随机数是怎么产生的
均匀随机数的产生 课件
(3)三天中至少有一天下雨的概率大概是多少? 70%
(4)三天中恰好连续两天下雨的概率大概是多少?10%
例2.在如右图所示的正方形盘子中随机的撒一 把豆子,计算落在圆中得豆子数与落在正方 形中的豆子数之比并依此估计圆周率的值.
分析1:由于每个豆子落在正方 形内任何一点是等可能的,所以 每个区域中的豆子数近似的与 该区域的面积成正比.
6.5 x 7.5
解 : 7 y 8
y x
P( A) SCDEFG SCDHG
602 302
2
602
0.875
y 父亲离家时间 8:00 C 7:00 G
y=x D
H
x
O
6:30 7:30 报纸送到时间
例3.假如你家订了一份报纸,送报人可能在早上6:30~7;30之间把报 纸送到你家,你父亲离开家去工作的时间是在早上7;00~8:00, 问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?
均匀随机数的产生
产生随机数的方法
1.由试验产生随机数
如: 若产生1~25之间的随机整数,先将25个大小形状等 均相同的小球分别标上1, 2, … , 24, 25, 放入一个袋中,把它们 充分搅拌,然后从中摸出一个球,这个球上的数就是随机数.
范围:所需要的随机数的个数不太多
2.由计算器或计算机产生随机数 由于计算器或计算机产生的随机数是根据确定的算法产
想一想:你能设计一个随机模拟的方法来估计圆 的面积吗?
例2.在如右图所示的正方形盘子中随机的撒一 把豆子,计算落在圆中得豆子数与落在正方 形中的豆子数之比并依此估计圆周率的值.
圆的面积
落在圆中的豆子数
正方形的面积 落在正方形中得豆子数
假设正方形的边长为2,则有:
随机数的产生课件
均匀性
总结词
均匀性是指随机数生成器生成的数字在 预期范围内分布的均匀程度。
VS
详细描述
随机数序列的分布应该尽可能均匀,以确 保每个数字出现的概率接近预期的概率。 如果生成的随机数在某个范围内过于集中 ,或者某些数字出现的频率明显高于其他 数字,那么这种随机数生成器就不具备好 的均匀性。
独立性
总结词
独立性是指随机数生成器生成的数字之间相 互独立的程度。
详细描述
独立性意味着生成的每个随机数不应该依赖 于之前生成的数字。如果生成的随机数之间 存在依赖关系,那么这种随机数生成器就不 具备好的独立性。独立性是评估随机数生成 器性能的重要指标之一,因为在实际应用中 ,我们通常需要独立的随机数来进行各种计 算和模拟。
决策支持
在模拟和预测模型中,随 机数用于生成各种可能的 场景和结果,为决策提供 支持。
04
随机数生成器的性 能评估
周期性
总结词
周期性是指随机数生成器在经过一定数量的迭代后重复生成数字的特性。
详细描述
周期性是评估随机数生成器性能的重要指标之一。一个好的随机数生成器应该 有较长的周期,即能够持续生成新的随机数序列,而不是快速地重复之前的数 字。周期性越长,随机数生成器的可靠性越高。
素。
05
随机数生成器的选 择与使用
根据应用需求选择合适的随机数生成器
伪随机数生成器
适用于需要大量随机数但不需要高度随机性的场景,如模拟、游戏 、测试等。
真随机数生成器
适用于需要高度随机性和安全性的场景,如密码学、统计学、科学 计算等。
混合随机数生成器
结合伪随机数生成器和真随机数生成器的优点,适用于对随机性和安 全性都有一定要求但不需要达到最高标准的场景。
产生随机数的公式
产生随机数的公式有很多种,常用的有以下几种:
1.使用伪随机数生成器(PRNG),例如Python 中的random 模块或者C++ 中的rand 函数。
这些函数可以通过线性同余生成器(Linear Congruential Generator,LCG)或者其他方法来产生随机数。
2.使用数学公式,例如圆周率π的前缀数列或者对数列求余数。
这种方法可以生成伪随机数序列,但是计算量较大,且随机性较差。
3.使用物理现象,例如温度、压力、振动等。
这种方法可以生成真正的随机数,但是硬件设备成本较高,且使用较为复杂。
根据你的需求和应用场景,可以选择适合的方法来产生随机数。
注意:产生随机数时,需要注意数据类型、范围和精度的问题。
例如,在生成整数随机数时,需要注意数据类型的范围限制,否则可能会出现溢出等问题。
随机数的生成方法
随机数的生成方法
一、随机数的定义
随机数是指一组无规律的数字组合,每一次随机出来的结果都完全不同。
随机数是在一定范围内取出一个完全随机的数,用于计算机系统中一
些需要给定一组随机数、模拟实际环境的应用场合。
随机数可以实现一定
的不可预测性,是计算机安全性的重要保障,在数据传输安全、加密技术
中有着重要的作用。
1、基于数学模型的方法
a)均匀分布的随机数生成
均匀分布的随机数是在给定的[A,B](A<B)之间取出一个完全随机的数,即数学上的均匀分布。
一种常用的均匀随机数生成方法是线性同余法,它
的实现步骤如下:
①确定一个循环移位寄存器R,其状态位数为n,状态序列的周期为
2^n,即从0到2^n-1;
②确定一个模数运算法则,用于对R进行变换;
③设置初值R0,在此基础上,依次计算R1,R2,R3,…,Rn;
④通过将状态序列Ri映射为[A,B]区间内的均匀分布随机数。
b)指数分布的随机数生成
指数分布的随机数生成可以利用指数函数的特性,其核心思想是:以
一些概率将一个离散型随机变量转换为连续性随机变量,再根据指数函数
求出该随机变量的概率分布,从而产生均匀分布的概率分布。
指数分布随机数生成的实现步骤如下:。
随机数生成公式
随机数生成公式随机数生成公式是一种计算机程序中常用的技术,可以生成随机的数字,用于模拟和实验等场景中。
本文将介绍几种常见的随机数生成公式及其应用场景。
一、线性同余法(Linear Congruential Method)线性同余法是一种简单而又高效的随机数生成方法,其公式为:Xn+1 = (aXn + c) mod m其中Xn为当前随机数,a、c、m为常数,mod为模运算符。
该公式的原理是通过不断迭代计算,每次得到一个新的随机数。
该方法的优点是计算速度快,缺点是会产生周期性重复的随机数序列。
该方法常用于模拟和实验场景中。
二、梅森旋转算法(Mersenne Twister)梅森旋转算法是一种广泛应用的随机数生成方法,其公式为:Xn+1 = Xn⊕(Xn >> u)其中Xn为当前随机数,⊕为异或运算符,>>为右移运算符,u为常数。
该公式的原理是通过对当前随机数进行位运算,得到一个新的随机数。
该方法的优点是生成的随机数序列较为均匀,缺点是计算速度较慢。
该方法常用于加密和安全场景中。
三、高斯分布随机数生成公式(Gaussian Distribution)高斯分布随机数生成公式是一种生成符合正态分布(高斯分布)的随机数的方法,其公式为:X = μ + σ * Z其中μ为均值,σ为标准差,Z为符合标准正态分布的随机数。
该公式的原理是通过对标准正态分布进行线性变换,得到符合正态分布的随机数。
该方法的优点是生成的随机数符合实际分布规律,缺点是计算量较大。
该方法常用于金融和统计场景中。
四、指数分布随机数生成公式(Exponential Distribution)指数分布随机数生成公式是一种生成符合指数分布的随机数的方法,其公式为:X = -ln(U) / λ其中U为符合均匀分布的随机数,ln为自然对数函数,λ为指数分布的参数。
该公式的原理是通过对均匀分布进行变换,得到符合指数分布的随机数。
获取随机数的方法
获取随机数的方法
获取随机数的方法有以下几种:
1. 使用程序产生随机数:许多编程语言都提供了生成随机数的函数或者类库,比如Python的`random`模块、Java的
`java.util.Random`类等。
通过调用这些函数,可以生成指定范围内的随机数。
2. 使用硬件产生随机数:现代计算机系统中大多都集成了硬件随机数发生器,其基于一些物理过程(如热噪声、电子器件噪声等)产生真正的随机数。
通过调用操作系统或者编程语言提供的接口,可以获取到硬件随机数。
3. 通过网络获取随机数:有些网站或者服务提供了获取随机数的API,可以通过发送HTTP请求获取随机数。
这种方式一般需要联网,并且依赖于第三方服务的可靠性。
需要根据实际需求选择合适的方法来获取随机数。
在使用随机数时,一般还需要注意设置种子、指定范围以及随机数发生器的随机性等方面的问题。
随机数产生原理
随机数产生原理
随机数在计算机领域中有着广泛的应用,它们可以用于密码学、模拟实验、随机算法等多个领域。
那么,随机数是如何产生的呢?
本文将从硬件和软件两个方面来介绍随机数的产生原理。
首先,我们来看硬件随机数的产生原理。
硬件随机数是通过物
理过程来产生的,这些物理过程具有不可预测性和不确定性。
常见
的硬件随机数产生器包括基于热噪声的随机数发生器、基于量子效
应的随机数发生器等。
其中,基于热噪声的随机数发生器利用了电
子元件的热噪声来产生随机数,而基于量子效应的随机数发生器则
利用了量子力学中的不确定性原理来产生随机数。
这些硬件随机数
产生器能够产生高质量的随机数,具有很好的随机性和不可预测性。
其次,我们来看软件随机数的产生原理。
软件随机数是通过算
法来产生的,这些算法被称为伪随机数生成器。
伪随机数生成器使
用一个起始值,通过一系列的计算得到随机数序列。
常见的伪随机
数生成算法包括线性同余发生器、梅森旋转算法、随机数表法等。
这些算法能够产生看似随机的数列,但实际上是确定性的。
因此,
在使用软件随机数时,需要注意选择合适的种子和算法,以避免出
现可预测的随机数序列。
总结来说,随机数的产生原理可以分为硬件随机数和软件随机数两种。
硬件随机数利用物理过程的不可预测性来产生随机数,具有很好的随机性和不可预测性;而软件随机数则是通过算法来产生的,是确定性的。
在实际应用中,我们需要根据具体的需求选择合适的随机数生成方法,以确保随机数的质量和安全性。
人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生
3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。
产生随机数的新方法
产生随机数的新方法在数学和计算领域,产生随机数是一个非常重要的问题,因为随机数能够广泛应用于各种领域,如密码学、模拟仿真、统计分析等。
传统的随机数生成器方法基于确定性算法,通过使用种子(seed)生成一系列看似随机的数字序列。
然而,这些方法并不能真正提供真正的随机性。
为了解决这个问题,研究人员们一直在寻找新的方法来产生真正随机的数字序列。
本文将介绍一些新的随机数生成方法以及它们在现代计算中的应用。
1.真正的随机数:真正的随机数是指完全没有任何规律和可推测性的数字序列。
这种随机数可以通过利用自然事件中的随机性来产生,如大气噪声、放射性衰变等。
这些事件可以通过使用物理设备来测量,如放射计、电路噪声产生器等。
这种方法产生的随机数被认为是真正的随机数,具有高度的随机性和不可预测性。
然而,这种方法需要特殊的硬件设备,并且生成速度比传统的伪随机数生成器要慢。
2.混沌理论:混沌理论是一种描述复杂、不可预测系统行为的数学工具。
混沌系统表现出极其敏感的依赖于初始条件的行为,即微小的初始变化会导致系统的完全不同的演化。
这种不可预测性使得混沌系统成为随机数生成的有力工具。
利用混沌系统的特性,可以通过选择适当的起始值和参数来产生看似随机的数字序列。
常见的混沌系统模型包括洛伦兹系统、蛞蝓映射等。
利用混沌系统生成的随机数具有高度的随机性,并且在密码学、加密算法中得到了广泛应用。
3.统计学方法:统计学方法是一类通过对现有数据进行分析和挖掘来生成随机数的方法。
这种方法基于数据的分布和相关性来产生伪随机数序列。
其中,蒙特卡洛方法是一种常用的统计学方法,它基于随机抽样和概率统计的理论,通过模拟重复的随机实验来获取数值解。
蒙特卡洛方法在金融、风险评估、粒子物理学等领域得到了广泛应用。
4.量子随机数产生器:量子随机数产生器是一种基于量子现象的随机数生成器。
它利用了量子力学的特性,如量子叠加态和测量不确定性,来生成真正的随机数。
量子随机数产生器的基本原理是利用单个光子的量子叠加态和存在的纠缠关系来产生完全随机的比特序列。
(整数值)随机数(random numbers)的产生 课件
这就相当于做了30次试验,在这些数组中,若恰有一个0,则表示恰
有4棵成活,其中有9组这样的数,于是我们得到种植5棵这样的树苗,
9
恰有4棵成活的概率近似为 30 = 30%.
度快,操作简单、省时、省力.
2.用产生随机数的方法抽取样本要注意以下两点:(1)进行正确的
编号,并且编号要连续;(2)正确把握抽取的范围和容量.
估计古典概型的概率
【例2】 盒中有除颜色外其他均相同的5个白球和2个黑球,用随
机模拟法求下列事件的概率.
(1)任取一球,得到白球;
(2)任取三球,都是白球.
数随机数的范围和用哪些数代表不同的试验结果.可以从以下方面
考虑:
(1)试验的基本事件是等可能时,基本事件总数就是产生随机数的
范围,每个随机数字代表一个基本事件.
(2)按比例确定表示各个结果的数字个数及总个数.
(3)产生的整数随机数的组数n越大,估计的概率准确性越高.
n次重复试验恰好发生k次的概率
【例3】 种植某种树苗,成活率为0.9,若种植这种树苗5棵,求恰好
机数近似地看成随机数.
(2)利用计算器产生随机数的操作方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数
RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随
机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:
以后反复按ENTER键,就可以不断产生(1,25)之间的随机数.
归纳总结用频率估计概率时,需要做大量的重复试验,费时费力,
并且有些试验还无法进行,因而常用随机模拟试验来代替试验.产
生整数随机数的方法不仅是用计算器或计算机,还可以用试验产生
随机数的方法
随机数的方法随机数是计算机领域中常用的一种方法,用于产生一组随机的数值。
在一些需要随机性的计算中,比如密码学、概率统计、物理模拟等,随机数的作用不可忽视。
下面将介绍几种常用的随机数产生方法。
一、线性同余法线性同余法是最简单、最基础的随机数产生算法。
它的计算原理是利用某个数不断地乘以一个常数并加上另一个常数,然后对一个大数取余数,得到的余数就是一个伪随机数。
该算法的公式为:X(n+1) = (aX(n)+c) mod m其中,X(n)为第n个随机数,a、c、m为常数。
为了避免过多的线性相关性,常数的选择至关重要。
二、拉斐特——罗森费尔德算法拉斐特——罗森费尔德算法又称真随机数发生器,它是一种基于物理过程的随机数生成方法。
它的原理是利用光电效应或微波辐射产生的电信号的微小变化,作为随机因素,产生随机数。
该算法生成的随机数既真实又不可预测,但是需要一些特殊的硬件设备才能实现。
三、梅森旋转算法梅森旋转算法是一种用于产生高质量随机数的算法。
它的原理是利用一个大型的循环移位寄存器,每次进行大量的移位运算以增加随机性。
该算法的随机性非常好,并且产生的随机数周期很长,但是它需要更多的时间和计算资源来实现。
四、高斯分布高斯分布是一种常见的概率分布,也是一种常用的随机数生成方法。
它的原理是根据正态分布函数的概率密度函数来产生符合该函数的随机数。
通过该方法生成的随机数呈现出逼近正态分布的性质,适用于需要模拟实际情况的概率统计问题。
总之,随机数发生算法有很多种,我们需要根据实际需要选择合适的算法。
在实际应用中,需要考虑到随机数的质量、随机性、周期性等方面问题。
(整数值)随机数的产生 课件
下面是用Excel软件模拟的结果:
其中A,B,C三列是模拟三天的试验结果,例如第 一行前三列为888,表示三天均不下雨. 统计试验的结果.D,E,F列为统计结果.其中D 列表示如果三天中恰有两天下雨,则D为1,否则D 为0,其公式为“=IF(OR(AND(A1<4,B1<4,C1 >3),AND(A1<4,B1>3,C1<4),AND(A1>3, B1<4,C1<4,1,0)))”. E1表示30次试验中恰两天下雨的次数,其公式为 “=SUM(D 1∶D 30)”,F1表示30次试验中恰有 两天下雨的频率,其公式为“=E1/30”.
1
的组数
N1,则频率NN1即
为投掷两枚骰子都是 1 点的概率的近似值
点评:1.常见产生随机数的方法比较:
2.利用计算机或计算器产生随机数时,需切实保证 操作步骤与顺序的正确性,并且注意不同型号的计 算器产生随机数的方法可能会不同,具体操作可参 照其说明书. 利用抽签法产生随机数时需保证任何一个数被抽到 的机会均等.
例如,我们可以产生 0~9 之间的整数值随机数,用 0~3 表示下 雨,用 4~9 表示不下雨,这样就体现了下雨的概率为 40%,让计算 机连续产生三个这样的随机数作为一组模拟三天的下雨情况,如 021 表示三天都下雨,109 表示前两天下雨,第三天不下雨,产生一组这 样的随机数就表示做了一次试验,然后用 N 统计试验次数,用 N1 统 计数组中恰有两个在 0~3 之间的次数,则NN1为频率,由此可估计概 率.
②“从一等品零件中,随机抽取的 2 个零件直径相等”(记为事 件 B)的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3}, {A2,A5},{A3,A5},共有 6 种.所以 概型概率的计算步骤是: (1)算出基本事件的总数 n; (2)算出事件 A 包含的基本事件的个数 m; (3)算出事件 A 的概率 P(A)=mn.
产生随机数的方法
产生随机数的方法
1. 使用计算机随机数生成器:计算机技术已经非常发达,在计算机上可以直接使用随机数生成器进行随机数的生成。
2. 使用物理设备:可以使用物理设备,例如硬币、骰子、纸牌等进行随机数的生成。
3. 使用随机数表:随机数表是由数字随机排列形成的表格,可以从中随机挑选数字作为随机数。
4. 使用数学公式:使用科学的数学公式对既定范围内的数字进行随机计算,能够产生随机的结果。
5. 综合使用多种方法:对于某些需要高强度、高安全性的情况,建议综合上述方法,加强随机数的随机性。
计算机随机数原理
计算机随机数原理
计算机随机数原理是基于计算机的内部算法和种子产生的一系列数字。
计算机本身是一个确定性的机器,只能以确定的步骤运行。
因此,计算机无法真正产生真正的随机数。
计算机随机数生成算法的基本思想是通过一系列的数学运算和逻辑操作,利用计算机的时钟频率、用户的输入、硬件设备的状态等外部因素,以及种子数作为起点,生成一个看似随机的数字序列。
种子数是一个初始值,可以是用户给定的输入,也可以是计算机自身的状态(如时钟频率、内存地址等)。
种子数作为随机数
生成算法的起点,通过算法的运算和操作,产生一个新的数字。
然后,使用这个新的数字作为下一轮的种子数,再次运算和操作,生成下一个数字。
以此类推,就形成了一个随机数序列。
随着不断的迭代运算,计算机随机数序列的数字看起来是随机分布的。
然而,由于生成随机数的算法是可计算的,所以实际上是伪随机数序列。
只要知道了种子数和算法,就可以预测下一个随机数。
这也是为什么计算机随机数不是真正的随机数。
为了提高随机性,计算机随机数生成算法通常结合了更复杂的操作,例如将多个外部因素和时间戳结合在一起进行运算,增加了随机性的复杂性。
此外,还可以采用真正的随机状态生成器,如硬件随机数生成器,获取真正的随机值,作为种子数。
总之,计算机随机数是通过算法和种子数生成的伪随机数序列,
虽然在表面上看起来是随机的,但实际上是可计算的。
为了提高随机性,可以结合更复杂的操作和真正的随机状态生成器。
随机数生成公式
随机数生成公式
随机数生成公式
随机数的产生是一门重要研究领域,随机数常用于计算机科学领域,如密码学的研究,计算机算法的实验,游戏编程等等。
它还常用于统计学,模拟研究等等。
下面介绍几种常用的随机数生成公式:
1、伪随机数生成公式:
基于线性同余发,采用x=(ax+b) mod c计算方式,下一次的x值就是等于上一次计算结果。
其中a、b、c均为常数,这是一种非常简单的随机数生成方式。
但它只能产生有限的几种可能的随机数,不能满足某些应用场景的需要。
2、多项式函数生成公式:
多项式函数生成公式是一种多元多项式的形式,每次计算结果可以根据前几次计算的值,也就是前几次的随机数,再利用多项式函数,进行计算,从而产生最终的随机数。
3、混合随机数生成公式:
混合随机数生成公式是一种混合两种或多种随机数产生方式,以此来获得更好的随机数品质。
比如说,可以将伪随机数的产生过程和多项式函数的计算方式混合在一起,这样就可以产生更加好的随机数了。
4、梅森旋转算法:
梅森旋转算法是一种基于特殊函数构造的随机数生成方式,它
可以产生更加复杂的随机数,从而满足一些应用场景的需要。
总的来说,随机数的产生仍然是一个非常重要的研究领域,找到更加有效的方式,以便于计算机更加精准地产生随机数。
随机数的产生
随机数的产生1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用.2.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.3.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3. 随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.4.在区间[a,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.5.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.6.用随机模拟试验不规则图形的面积的基本思想是,构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.7.利用计算机和线性变换Y=X*(b-a)+a,可以产生任意区间[a,b]上的均匀随机数.。
(整数值)随机数(random numbers)的产生 课件
1.如何利用计算器产生随机数?
例1: 产生1到25之间的取整数值的随机数. 解:具体操作如下 第一步:ON→MODE→MODE→MODE→1→0 →
第二步:25 →SHIFT→RAN#→+ → 0.5 → = 第三步:以后每次按“=”都会产生一个1到25的取 整数值的随机数.
若要产生[M,N]的随机整数,操作如下:
第一步:ON → MODE→MODE→MODE→1→0 → 第二步:N-M+1→SHIFT→RAN#→+ → M-0.5 →= 第三步:以后每次按“=”都会产生一个M到N的取 整数值的随机数.
(1)第一步,第二步的操作顺序可以互换; (2)如果已进行了一次随机整数的产生,再做类似的操
产生随机数的方法:
(1)由试验(如摸球或抽签)产生随机数 产生1—25之间的随机整数. ①将25个大小形状相同的小球分别标1,2, …, 24, 25, 放入一个袋中,充分搅拌 ②从中摸出一个球,这个球上的数就是 随机数
产生随机数的方法: (2)由计算器或计算机产生随机数 计算器或计算机产生的随机数是根据确定的算法产生的, 具有周期性(周期很长),具有类似随机数的性质,但并不 是真正的随机数,故叫 伪随机数
C32 0.42 (1 0.4) 0.288
试设计一个用计算器或计算机模拟掷骰子的实验, 估计出现一点的概率. (1)规定1表示出现1点,2表示出现2点,...,6 表示出现6点
(2)用计算器或计算机产生N个1至6之间的随机数
(3)统计数字1的个数n,算出概率的近似值n/N
(整数值)随机数的产生
试验次数
2048 4040 12000 24000 30000 72088
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产生一系列[0,m)范围内的整数了。很明显,对一个线性同余随机产生算法来说,最重
要的是m、a、c的选择。我们希望产生的序列足够长,能包含[0,m)内所有的数,并且产
生的数是随机的,最好能用32bit算术高效实现。于是乎为了有足够的空间产生足够长的
很多学计算机的学生大学四年学下来连随机数是怎么产生的都弄不明白,更有甚者连随
机函数怎么调用都搞不清楚,这不能不说是一种悲哀。嗯,现在让我们一起使这种悲哀
成为历史吧^_^ 。首先我们要搞清楚一个概念,生成单个的随机数是没有意义的,我们
所说的随机数生成,其实都是生成一个随机序列。鉴于人们通常对具体的做法比对分析
}
这种产生器得到了广泛的使用和比其它产生器都彻底的测验,其产生的随机数有在分布
上有很好的特性,但是却不具备良好的不可预测性。所以我们在使用时往往会以系统时
钟(模m)或系统时钟与随机数的和(模m)作为种子来重新启动序列,这也是现在绝大
多数随机数产生器的做法。
另一种产生伪随机数序列的方法就是使用加密逻辑,通过加密算法的雪崩效应,输入的
法都是确定的,因此我们无法产生真正统计随机的数值序列,但是,如果算法很好,所
得的序列就可以通过许多随机性测试,这些数就是所谓的伪随机数了。
现在用得最广泛的伪随机数产生算法就是所谓的线性同余算法。其随机数序列{Xn}由方
程:Xn+1 = ( aXn + c ) mod m得到,其中m>0称为模数,0≤ a <m称为乘数,0≤c <m
在超过20亿个a的可选取值中,只有很少的几个可以满足上述所有条件,其中之一就是a
= 7^5 = 16807。于是我们可以实现如下(完整的代码code栏目中提供打包下载,下
同):
unsigned myrand()
{
return (seed = (seed * 10807L) & 0x7fffffffL);
一书所附光盘有其完整实现代码,大家可以到电子工业出版社下载区把代码下下来看
看。
要感兴趣,我会先给出一系列随机数生成算法,后面我会对这些算法和其它命题进行稍
稍深入的讨论。
要找到真正的随机数来源很困难,象离子辐射事件的脉冲检测器,气体放电管和带泄露
的电容,我们不可能给每台需要产生随机数的电脑配这么一套装置,况且这些东东产生
的数值的随机性和精确性都有问题。所以我们只能考虑通过某种算法来产生随机数。算
时。具体采用的加密逻辑和运算方式有很多,这里就不一一介绍了,大家感兴趣可以找
本密码学的书来看看。
在密码学领域里比较流行的一种产生安全的伪随机数的方法是BBS产生器,它用其研制者
的名字命名(Blum Blum Shub,不是我们经常灌水的那个BBS),它的密码编码强度据说
具有最强的公开证ቤተ መጻሕፍቲ ባይዱ。首先,我们找两个大素数p和q,要求它们被4除都余3,令n = p×
q,再选择一个随机数s,使s与n互素,然后我们通过如下算法产生一系列比特Bi:
X0 = (s^2)mod n,
for i = 1 to ∞
Xi = (Xi-1^2)mod n
Bi = Xi mod 2
每次迭代都只取出最低位的bit。可以看出BBS产生随机数的过程非常复杂,运算量很
大,嗯,这就是为安全性付出的代价-_-b。《密码编码学——加密方法的C与C++实现》
每一位改变就会造成输出的巨大改变,并且假如密钥被妥善保存的话从序列中前面的数
推出后面的数在计算上是不可行的,于是我们可以使用一个简单的累加器来作为输入,
得到的随机序列可以直接使用(当然也可以把系统时间等等因素考虑进去作为输入来产
生更随机的序列,不过这通常是没有必要的),这种方法常常用来产生会话密钥或是现
队列,我们会使m足够大;为了使序列足够完整,足够象随机序列,我们会发现当m是素
数,c为0时就可以使序列的周期(即序列不重复的长度)对于一定的a达到m-1;要能用
32bit算术高效实现,我们的m当然不能超过32bit,幸好刚好有一个满足上述条件的很方
便的素数2^31-1给我们用,于是产生函数就变成了Xn+1 = ( aXn) mod ( 2^31 – 1 )。