浅谈大型沼气发电工程的余热回收利用

浅谈大型沼气发电工程的余热回收利用

瓦斯发电及其余热利用_瓦斯发电

瓦斯的主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体。 具体可分为液化石油气与天然气、煤气三大类液化石油气,由原油炼制或天然气处理过程中产生的混合气体,主要成分是丙烷与丁烷天然气,由古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生的气态碳氢化合物,主要成份为甲烷,并含有少量之乙烷、丙烷、丁烷等碳氢化合物及少量之不燃性气体 煤气(指生活中人们对其称呼),也俗称为“瓦斯”。指的是煤炭不完全燃烧所产生的气体,主要成分是一氧化碳 煤矿瓦斯发电,既可以有效地解决煤矿瓦斯事故、改善煤矿安全生产条件,又有利于增加洁净能源供应、减少温室气体排放,达到保护生命、保护资源、保护环境的多重目标。 低浓度瓦斯发电需要解决2个问题,一是各个煤矿的本身不一样,而且随时都在变化,传统的发电机组很难“以不变应万变”;二是低浓度瓦斯的安全输送问题。 低浓度瓦斯发电机组采用电控燃气混合器技术,可以自动控制空燃比,以适应瓦斯的浓度变化,同时,低浓度瓦斯安全输送技术,采用细水雾技术,解决了低浓度瓦斯的地面安全输送问题。

煤矿瓦斯分高浓度瓦斯和低浓度瓦斯,高浓度瓦斯是指瓦斯浓度大于25%的瓦斯,低浓度瓦斯是指瓦斯浓度低于25%的瓦斯。我国60%以上的瓦斯是含甲烷25%以下的低浓度瓦斯,按煤矿安全规程要求,瓦斯浓度在25%以下的就不能贮存和输送,更谈不上利用了。 低浓度瓦斯发电需要解决2个问题,一是各个煤矿的本身不一样,而且随时都在变化,传统的发电机组很难“以不变应万变”;二是低浓度瓦斯的安全输送问题。低浓度瓦斯发电机组采用电控燃气混合器技术,可以自动控制空燃比,以适应瓦斯的浓度变化,同时,低浓度瓦斯安全输送技术,采用细水雾技术,解决了低浓度瓦斯的地面安全输送问题。 中国工程院周院士认为“低浓度瓦斯发电机组,适合我国煤矿点多量小的特点,堪称破解我国煤矿瓦斯难题的金钥匙”。 2004年以来,胜利油田胜利动力机械集团开始对“煤矿瓦斯细水雾输送及发电技术”进行开发研究并与第二年试验成功,使低浓度瓦斯发电技术得到了快速发展。目前装机总容量达到45万KW ,每年可发电21亿KW·H ,利用瓦斯7亿立方米。新版《煤矿安全规程》对浓度在30%以下的瓦斯用于内燃机发电作出了明确的规定,《规程》第148条第五项规定抽采的瓦斯浓度低于30%时,不得作为燃气直接燃烧;用于内燃机发电或作其他用途时,瓦斯的利用、输送必须按有关标准的规定,并制定安全技术措施。这给低浓度瓦斯发电提供了制度保障。

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

煤矿余热节能环保综合利用项目

煤矿余热节能综合利用项目 瓦斯发电机组余热、压风机余热、矿井水余热、矿井乏风氧化余热综合利用 胜动集团节能工程公司 2014年5月21日

公司简介 胜动集团节能工程公司位于山东省东营市经济技术开发区府前大街30号,是“中国节能服务产业十佳企业”胜利油田胜利动力机械集团有限公司下属分公司,专业从事分布式能源发电;矿井水、乏风、工艺循环、压风机冷却废热提取;井口保温和井下制冷;工业余/ 废热综合利用等节能工程项目建设总承包业务,集节能工程项目咨询、工程设计、施工总包于一体,提供节能工程建设一体化服务。公司以工程设计院为依托,拥有一支精良工程项目管理团队,业务内容涵盖节能诊断、节能规划、方案设计、可行性研究报告、工程设计、工程施工、EPC总承包。公司目前拥有电力行业(新能源发电、火电)设计和咨询乙级资质、机电设备安装工程专业承包叁级资质,现有员工120余人,其中设计咨询板块60余人,拥有注册建筑师、注册结构师、注册电气工程师、注册公用设备工程师、注册造价师、注册咨询师等各类执业资格技术人员20余名,拥有建筑、结构、暖通、机务、电气、动力等各类专业高中级工程师30余名,工程项目管理板块拥有国家注册建造师执业资格的项目管理人员10余名。节能工程公司立足于集团公司节能减排产业,始终如一的秉承“节约能源、保护蓝天”的企业宗旨,坚持“追求完美、创造卓越”的工作理念,提供给社会“全盘、全套、全面、全新、全优”的节能工程综合服务。近年来,公司以全国范围内燃煤替代节能工程为市场方向,进入煤矿余热综合利用、工业余/废热回收利用等集成供热制冷节能工程领域,实现了快速发展。

一、煤矿丰富的余热资源 1、煤矿瓦斯发电余热 胜动集团是全国最大的燃气内燃机发电机组产业基地,拥有多种型号的燃气发电机组,如500kW/600kW/700kW/1200kW/2000kW大型煤矿瓦斯发电机组。拥有多项发明专利的特有技术。是煤矿低浓度瓦斯发电的行业实施者、标准制定者。 发电机组在运行时,只有约35%转化为电能,约30%-35%随高温烟气排出,20%-25%被发动机冷却水带走,通过机身散热等其他损失约占10%左右,充分利用这些没有被转化为电能的余热,用来制取冷热水以满足用户的生产生活需求。例如:煤矿瓦斯变害为利改造途径中,既有瓦斯的发电利用,也有瓦斯发电余热的利用,既提高了瓦斯的利用率,改善机组运行工况,又降低其他能源消耗。 2、压风机余热制取洗浴热水

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

烟气余热回收装置的利用(2021年)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 烟气余热回收装置的利用(2021 年)

烟气余热回收装置的利用(2021年)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅

沼气发电各种利用途径对比

沼气发电----沼气利用方式效益对比 以酒精生产企业为例 国内很多酒精厂在保护环境方面作了很大努力,建厌氧池处理废水是非常有力的方式,每年减少大量有机废水排放,保护了有限的水资源。但厌氧反应出来的沼气部分企业用来烧锅炉,或发电,或直接供生产蒸汽,对于这些利用方式,我公司谨根据有关经济价值比较提出新的沼气利用方式,以获得更高的经济效益,回报环保工作的付出。 一、效益比较。 1、效率对比:同样的发电采用不同的方式,其经济结果是不一样的。采用锅炉发电,由于酒精生产企业大都是小功率发电站,效率都比较低,特别是简单的气、煤混烧,效率在17%左右,大大的浪费资源,而采用内燃机发电,效率在35%以上。 价值对比:烧锅炉用煤和气都可以,用气烧锅炉发电,每方气相当于0.8公斤标准煤的价值,约计0.45元,而采用内燃机组发电,每方气发电在1.8 kWh,按0.6元/ kWh计算,价值在1.08元。 3、综合比较:以下以年产10万吨酒精厂生产过程产生的沼气用于内燃机发电及余热利用效益与烧锅炉进行比较。10万吨酒精生产线有机废水采用厌氧装置,每天产气量约10万方。 (1)简单烧锅炉供蒸汽方式,10万方沼气约合80吨标准煤价值,按550元每吨计,价值44000元。实际上,10万吨产能酒精生产线日需9kg蒸汽300吨左右,需标准煤30吨左右,多余的能量就白白浪费了。 (2)采用烧锅炉发电供蒸气方式:发电量每方气在0.8kWh左右,共计发电量100000×0.8=80000kWh,按0.6/kWh元计,发电价值4.8万元。加上实际需要的蒸汽需煤消耗价值:30吨×550元/吨=16500元,总值64500元。 (3)采用内燃机发电及余热利用方式:每天可发电100000×1.8=180000kWh , 发电价值108000元。发动机余热通过针管式余热锅炉回收余热,根据酒精工艺,利用后每小时可产九公斤饱和蒸汽4吨,日产96吨,每公斤9公斤饱和蒸汽按80%锅炉热效率算需热650大卡,那么96吨9公斤饱和蒸汽需热6240万大卡,合标准煤约8吨,价值4400元。价值总计112400元。 结论:采用燃气内燃机发电并利用余热是最有效益的沼气利用方式 二、合作方式: 1、购销合作:由用户投资购买燃气机组组建电站,自行负责维护,我方提供最佳服务 2、劳务合作:用户投资建站,我方负责运行维护并保证一定发电量,收取劳务费。 三、内燃机组发电特点如下: ①发电效率高。通常在35~40%,若增加热电冷联供系统,热电效率可达80%以上。 ②造价相对较低。由于内燃机技术成熟,零件的精密度要求相对较低,单位千瓦造价低。 ③使用场合灵活。根据不同场合用户的需要,可方便的并机或并网,构成总输出功率达上万千瓦的电站或热电冷联供机组。机组群还可根据实际负载的需要,灵活方便地调节发电输出。

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

500kW发电机组余热利用计算

500KW燃气发电机组 烟气余热利用数据计算及经济效益分析 一、余热利用数据计算 1、烟气余热计算 燃气在空气中完全燃烧公式: 燃气在空气中不完全燃烧公式: 国产的500kW瓦斯气发电机组正常运转时,发电功率约为400kW、排烟温度为520℃左右。 如果采用该系统产生洗澡热水,设定烟气余热回收装置的排出的烟气温度为160℃,瓦斯气完全燃烧时瓦斯气和空气的体积比,根据各地的瓦斯成分有所不同,为使燃料充分燃烧,一般燃气与空气的混合比例为理论值的1.4倍左右。无论其混合比是多少,经测量其每小时产生的烟气量一般约为2250 m3/h左右。 平均烟气比重按1.25kg/m3计算, 则每小时排出烟气总重:2250×1.25=2812.5kg 排烟的比热容按烟道气体计算 (烟道气体的成分 CO 13% H2O 11% N2 76%,在100℃~600℃的平均定压比热容为0.27kcal/kg·℃) 数据列表 定压比热容(kcal/kg.℃)烟道气体空气 100℃0.255 0.241 200℃0.262 0.245 300℃0.268 0.250 400℃0.275 0.255 500℃0.283 0.261 600℃0.290 0.266 每台发电机组可利用排烟余热为: 2台发电机组可利用排烟余热总量为:

27.34×2 =54.68万kcal/h(~635kW) 2、缸套高温水余热计算 发动机正常运转过程中,必需要求其缸套温度保持在合理温度之内,高温水的热量如果不利用,则需要加冷却塔进行冷却。如果我们增加1台板式水-水换热器,将高温水热量加以利用,则可以减少能源浪费,使能源利用达到最大化,根据发动机厂家提供的数据,其高温水热量约为: 300KW × 0.75 =225 Kw (19.4万kcal/h) 2台发电机组可利用高温缸套水余热总量为: 19.4×2 =38.8万kcal/h(~450kW) 3、烟气和缸套高温水总余热计算 通过上面计算,可以看出2台发电机组可以利用的烟气和缸套高温水总余热热量为: 54.68 + 38.8 = 93.48万kcal/h(~1086kW) 二、经济效益分析 如果管线和散热损失按5%计算,2台燃气发电机组的烟气和高温缸套水余热产生的热量88.8万kcal/h;燃煤锅炉的热效率按照80%,煤的热值按照5000kcal/kg 计算,则回收的热量相当于每小时节省燃煤: 88.8×10000÷5000÷0.8 = 222 kg。 每天按照24小时,则每天节省的燃煤量: 222×24 = 5328 kg 每吨煤按照400元计算,则每天节省的费用: 400×5.328 = 2131元 每月按照30天,每年按照运行12个月计算,则每年节省的费用为: 2131×30×12 = 76.7 万元 三、热量平衡计算分析

烟气余热回收装置的利用(新编版)

烟气余热回收装置的利用(新 编版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0521

烟气余热回收装置的利用(新编版) [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电

厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1.0%。因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端

沼气燃烧发电

沼气燃烧发电 概述 沼气燃烧发电是随着大型沼气池建设和沼气综合利用的不断发展而出现的一项沼气利用技术,它将厌氧发酵处理产生的沼气用于发动机上,并装有综合发电装置,以产生电能和热能。沼气发电具有创效、节能、安全和环保等特点,是一种分布广泛且价廉的分布式能源。 [1]沼气发电在发达国家已受到广泛重视和积极推广。生物质能发电并网在西欧一些国家占能源总量的10%左右。我国沼气发电有30多年的历史,在“十五”期间研制出20~600kW纯燃沼气发电机组系列产品,气耗率0.6~0.8m0/kw h(沼气热值~>21MJ/m0)。但国内沼气发电研究和应用市场都还处于不完善阶段,特别是适用于我国广大农村地区小型沼气发电技术研究更少,我国农村偏远地区还有许多地方严重缺电,如牧区、海岛、偏僻山区等高压输电较为困难,而这些地区却有着丰富的生物质原料。如能因地制宜地发展小 沼电站,则可取长补短就地供电。[1]编辑本段沼气发电技术 沼气发电流程图 [2] 沼气发电技术是集环保和节能于一体的能源综合利用新技术。它是利用工业、农业或城镇生活中的大量有机废弃物(例如酒糟液、禽畜粪、城市垃圾和污水等),经厌氧发酵处理产生的沼气,驱动沼气发电机组发电,并可充分将发电机组的余热用于沼气生产。[1]沼气发电热电联产项目的热效率,视发电设备的不同而有较大的区别,如使用燃气内燃机,其热效率为70%~75%之间,而如使用燃气透平和余热锅炉,在补燃的情况下,热效率可以达到90%以上。沼气发电技术本身提供的是清洁能源,不仅解决了沼气工程中的环境问题、消耗了大量废弃物、保护了环境、减少了温室气体的排放,而且变废为宝,产生了大量的热能和电能,符合能源再循环利用的环保理念,同时也带来巨大的经济效益。 编辑本段我国沼气发电机组状况

利用沼气发电方案

一.沼气的气体组成特点 沼气是一种具有较高热值的可燃气体,其主要成分是甲烷,杂质及有害成分含量少,抗爆性能较好,是一种很好的清洁燃料。沼气与天然气成分对比如下: 利用活塞式内燃机发电,每立方沼气一般可发电2.3度以上。以单台500kW沼气机组长期运行(400kW)为例,耗气量为174m3/h。甲烷的热值为 35.9MJ /立方米。沼气的热值 20MJ 立方米 ~25MJ/立方米 二. 燃气净化要求: 沼气是一种清洁的燃气,1512Z系列沼气发电机组一般经过滤后可直接接入机组进气管路,不需升压,可适应零压或负压气源。如沼气中硫含量高于标准应进行

热值在21~42MJ/m3λ λ压力范围5kPa~400kPa(需根据不同的压力选用合适的调压阀)。 燃气温度范围:0~65℃。λ λ过滤精度:50um。 三. 技术参数 ①沼气发动机主要技术参数 型 号:G12V190ZLDTZ G12V190ZLDZ-2 型式:四冲程、火花塞点火、增压中冷、增压前混合 气缸排列: 12缸V型、60°夹角12缸V型、60°夹角 缸径×行程(mm):190×210190×210 活塞总排量(L): 71.5 71.5 标定转速(r/min):1500 1 000 空载最低稳定转速(r/min):700 600 标定功率(kW): 800(12小时功率)550(12小时功率) 燃气压力(kPa) : 5~400 5~400 热耗率(kJ/kW·h) :≤11000≤11000机油消耗率(g/kW·h ) :≤1.6≤1.6

排气温度(涡轮前)(℃) :≤650≤650 出水温度(℃) :≤90 ≤90 中冷器进水温度(℃) :≤45≤45 机油温度(油底壳内℃) :≤90≤90 主轴道机油压力(kPa) :500~800 500~800 调速方式:电子调速电子调速 起动方式:DC24V电马达起动DC24V电马达起动 稳定调速率(%):≤5 ≤5 冷却方式:双温双循环、半开式强制水冷 润滑方式:压力润滑和飞溅润滑曲轴转向(自飞轮端视) :逆时针逆时针 ② ③燃气发电机组主要技术参数 机组参数 机组型号:500GF -NK1 发动机型号: G12V190ZL

浅谈瓦斯发电机组余热回收利用技术

2019.02科学技术创新-191-浅谈瓦斯发电机组余热回收利用技术 王银华 (中煤昔阳能源有限责任公司瓦斯发电厂,山西昔阳045300) 摘要:主要收集并分析了黄岩汇煤矿职工澡堂洗浴热水年用水量、水源热泵年耗电量、稳定情况等指标,在此基础上,研究了余热锅炉汽水分离器产生的蒸汽输往矿井过程中的能量变化情况,然后选择采用和瓦斯发电机组相适应的余热锅炉,这样一来,水源热泵系统和余热回收利用系统就能够相互备用,充分发挥两者作用,而且很好的解决了职工澡堂洗浴热水问题。此外,通过一系列优化设计,保证了余热回收系统能够科学有效的运行,降低了水源热泵系统整体耗电量。 关键词:瓦斯发电组;余热回收利用技术;技术方案;效益分析 中图分类号:TD712+.67文献标识码:A文章编号:2096-4390(2019)02-0191-02 黄岩汇煤矿在2016年初投入使用职工澡堂和更衣室供暖系统,主要是通过水源热泵系统给矿上提供职工洗浴热水以及澡堂冷暖空调。采用水暖热泵系统优势在于运行稳定、成本低,但是弊端也很明显,比如在枯水季矿井水量不多,这样热量就达不到,温度相对很低,另外,矿井上的水不是很干净,杂质比较多,很容造成堵塞,需要经常清洗,维护成本相对偏高,周期也长。现在已经有三台水源热泵机组和冷暖空调损坏,严重影响了澡堂热水使用,因此,当务之急就是从新配备新的澡堂热水供应系统,以便和水源热泵系统互补备用。 1现状概述 黄岩汇煤矿和中煤昔阳能源有限责任公司的瓦斯发电厂距离较近,电厂发电机组燃气内燃机产生的高温冷却水热量比较大,同时烟道余热的热量也大,这些热量对于黄岩汇煤矿职工澡堂空调取暖以及洗浴热水来说已经绰绰有余,且节约费用。通过分析瓦斯发电机组的具体情况,然后新建瓦斯发电机组余热回收系统,以此为黄岩汇煤矿提供取暖,主要是澡堂热水和冬季空调采暖。把之前损坏的水源热泵系统修好,其主要负责夏季制冷,而瓦斯发电机组余热回收系统提供采暖。经过改造后,既节约了费用,又节能环保,关键是余热回收系统和水源热泵系统实现了补充备用,两者互不影响,而且能够智能控制。考虑到瓦斯发电机组内燃机拥有足够多的余热.同时通过实践可知,仅两台内燃机烟道余热回收约为300t/d,这已足够满足黄岩汇煤矿的供热需求,高温冷却水约为80t/d。但需要注意的是矿区水质差问题,这对系统正常运行会造成严重影响,因此需要在冷水进水端加入软水系统,流量约为20t o 2技术方案 2.1瓦斯发电余热回收系统 瓦斯发电余热冋收系统设备主要采用的是燃气内燃机,型号为500GFZL通过分析可知,燃气内燃机烟气排放物有微量硫化合物、碳颗粒、NOx、HC。如果这些物质在气态时,一般不会腐蚀设备,但如果排烟温度相对较低的话,水蒸气遇冷就会形成液态水,其会和上述硫化物以及氮氧化物结合形成酸,由此就会对设备形成腐蚀。此外,碳颗粒在潮湿时候非常容易结垢,烟气余热转换器需要一直保持排烟温度在150T上下,避免因为蒸汽受冷形成酸而腐蚀设备。浴室采暖适合用暖气片,兼顾管路热损,温度设置80七为宜。 2.2燃气发电机余热回收数据 该燃气发电机组额定功率为500KW,热效率值为35%,总热功率1430kW,排烟热功率占总热功率的32%,可回收率达到64%。实际发电机组在正常运行时,发电量在450KW,比理论值略低,约占理论值的九成,能够回收的热值为412KW,以64%的可回收率来计算,两台瓦斯发电机组可产80T热水约150t/d,除去热水管网等热损10%,仍可产80覽热水约136t/d,换成501的热水约为240t,可满足供应澡堂洗浴热水的要求。 2.3烟道余热回收 和高温冷却水余热回收比起来,烟道余热回收更为简单、方便、易行、节省费用。余热回收利用不但能够和之前的水源热泵同时运行,而且也可以单独运行,所以,这里只采用瓦斯发电机组烟道余热利用系统。若发电机组运行,烟道余热回收机组就会打开进水电磁阀,目的是把冷水进行充分热交换,确保出水温度满足要求,如果不达标,机组会报警。机组的控制器可设置出水量和温度,如果发电机组因故停止工作,此时热回收机组会把进水电磁阀关闭,机组将会全部停止工作。若发电机组需要检修,或者是在不运行时,水源热泵系统就会取而代之为澡堂供热。等到夏季,水源热泵系统会自动为末端制冷,这是制冷和热水备用系统。考虑到实际情况,比如距离、热损等,使用的烟道余热回收机组型号为GLC-13。从现在来看,冷水情况下也是可以达到热回收机组流量和压力要求,为保险起见,需要设置增压水泵,以防在水压达不到要求时自动启动。通过相关数据研究得出,选用四台水泵,型号为TD80-22/2。 2.4之前系统设备更换 室外水源热泵主机需要四台,型号改为LSR-1OOIIGW,每台制热量100KW,功率20KW。把之前受损的中央空调机组修复,冬季采暖通过新的余热回收系统,用R410A环保型冷媒代替MWH030DB模块式水源冷水(热泵)中央空调机组,R410A环保型冷媒每台制热额制冷量分别为115KW和106KW,功率在20-29KW左右,冬天制冷通过瓦斯余热回收系统,夏天制冷通过室外水源泵主机。 2.5余热回收系统优点 采用余热回收系统,不但变废为宝,实现节能,而且运行稳定,关键没有产生运行费用,还解决了散热负担问题,一举多得。实践显示,余热冋收系统产热足够满足澡堂需求,采用热交换原理,设备运行也相对比较可靠。余热回收系统对水温控制比较精准,误差极小,烟道排烟科学,对烟气的成分和状态不会改变,降低了腐蚀风险,同时,该系统具有较强的耐腐蚀性,易清洗、易维护,所用材质优良,使用期限可达二十年之久。 2.6余热回收系统运行方式要求 第一,空调制冷。澡堂第一层和第二层空调制冷(转下页)

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(标准版)

冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(标准 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0843

冶炼电炉烟气全余热回收装置-高温烟道 式余热锅炉(标准版) 在电炉冶炼的过程中,要产生大量的高温烟气,其最高温度可达2100℃,含尘量高,且所含氧化铁尘具有工业回收价值。高温含尘烟气携带的热量约为电炉输入总能量的11%,有的甚至高达20%。这些高温烟气不仅带走大量的热,而且给电炉的除尘系统带来了巨大的负担,不但降低了氧化铁尘的回收率,而且造成了严重的污染问题。随着钢铁行业的发展,电炉炼钢的铁水比例逐渐上升,有的甚至超过了30%。铁水比例的升高,引起电炉炼钢烟气量增加、热量浪费和除尘问题的日趋严重。如何将这部分高温烟气中的显热充分地回收,变“废”为宝,使之转化为热能,并使得电炉烟气更加稳定,为高效除尘创造条件,从而降低除尘系统运行成本和企业的生产成本,这是电炉炼钢企业必须重视的问题。公司组建了专业的技

术队伍开始了电炉烟气全余热回收装置的研究,从提高余热回收量、烟尘沉降效率、锅炉的压力及使用寿命3个角度进行研发,从而降低电炉的吨钢能耗。并在江苏某企业110t电炉成功投运,并对装置出口烟气温度、吨钢回收蒸汽量等关键参数进行了现场测试,测试结果显示装置达到了预期指标。 1、电炉烟气冷却方式现状 目前电炉烟气冷却的方式有水冷+机力风冷、废钢预热+水冷、水冷+热管余热锅炉等几种。 1.1水冷+机力风冷 水冷+机力风冷系统的流程见图1。电炉第四孔出口的高温烟气进入水冷烟道,同时,混入从电炉四孔水冷弯头和水冷滑套间的缝隙吸入的空气,进行燃烧,之后进入燃烧沉降室,在燃烧沉降室进行燃烧和灰尘沉降后,从燃烧沉降室出来的高温烟气经过水冷烟道冷却到600℃左右,进入机力风冷器,冷却后的烟气与电炉密闭罩的除尘烟气混合降温后进入布袋除尘器除尘,之后通过风机、消声器,从烟囱排出。

沼气发电极其热能回收利用

污泥处理能源的利用——沼气发电及其热能回收 摘要:本文系统介绍了高碑店污水处理厂,污泥处理设计过程中,如何有效地回收利用沼气发电系统的余热作为污泥中温消化的热源。达到节约能源,减少电耗和降低污水处理成本的目的。 关键字:沼气发电能源利用余热回收热平衡 1污泥处理及能源利用概况 高碑店污水处理厂二期工程设计水量50万m3/d,初沉泥和二沉池的混合污泥量为4417m3/d,污泥含水率97%,污泥处理工艺采用重力浓缩,二级中温消化带式压滤机脱水,并利用消化产生的沼气发电并入城市电网,发电机产生的余热作为一级消化热源,锅炉房蒸汽为补充热源。 高碑店污水处理厂二期工程设置八座消化池,四座为一个系列,共两个系列,每一系列有一级消化池三座,二级消化池一座,消化池产沼气2.2~2.6万m3/d。其中甲烷含量占57%~62%,热值5000Kcal/m3,消化池产气总热量为540万Kcal/h。三台沼气发电机总发电量2000KW,所发电量并入市政公用电网。为维持污泥中温消化所需的温度,需要对污泥进行加热。加热污泥的热量需要由外部热源提供,高碑店污水处理厂利用污泥消化产生的沼气进行发电,沼气发电系统运行中产生的大量余热,作为加热污泥的热源,这将节约大量的热能,达到节省能源,降低能耗的目的。图1为能源利用流程图。 2能源利用途径 高碑店污水处理厂工程沼气发电系统选用三台奥地利JMS316-BL型沼气发电机,发电机总容量约2000KW,单台发电机容量为625KW。该系统在运行过程中有三个部分产生的热能可回收利用,它们是:燃气混合热能、缸套水热能和润滑油热能及尾气释放的热能。表1所示为各部分热能回收量与回收率,图2为沼气发电机组热能回收系统,图3为单台沼气发电机组能量平衡图。沼气发电系统热能回收量与回收率单位:kw(万kcal)表1序号项目回收量回收率备注1燃气混合热能98(8.4) 5.8%2缸套水和润滑油热能283(24.3) 16.6%3尾气热能475(40.9)27.9%总输入热能1703(146.5)4总回收热能856(73.6)50.3%由图2可知,进入发电机的冷水,流量39.4m3/h,温度为70℃,吸收沼气发电机的热能后流量不变,温度升为90℃,进入余热利用系统。由图3可知由沼气产生的总能量中有40%转变为机械能,60%转变为热能。其中40%机械能中的38.3%转换为电能;60%热能中的50.3%作为余热可回收利用,总能量回收效率可达88.6%。该回收率高于一般的沼气发电机。3热平衡系统 该热平衡是通过某种调节手段,使供热系统提供的热量恰好与需热系统所需热量相同。供热系统的热量为沼气发电系统产生的余热和蒸汽锅炉补充热量的总和;需热系统的热量是指消化池正常运行时所需热量。 3.1供热系统运行工况 3.1.1沼气发电机 沼气发电系统余热热量计算, Q=CA△t(1) 其中,Q-供(需)热量(Kcal/h)

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

沼气发电工程余热综合利用方案介绍

沼气发电工程余热综合利用方案介绍 沼气作为可再生能源,越来越受到重视,并得到广泛应用。沼气不仅有助于温室效应的减轻和生态良性循环,而且可替代部分石油、煤炭等化石燃料,成为解决能源与环境问题的重要途径。此外,沼气发电工程中产生的余热也具有很高的利用价值。 一、余热利用现状 以畜禽养殖场的沼气发电工程为例,沼气燃烧后的能量分配为:发电约占33%,排烟约占32%,高温水约占19%,低温水约占6%,其他能量损失约占10%。理论上讲,发电机组90%的余热都可以有效利用,但我国多数沼气发电机组余热的利用率极低,只有少数沼气发电厂的余热用于满足自身生产工艺的热量需求或为建筑供暖,其余沼气发电厂的余热都被排到空气中。余热直接排空不仅浪费了宝贵的能源,而且还会造成环境的热污染。 二、余热的产生过程 我国沼气发电工程主要采用燃气内燃机的形式,而且大多数机组采用双燃料内燃机。实际生产中,沼气在机组内燃烧产生的电力,通过变压器输出。冷却水余热送入发酵罐满足发酵的实际需要,烟气的余热通过安装在烟道出口的烟气—水换热器回收。沼气发电厂余热产生的原理如图1所示。 图1、余热产生的原理图 三、余热利用方式 沼气发电机的余热利用分为两部分:一是排烟的余热利用;二是发电机自身冷却热量的利用。常见的余热利用方式有四种: 1)热水型。利用发电机的余热可以产生90℃甚至更高温度的热水。这种形式在需要供暖的北方地区可以使用、2)烟气型。利用烟气的余热配合吸收式制冷机组,可以提供冷源负荷。 3)蒸汽型。利用烟气的余热可以产生饱和蒸汽或者过热蒸汽,但是沼气发电机组的容量较小,蒸汽的产量较小。4)发电型。利用发电机的余热,配合螺杆膨胀动力机发电。 四、余热利用联供系统 沼气发电机在发电的同时,烟气温度一般在550℃左右。通过余热回收技术,将燃气内燃机中的润滑油、中冷器、缸套水和烟气排放中的热量充分回收利用,用于冬季采暖以及生活热水。夏季可与溴化锂吸收式制冷剂连接,作为空调制冷。一般从内燃机余热回收系统中吸收的热量以90℃的热水供给热交换部分使用。内燃机正常回水温度为70℃。

相关文档
最新文档