传动结构,其主 传动路线为:交流主电动机(150~7500r/min无级调 速)→1∶1多楔带传动→主轴。
a)各种钻床
b)铣、镗床
c)外圆磨床、平面磨统
• 3.2 主轴及其部件结构
• 2.主轴的主要尺寸参数 • (1)主轴直径
主轴直径越大,其刚度越高,但增加直径使得轴承和 轴上其他零件的尺寸相应增大。轴承直径越大,同精度等 级的轴承公差值也越大,同时轴承极限转速下降,要保证 主轴的旋转精度就越困难。
• 3.1 数控机床的主轴系统
数控机床主传动系统
• 3.1.2 主传动变速的方式
•
数控机床主运动调速范围很宽,其主轴的传动变速方
式主要有以下几种:
图3-4 数控机床主传动的四种配置方式 a)齿轮变速 b)带传动 c)两个电动机分别驱动 d)电主轴
• 1.带有变速齿轮的主轴传动(分段无级变速)
数控机床主传动系统
数控机床结构与故障检修
Structure and maintenance of NC
第3章 数控机床主传动系统
The main drive system of NC
CONTENTS 目 录
一 数控机床的主轴系统 二 主轴及其部件结构 三 典型机床主轴结构
• 课程导引
数控机床主传动系统
如图所示VMC-15加工中 心,工作台行程X/Y/Z向 20in/16in/20in( 1inc=25.4mm),快进速 度400in/min,主轴转速 150—7500r/min,定位精 度±0.0002in,主电机功 率11.2KW。
数控机床主传动系统
• 课程导引 • (1)主传动系统
如图3-2所示为VMC-15加工中心的主传动结构,其主 传动路线为:交流主电动机(150~7500r/min无级调 速)→1∶1多楔带传动→主轴。
a)各种钻床
b)铣、镗床
c)外圆磨床、平面磨统
• 3.2 主轴及其部件结构
• 2.主轴的主要尺寸参数 • (1)主轴直径
主轴直径越大,其刚度越高,但增加直径使得轴承和 轴上其他零件的尺寸相应增大。轴承直径越大,同精度等 级的轴承公差值也越大,同时轴承极限转速下降,要保证 主轴的旋转精度就越困难。
• 3.1 数控机床的主轴系统
数控机床主传动系统
• 3.1.2 主传动变速的方式
•
数控机床主运动调速范围很宽,其主轴的传动变速方
式主要有以下几种:
图3-4 数控机床主传动的四种配置方式 a)齿轮变速 b)带传动 c)两个电动机分别驱动 d)电主轴
• 1.带有变速齿轮的主轴传动(分段无级变速)
数控机床主传动系统
数控机床结构与故障检修
Structure and maintenance of NC
第3章 数控机床主传动系统
The main drive system of NC
CONTENTS 目 录
一 数控机床的主轴系统 二 主轴及其部件结构 三 典型机床主轴结构
• 课程导引
数控机床主传动系统
如图所示VMC-15加工中 心,工作台行程X/Y/Z向 20in/16in/20in( 1inc=25.4mm),快进速 度400in/min,主轴转速 150—7500r/min,定位精 度±0.0002in,主电机功 率11.2KW。
第二章传动系统的传动简图-PPT课件
32
二、变速2
第二章 传动系统 西南交大机械系
33
三、各档速度计算和各档驱动力的计算 1、已知各档总传动比 i r 、发动机型号(Me、ne)、
轮胎型号,求各档理论运行速度U
Ur=nr×R×2π=R×ne×2π/i =0.377R×ne/i (Km/h)
r r
化简单位为:Ur=2π×10-3×R×ne × 60/ i
r
Ur—各档理论运行速度Km/h
R—驱动轮半径m
nr—对应档驱动轮转速r/min
2019/3/12 第二章 传动系统 西南交大机械系 34
2019/3/12
第二章 传动系统 西南交大机械系
35
第三节 计算载荷的确定
一、 根据发动机或液力变矩器的最大输出转矩Mmax确定
第二章 传动系统 西南交大机械系
29
4、电传动
• 发动机→发电机→电动机→减速器→驱动轮
优点
• 发动机与车轮之间没有刚性联系,便于总体布置及维修。 • 可实现无级变速 • 实现多轮驱动容易。 • 可采用电力制动,减少制动器的负荷,使其寿命增加。
• 容易实现自动化。
缺点
• 成本高;自重大
应用
• 大功率的自卸载重汽车、铲运机、矿用斗轮式装载机等
2019/3/12 第二章 传动系统 西南交大机械系 11
缺陷:
成本高、传动效率略低、增加了燃油消耗量;在行驶阻 力变化小而进行连续作业时,上述优点不显著
应用:
很广泛、图1-7、1-9、1-10、1-11等
2019/3/12
第二章 传动系统 西南交大机械系
12
17
18
22
23
第二章 传动系统 西南交大机械系
机械传动系统的方案设计ppt课件
中间环节,它是机械的重要组成部分。
机械传动系统的作用:不仅可以进行运动形式的转换,而且 能将原动机的功率和转矩传递给执行构件,以克服生产阻力。除 此之外,现代完善的机械传动系统,还具有运动操纵和控制功能, 将光、机、电、液有机地组合,借助微机控制,自动实现机械所 需要的完整工作过程。
机械传动系统的设计是机械设计中极其重要的一环,设计得
境等情况,明确提出机械所要达到的总功能;然后拟定实现这些
功能的工作原理及技术手段,最后设计出机械系统传动方案。
2.机械工作原理的拟定
产品功能是指人们根据的生产或生活需要提出来的产品用途、 性能及使用要求。
功能确定在确定机械产品的功能指标时应进行科学分析,以
保证产品的先进性、可行性和经济性。
实现机械功能的工作原理,决定着机械产品的技术水平、工
作质量、传动方案、结构形式和成本等。所以需利用各种“创造
技法”,并借鉴同类产品的经验和最新科技成果,以便拟定出合
理的工作原理。
实现同一功能要求,有不同的工作原理和不同的运 动方案。
其中必有好坏优劣之分。因此,在设计机械时,要其工作原理和
பைடு நூலகம்
运动方案进行综合评价,从中选出最佳设计方案。
4
§14-3 执行构件的运动设计和原动机的选择
在时间及运动位置的安排上必须准确协调配合。 2)各执行构件运动速度的协调配合 有些机械要求其各执
行构件的运动速度必须保持协调。 对于有运动协调配合要求的执行构件,往往采用一个原动
机,通过运动链将运动分配到 各执行构件上去,借助机械传动 系统实现运动的协调配合。但在一些现代机械(如数控机床) 中,常用多个原动机分别驱动,借助数控系统实现运动的协调 配合。
1) 直线式工作循环图 它以主轴作为定标件。为提高生产率, 各执行构件的工作行程有时允许有局部重叠。
机械传动系统的作用:不仅可以进行运动形式的转换,而且 能将原动机的功率和转矩传递给执行构件,以克服生产阻力。除 此之外,现代完善的机械传动系统,还具有运动操纵和控制功能, 将光、机、电、液有机地组合,借助微机控制,自动实现机械所 需要的完整工作过程。
机械传动系统的设计是机械设计中极其重要的一环,设计得
境等情况,明确提出机械所要达到的总功能;然后拟定实现这些
功能的工作原理及技术手段,最后设计出机械系统传动方案。
2.机械工作原理的拟定
产品功能是指人们根据的生产或生活需要提出来的产品用途、 性能及使用要求。
功能确定在确定机械产品的功能指标时应进行科学分析,以
保证产品的先进性、可行性和经济性。
实现机械功能的工作原理,决定着机械产品的技术水平、工
作质量、传动方案、结构形式和成本等。所以需利用各种“创造
技法”,并借鉴同类产品的经验和最新科技成果,以便拟定出合
理的工作原理。
实现同一功能要求,有不同的工作原理和不同的运 动方案。
其中必有好坏优劣之分。因此,在设计机械时,要其工作原理和
பைடு நூலகம்
运动方案进行综合评价,从中选出最佳设计方案。
4
§14-3 执行构件的运动设计和原动机的选择
在时间及运动位置的安排上必须准确协调配合。 2)各执行构件运动速度的协调配合 有些机械要求其各执
行构件的运动速度必须保持协调。 对于有运动协调配合要求的执行构件,往往采用一个原动
机,通过运动链将运动分配到 各执行构件上去,借助机械传动 系统实现运动的协调配合。但在一些现代机械(如数控机床) 中,常用多个原动机分别驱动,借助数控系统实现运动的协调 配合。
1) 直线式工作循环图 它以主轴作为定标件。为提高生产率, 各执行构件的工作行程有时允许有局部重叠。
机械制造装备设计课程设计(18级)(PPT40页)
2、动力计算
根据给定的电动机功率,计算主轴及传动轴尺寸、齿轮、 皮带的根数及型号,确定轴承等。验算主轴或某一根传动轴 的刚度和轴承的承载能力。
3、结构设计
进行传动轴组件、变速机构、主轴组件等的布置和结构 设计。绘制机床主轴主变速箱装配图(包括展开图和一主要 剖视图)和一主要零件图。
机械制造装备设计课程设计--机床主传动系统设计
机械制造装备设计课程设计--机床主传动系统设计
5、零件的验算 ① 在零件尺寸和位置确定后,才可以知道它们的受力状态, 力的大小,作用点和方向,才可以对零件(如齿轮、轴、键、 轴承等)进行较为精确的验算。 ② 如发现不合理或不正确时,应重新修改结构,重新计 算,以达要求。 6、装配图上应标数据 ① 齿轮齿数及模数、带轮直径、电动机功率和转速、轴编号等, 并均与转速图一致; ② 决定配合性质的配合尺寸;
4、编写设计计算说明书 主要包括: 1)运动设计和动力计算的计算过程和分析; 2)结构设计说明(包括主要结构的分析以及其他需要说明 或论证的问题); 3)参考文献
机械制造装备设计课程设计--机床主传动系统设计
四、课程设计的步骤和注意事项
1、准备工作 2、运动设计
① 传动方案设计(集中传动或分离式传动); ② 结构式; ③ 绘制转速图; ④ 确定齿轮齿数; ⑤ 绘制传动系统图; ⑥ 带和带轮的设计计算;
机械制造装备设计课程设计--机床主传动系统设计
3、动力计算
① 传动件的计算转速(主轴、各传动轴、最小齿轮); ② 传动轴直径的估算和选用(一般情况下,应利用轴的扭转强度计算的方 法来估算出轴的最小直径,求得d值应加以圆整。如果是花键轴,则花键的 内径可比计算的d值减小7%,由此选用合适的花键); ③ 主轴的设计(前端、后端直径、内孔直径、支撑形式、悬伸量、支撑跨 距等); ④ 齿轮模数的估计(一般同一变速组中的齿轮取同一模数,一个主轴变速 箱中的齿轮采用1~2种模数。主轴变速箱的齿轮模数常取为2.5、3、 4mm)。
根据给定的电动机功率,计算主轴及传动轴尺寸、齿轮、 皮带的根数及型号,确定轴承等。验算主轴或某一根传动轴 的刚度和轴承的承载能力。
3、结构设计
进行传动轴组件、变速机构、主轴组件等的布置和结构 设计。绘制机床主轴主变速箱装配图(包括展开图和一主要 剖视图)和一主要零件图。
机械制造装备设计课程设计--机床主传动系统设计
机械制造装备设计课程设计--机床主传动系统设计
5、零件的验算 ① 在零件尺寸和位置确定后,才可以知道它们的受力状态, 力的大小,作用点和方向,才可以对零件(如齿轮、轴、键、 轴承等)进行较为精确的验算。 ② 如发现不合理或不正确时,应重新修改结构,重新计 算,以达要求。 6、装配图上应标数据 ① 齿轮齿数及模数、带轮直径、电动机功率和转速、轴编号等, 并均与转速图一致; ② 决定配合性质的配合尺寸;
4、编写设计计算说明书 主要包括: 1)运动设计和动力计算的计算过程和分析; 2)结构设计说明(包括主要结构的分析以及其他需要说明 或论证的问题); 3)参考文献
机械制造装备设计课程设计--机床主传动系统设计
四、课程设计的步骤和注意事项
1、准备工作 2、运动设计
① 传动方案设计(集中传动或分离式传动); ② 结构式; ③ 绘制转速图; ④ 确定齿轮齿数; ⑤ 绘制传动系统图; ⑥ 带和带轮的设计计算;
机械制造装备设计课程设计--机床主传动系统设计
3、动力计算
① 传动件的计算转速(主轴、各传动轴、最小齿轮); ② 传动轴直径的估算和选用(一般情况下,应利用轴的扭转强度计算的方 法来估算出轴的最小直径,求得d值应加以圆整。如果是花键轴,则花键的 内径可比计算的d值减小7%,由此选用合适的花键); ③ 主轴的设计(前端、后端直径、内孔直径、支撑形式、悬伸量、支撑跨 距等); ④ 齿轮模数的估计(一般同一变速组中的齿轮取同一模数,一个主轴变速 箱中的齿轮采用1~2种模数。主轴变速箱的齿轮模数常取为2.5、3、 4mm)。
机械装备技术电子课件第二章
总之,机床的传动系统通常是由几个变速组串联
所组成的,其中以基本组为基础,再通过第一、第
二、……扩大组将各轴的转速级数和变速范围逐步扩
大。通常,将这样的传动系统称为常规传动系统。
常规传动系统的特点:
1)单公比的连续等比数列; 2)单速电机为动力源; 3)采用滑移齿轮或齿轮离合器变速; 4)没有采用公用齿轮。
二、 主传动链转速图的拟定
• 1.极限传动比、极限变速范围原则
最小传动比的限制 最大传动比的限制 直齿轮, 直齿轮变速组的极限变速范围 r=8. 螺旋圆柱齿轮变速组的极限变速范围 r=10. e.g. ① 公比φ=1.41
e.g. ② 18=31×36×23, 公比φ=1.26,。
•
2.传动顺序及传动副数原则
主轴转速为连续等公比数列时(即无转速的重复或空 缺),主轴转速的变速级数等于各变速组传动副数
的乘积。即:
Z=pa×pb×pc×pd×……pm
例:主轴转速为连续等公比数列,主轴转速级数Z =12。 a、b、c三个变速组的传动副数: pa=3、pb=2、pc=2。
主轴转速级数:Z=pa×pb×pc=3×2×2=12
转速线 传动线
标中,并把有关
转速之间的传动
比也画出来的一
种线图。 ⑵ 组成
传动轴线
转速点
⑶ 基本概念
1)变速组的级比和级比指数 级比 x-变速组中两相邻传动比的比值; 级比指数 x-转速图上两相邻传动线相距的格数。 2)基本组和扩大组 基本组 — x=1的变速组。 扩大组 — x>1的变速组。 扩大顺序 — 变速组按 x 值 由小到大依次排列的顺 序。 3)变速组的变速范围 基本组:
结构式:8=22×21×24
第一扩 大 组
汽车传动系统精品课件精选全文
④平衡性能好,高速性能优良;
⑤制造工艺复杂、尺寸精度要求高。
§15 机械变速器
一、变速器的功用与分类
(1)在较大范围内改变汽车的行驶速度和汽车驱动轮上转矩数值; (2)在汽车发动机旋转方向不变的前提下,利用倒挡实现汽车倒向行驶; (3)在发动机不熄火的情况下,利用空挡中断动力传递,可以使驾驶员松开离合器踏板离开驾驶位置,且便于汽车起动、怠速、换挡和动力输出。
2
4
3
2.从高速挡换入低速挡
(1)在五档时 V3=V2
(2)退入空档 V3=V2 V4<V2 故V3>V4
(3)由于V4下降快 V3下降慢
(4)重新接合离合器, 同时加空油,使V4>V3
(5)再分离离合器,等 到V4=V3,即可挂入 四挡。
发动机
液压自动控制装置
变速操纵杆
4、电力式传动系统
电 池
电动机控制器
电动机
发电机
发动机
三、 传动系统的布置型式
传动系统的布置方式
发动机前置后轮驱动
发动机前置前轮驱动
四轮驱动
越野车的传动系统
发动机
离合器
变速器
分动器
前驱动桥
桑塔纳轿车传动系统
液力变矩器
液力机械式传动
液力变矩器的输出转矩和输入转矩比值的变化范围不能满足汽车各种行驶工况要求,一般在后面串联一个有级式机械变速器。
3
2
4
(二)同步器
分类: 锁环式惯性同步器 锁销式惯性同步器
使结合套与待啮合齿圈迅速同步,缩短换挡时间,同时防止啮合时齿间冲击。
功用:
结构: 同步装置、锁止装置、结合装置
1、锁环式惯性同步器
(1)组成:
⑤制造工艺复杂、尺寸精度要求高。
§15 机械变速器
一、变速器的功用与分类
(1)在较大范围内改变汽车的行驶速度和汽车驱动轮上转矩数值; (2)在汽车发动机旋转方向不变的前提下,利用倒挡实现汽车倒向行驶; (3)在发动机不熄火的情况下,利用空挡中断动力传递,可以使驾驶员松开离合器踏板离开驾驶位置,且便于汽车起动、怠速、换挡和动力输出。
2
4
3
2.从高速挡换入低速挡
(1)在五档时 V3=V2
(2)退入空档 V3=V2 V4<V2 故V3>V4
(3)由于V4下降快 V3下降慢
(4)重新接合离合器, 同时加空油,使V4>V3
(5)再分离离合器,等 到V4=V3,即可挂入 四挡。
发动机
液压自动控制装置
变速操纵杆
4、电力式传动系统
电 池
电动机控制器
电动机
发电机
发动机
三、 传动系统的布置型式
传动系统的布置方式
发动机前置后轮驱动
发动机前置前轮驱动
四轮驱动
越野车的传动系统
发动机
离合器
变速器
分动器
前驱动桥
桑塔纳轿车传动系统
液力变矩器
液力机械式传动
液力变矩器的输出转矩和输入转矩比值的变化范围不能满足汽车各种行驶工况要求,一般在后面串联一个有级式机械变速器。
3
2
4
(二)同步器
分类: 锁环式惯性同步器 锁销式惯性同步器
使结合套与待啮合齿圈迅速同步,缩短换挡时间,同时防止啮合时齿间冲击。
功用:
结构: 同步装置、锁止装置、结合装置
1、锁环式惯性同步器
(1)组成:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
主传动系统设计
(一)转速图与结构式
主传动系统设计
转速图的作用: (1)表示出传动轴的数目; (2)传动轴之间的传动关系; (3)主轴的各级转速值及其传动路线; (4)各传动轴的转速分级和转速值; (5)各传动副的传动比。
转速图由一组相互平行和垂直的格线组成。 ▪ 1)距离相等的竖直线代表传动系统的各轴。从左到右依次标注。 ▪ 2)距离相等的横直线与竖直线相交点,代表各级转速。 ▪ 3)坐标取对数坐标,在相交点直接写出转速的数值。 ▪ 4)相邻两轴之间相应转速的连线代表相应传动副的传动比,从左向
3.4.1 必须满足的设计基本要求 3.4.2 主传动系统分类与传动方式 3.4.3 分级变速主传动系统 3.4.4 无级变速主运动传动系统设计 3.4.5 数控机床主传动系统设计
主传动系统设计
▪ 1)满足机床使用性能要求。机床的末端执行件(如主轴)应 有足够的转速范围和变速级数。
▪ 2)机床传递动力要求。机床的动力源和传动机构应能够输 出和传递足够的功率和转矩,并有较高的传动效率。
变速的基本规律是:变速系统是以基本组为基础,再通过扩大 组(可以有第一扩大组、第二扩大组……)把转速范围(级数)加 以扩大。若要求变速系统是一个连续的等比数列,则基本组的 级比等于,级比指数X。=1;扩大组的级比xj ,级比指数 xj应等于该扩大组前面的基本组传动副数和各扩大组传动副数 的乘积。
1/
2
1/1.412
1/
2
II轴-III轴:变速组b
ub1
4211.410 42
0
ub2
221/2.821/1.413 62
1/3
III轴-IV轴:变速组c
uc1
6 3
021.4 0
12
2
uc2
181/ 72
41/1.4
14
1/4
IV轴转速: 32212
主传动系统设计
▪ 1) 变速系统的变速级数是各变速组传动副数的乘积。 ▪ 2) 机床的总变速范围Rn是各变速组变速范围的乘积。 ▪ 3) 变速组的传动比之间关系
主传动系统设计
第四节 主传动系统设计
主传动系统设计
▪ 主传动系组成
主传动系一般由动力源(如电动机)、变速装置及执行 件(如主轴、刀架、工作台),以及开停、换向和制动 机构等组成。
▪ 动力源:给执行件提供动力,并使其得到一定的运动速度和方向; ▪ 变速装置:传递动力以及变换运动速度; ▪ 执行件:执行机床所需的运动,完成旋转或直线运动。
▪ 3)机床工作性能要求。机床的传动结构,特别是末端执行 件必须有足够的精度、刚度、抗振性能和较小的热变形。
▪ 4)产品设计经济性要求。应该合理地满足机床的自动化程 度和生产率的要求。
▪ 5)机床的操作和控制要灵活,Байду номын сангаас全可靠,噪声小,维修方 便。机床的制造要方便,成本要低。
主传动系统设计
(一)主传动系分类 : ▪ (1)按驱动主传动的电动机类型
▪ 特点是变速箱各传动件所产生的振动 和热量不能直接传给或少传给主轴, 从而减少主轴的振动和热变形,有利 于提高机床的工作精度。
▪ 运动由皮带经齿轮离合器直接传动, 主轴传动链短,使主轴在高速运转时 比较平稳,空载损失小;当主轴需作 低速运转时,运动则由皮带轮经背轮 机构的两对降速齿轮传动后,转速显 著降低,达到扩大变速范围的目的。
▪ 通用机床中多数机床的主变速 传动系都采用这种方式。适用 于普通精度的大中型机床。
▪ 特点是结构紧凑,便于实现集 中操纵,安装调整方便。
▪ 缺点是运转的传动件在运转过 程中所产生的振动、热量,会 使主轴产生变形,使主轴回转 中心线偏离正确位置而直接影 响加工精度。
主传动系统设计
2.分离传动方式
▪ 主传动系中的大部分的传动和变速机 构装在远离主轴的单独变速箱中,然 后通过带传动将运动传到主轴箱的传 动方式,称为分离传动方式。
可分为交流电动机驱动和直流电动机驱动。交流电动机 驱动中又可分单速交流电动机或调速交流电动机驱动。调 速交流电动机驱动又有多速交流电动机和无级调速交流电 动机驱动。 ▪ (2)按传动装置类型
可分为机械传动装置、-液压传动装置、电气传动装置 以及它们的组合。 ▪ (3)按变速的连续性
可以分为分级变速传动和无级变速传动。
▪ 无级变速传动可以在一定的变速范围内连续改变转速,以便 得到最有利的切削速度;能在运转负载中变速,便于实现变 速自动化。无级变速传动可由机械摩擦无级变速器、液压无 级变速器和电气无级变速器实现。
主传动系统设计
(二)主传动系的传动方式:
1.集中传动方式
▪ 主传动系的全部传动和变速机 构集中装在同一个主轴箱内, 称为集中传动方式。
主传动系统设计
分级变速主传动系设计的内容和步骤: 根据已确定的主变速传动系的运动参数,拟定结构式、转速图,合理分 配各变速组中的传动副的传动比,确定齿轮数和带轮直径等,绘制主变 速传动系图。
▪ (一)转速图与结构式 ▪ (二)各变速组的变速范围及极限传动比 ▪ (三)主传动系统设计的基本原则与方法 ▪ (四)主传动系统的几种特殊设计 ▪ (五)扩大传动系变速范围的方法 ▪ (六)齿轮齿数的确定 ▪ (七)计算转速 ▪ (八)变速箱内传动件的空间布置与计算
上斜是升速传动,从左向下斜是降速传动。
主传动系统设计
传动线
31.5-1400:12级 公比:
45 1.41
31.5
电-I轴
u121 6/21/1.421 1/2
256
I轴-II轴:变速组a
ua1
36 36
1 1.410
0
ua2
30 42
1/1.41 1/1.411
1/ 1
ua3
24 48
主传动系统设计
▪ 分级变速传动在一定的变速范围内只能得到某些转速,变速 级数一般不超过20~30级。传动方式有滑移齿轮变速、交换 齿轮变速和离合器(如摩擦式、牙嵌式、齿轮式离合器)变速。 传递功率较大,变速范围广,传动比准确,工作可靠,广泛 应用于通用机床。缺点是有速度损失,不能在运转中进行变 速。