弯曲模的基本原理一

合集下载

弯曲模具的基本原理

弯曲模具的基本原理

弯曲模具的基本原理弯曲模的基本原理(一)一、弯曲的基本原理(一)伸展工艺的概念及伸展件1.弯曲工艺:是根据零件形状的需要,通过模具和压力机把毛坯弯成一定角度,一定形状工件的冲压工艺方法。

2.伸展成形工艺在工业生产中的应用领域:应用领域相当广为,例如汽车上很多履盖件,小汽车的柜架构件,摩托车上把柄,脚支架,单车上的支架构件,把柄,大的如门扣,夹子(铁夹)等。

(二)、弯曲的基本原理:以v形板料弯曲件的弯曲变形为例进行说明。

其过程为:1.凸模运动碰触板料(毛坯)由于圆锥,凹模相同的接触点力促进作用而产生弯矩,在弯矩促进作用下出现弹性变形,产生伸展。

2.随着凸模继续下行,毛坯与凹模表面逐渐靠近接触,使弯曲半径及弯曲力臂均随之减少,毛坯与凹模接触点由凹模两肩移到凹模两斜面上。

(塑变开始阶段)。

3.随着凸模的稳步上行,毛坯两端碰触凸模斜面已经开始伸展。

(回去伸展阶段)。

4.压平阶段,随着凸凹模间的间隙不断变小,板料在凸凹模间被压平。

5.校正阶段,当行程终了,对板料展开校正,并使其圆角直边与凸模全部吻合而Allanche须要的形状。

(三)、弯曲变形的特点:伸展变形的特点就是:板料在伸展变形区内的曲率发生变化,即为伸展半径发生变化。

从弯曲断面可划分为三个区:拉伸区、压缩区和中性层。

二、伸展件的质量分析在实际生产中,弯曲件的主要质量总是有回弹、滑移、弯裂等。

1.伸展件的回转:由于弹性回复的存在,使弯曲件弯曲部分的曲率半径和弯曲角度在弯曲外力撤去后(工件小模具中取出后)发生变化(与加工中在模具里的形状发生变化)的现象称弹性回复跳(回弹)。

回转以伸展角度的变化大小去来衡量。

δφ=φ-φt1)影响回弹的回素:a.材料的机械性能与屈服音速成正比,与弹性模数e成反比。

b.相对弯曲半径r/t,r越小,变形量越大,弹性变形量所点变形量比例越小。

回弹越小。

c.伸展力:伸展力适度,拎校正成分适宜,伸展回转不大。

d.磨擦与间隙:磨擦越大,变形区拉应力大,回弹小。

冲压模旋转弯曲原理(共3张PPT)

冲压模旋转弯曲原理(共3张PPT)
先前的许多弯曲加工都要有一系列的步骤才能达到
要求精度,而旋转模弯曲通常允许在压缩冲程中执行的 操作。
旋转模加工并不能完全代替V形槽模弯曲和折弯弯 曲的所有应用。但是在适合运用旋转模弯曲的任何情况 下基本上都能节省费用,并且能显著地增加弯曲成型的
第二页,共3页。
500英寸,而弯曲吨位不到其他弯曲方法的 50%~80%。 但一种新型的旋转模弯曲正好解决了其他弯曲方法带来的问题。 从选择恰当的弯曲角度使零件的变形最小,到减小所需吨位及在弯曲过程中使材料保持原位,老式的V形槽模弯曲和折弯弯曲易出现许 多问题。 但一种新型的旋转模弯曲正好解决了其他弯曲方法带来的问题。 它是一种能实现多种弯曲的高效率的加工方法。 对不同材料,弯曲冲模的精度和精确的弯曲度为0. 如图2 -1所示,垂直压力传递给弯曲杆旋转运动,实现高效的金属弯曲。 但一种新型的旋转模弯曲正好解决了其他弯曲方法带来的问题。 旋转模加工并不能完全代替V形槽模弯曲和折弯弯曲的所有应用。 近几年,压力加工已得到飞速发展,但如同其他制造加工一样,目前的技术有时已跟不上应用的变化,尤其是在冲模弯曲领域。 但一种新型的旋转模弯曲正好解决了其他弯曲方法带来的问题。 近几年,压力加工已得到飞速发展,但如同其他制造加工一样,目前的技术有时已跟不上应用的变化,尤其是在冲模弯曲领域。 近几年,压力加工已得到飞速发展,但如同其他制造加工一样,目前的技术有时已跟不上应用的变化,尤其是在冲模弯曲领域。 从选择恰当的弯曲角度使零件的变形最小,到减小所需吨位及在弯曲过程中使材料保持原位,老式的V形槽模弯曲和折弯弯曲易出现许 多问题。
图2 -1 旋转模弯曲过程 对不同材料,弯曲冲模的精度和精确的弯曲度为0.
从选择恰当的弯曲角度使零件的变形最小,到减小所需吨位ห้องสมุดไป่ตู้在弯曲过程中使材料保持原位,老式的V形槽模弯曲和折弯弯曲易出现许 多问题。

弯曲模具的结构和工作原理

弯曲模具的结构和工作原理

弯曲模具的结构和工作原理
弯曲模具是一种用于弯曲金属材料的工具,它的结构和工作原理如下:
结构:
1. 模具底座:通常由坚固的钢材制成,用于支撑整个模具。

2. 上模具和下模具:通常由硬质合金制成,用于固定待弯曲的金属材料。

3. 弯曲导向槽:位于上模具和下模具之间,用于引导金属材料的弯曲方向和角度。

4. 弯曲杆:用于施加力量,使金属材料弯曲。

工作原理:
1. 放置工件:将待弯曲的金属材料放置在上模具和下模具之间,与弯曲导向槽对齐。

2. 螺紧模具:将上模具和下模具通过螺丝或夹具固定在一起,确保工件不会滑动或移位。

3. 施加力量:通过操作弯曲杆,施加力量使上模具和下模具向内移动,使金属材料弯曲。

4. 去除工件:待金属材料弯曲完成后,松开螺丝或夹具,取出已弯曲的工件。

总之,弯曲模具通过固定金属材料并施加力量,使其弯曲成所需的形状。

其结构简单,工作原理直接,广泛应用于金属加工和制造领域。

弯管原理和弯管模具设计

弯管原理和弯管模具设计

冷弯管原理和弯管模具设计一.弯管原理弯管机标准模具包括:弯管模、夹紧块、导板(或滚轮)。

多节活芯、防皱块为选件D管件外径t管件壁厚R弯曲半管件外径D仅反映管件大小,管件弯曲加工的易难程度取决于管件的壁厚和弯曲半径,管件壁厚越小,半径越小加工难度越大。

一般我们用相对壁厚,相对弯曲半径作为弯管的工艺参数相对壁厚tx=t/D,相对弯曲半径Rx=R/D弯管机对于Rx>3D,tx>0.04的管件使用标准模具即可,对于Rx<3D,tx<0.04D 的管件弯管机可加上防皱板, 多节芯头等工艺措施来保证管件弯曲质量弯管机主要采用缠绕弯管工艺,缠绕弯管工艺可以比较容易在弯管模具加上各种措施以得到较好的管件质量。

弯管工艺弯管工艺,口径从DN25~DN104,壁厚1~2mm,其弯曲半径一般为1D,即是管子口径。

弯管最难处理的就是内圆弧,弯径小了容易起皱,上述工艺主要是消皱器起作用,所以能弯小半径的工件那消皱器的材料很讲究,太硬了,磨伤工件,太软了,不起作用。

是一种铜合金。

弯管芯棒的选取和使用摘要:介绍了管子在冷态弯制时的变形情况,以及通过合理选择芯棒及掌握其正确的使用方法,达到弯制出理想小半径管件的方法。

键词:应力;芯棒;相对弯曲半径;相对壁厚一、引言弯管技术广泛应用于锅炉及压力容器行业,中央空调制造业、汽车工业、航空航天工业、船舶制造业等多种行业,弯管质量的好坏,将直接影响到这些行业的产品的结构合理性,安全性、可靠性等。

因此,为了弯制出高质量的管件,就应该掌握管件在不同工艺条件下的加工技巧。

对于冷态弯管,合理选择芯棒的形成及掌握其正确的使用方法非常必要。

二、工艺分析在纯弯曲的情况下,外径为D、壁厚为S的管子受外力矩M的作用发生弯曲时,中性层外侧的管壁受拉应力σ1的作用而减薄,内侧管壁受压应力σ2的作用而增厚(见图1a)。

同时,合力F1和F2又使管子弯曲处的横截面发生变形而成为近似椭圆形(见图1b),内侧管壁在σ2的作用下还可能出现失稳而起皱(见图1c),为弯制出理想的管件,就应采取相应的措施来防止上述这些缺陷的产生,其中有芯弯管就是最常用的有效方法之一。

第3章 弯曲工艺与模具设计

第3章 弯曲工艺与模具设计

3.2.2、影响回弹的因素 材料的机械性能 相对弯曲半径 弯曲中心角 模具间隙 弯曲件的形状 弯曲力
3.2.3、回弹值的确定 目的:作为修正模具工作部分参数的 依据。 经验公式: 1.小半径弯曲的回弹( r / t 5 ~ 8 )
0 t
rt r 1 3


90
90
6)弹性材料的准确回弹值需要通过试模对凸、 凹模进行修正确定,因此模具结构设计要便于拆 卸。 7)由于U形弯曲件校正力大时会贴附凸模,所以 在这种情况下弯曲模需设计卸料装置。 8)结构设计应考虑当压力机滑块到达下极点时, 使工件弯曲部分在与模具相接触的工作部分间得 到校正。 9)设计制造弯曲模具时,可以先将凸模圆角半 径做成最小允许尺寸,以便试模后根据需要修整 放大。
当工件局部边缘部分需弯曲时,为防 止弯曲部分受力不均而产生变形和裂纹, 应预先切槽或冲工艺孔(如图所示) 5.弯曲件的几何形状 如果弯曲件的形状不对称或者左右弯 曲半径不一致,弯曲时板料将会因摩擦阻 力不均匀而产生滑动偏移(如图所示), 为了防止这种现象的发生,应在模具上设 置压料装置,或利用弯曲件上的工艺孔采用 定位销定位(如图所示)
第 3 章 弯曲工艺与模具设计
3.1
3.2
弯曲的基本原理 应变中性层位置、最小弯曲半径的确定及回弹现象 弯曲力和弯曲件的毛坯尺寸计算 弯曲件的工艺性 弯曲模具的设计
3.3 3.4
3.5
3.1 弯曲的基本原理
弯曲是使材料产生塑性变形,形成一 定曲率和角度零件的冲压工序(如图所示) 弯曲材料:板料、棒料、型材、管材 弯曲方法:压弯、折弯、拉弯、滚弯、 辊弯
3.1.1 弯曲变形过程 (图3.1.1) 1、变形毛坯的受力情况 从力学角度,弯曲分为: 弹性弯曲 弹塑性弯曲 纯塑性弯曲 无硬化弯曲

第三章:弯曲工艺与弯曲模具设计

第三章:弯曲工艺与弯曲模具设计

校正弯曲时,回弹角修正量: K90
不是90°的角按下式修正: x ( / 90)90
➢ 当r/t < 8~10时,要分别计算弯曲半径和弯曲角的回弹值,再修正。
弯曲板料时
凸模的圆角半径: rp 1/(1/ r) (3 s / Et)
凸模圆弧所对中心角: p
(r
/ rp )
弯曲件的滑移
6. 最小弯曲半径 rmin
❖ r/t 小 —— 变形程度大 —— 弯曲破坏。 影响最小弯曲半径的因素:
❖ 材料的机械性能:好塑性(塑稳)、退火处理、热弯、开槽减薄 ❖ 方向性:折弯线垂直纤维方向:伸长变形能力强
❖ 板宽:B/t 小(< 3) ❖ 弯曲角:小, 直边有切向形变。 ❖ 板料表面质量和断面质量:差处易应力集中发生破坏。 ❖ 板料厚度:t小 —— 切向应变小 —— 开裂小。
弯曲件的工序安排
1. 工序安排的一般原则 ➢ 先弯外角后弯内角,后次弯曲不能影响前一次弯曲变形,前次弯曲应考 虑后次弯曲有合适的定位基准。 ➢ 当有多种方案时,要进行比较,进行优化。
2. 工序安排的一般方法 ➢ 形状简单的弯曲件可一次弯曲成形。如V形、U形、Z形。 ➢ 形状复杂的弯曲件可用两次或多次压弯成形。
➢ r/t值
小r/t: 加厚筋边或 减小 r; 其值大时拉弯
(在同条件下,r/t越小,则总变形量就越大,回弹就越小。) 工艺处理
➢ 弯曲中心角
(α越大,变形区长度越长,参与变形的区域越大,回弹越多。)

➢ 弯曲方式与校正力大小
(自由弯曲回弹大,校正弯曲回弹小,校正力越大回弹越小。)
➢ 工件形状
(工件形状越复杂,回弹就越少。)
弹-塑性变形: 塑性变形:
L1-L2 ,r1-r2 超过屈服极限,

弯曲模具的基本原理

弯曲模具的基本原理

弯曲模的基本原理(一)一、弯曲的基本原理(一) 弯曲工艺的概念及弯曲件1. 弯曲工艺:是根据零件形状的需要,通过模具和压力机把毛坯弯成一定角度,一定形状工件的冲压工艺方法。

2. 弯曲成形工艺在工业生产中的应用:应用相当广泛,如汽车上很多履盖件,小汽车的柜架构件,摩托车上把柄,脚支架,单车上的支架构件,把柄,小的如门扣,夹子(铁夹)等。

(二)、弯曲的基本原理:以V形板料弯曲件的弯曲变形为例进行说明。

其过程为:1. 凸模运动接触板料(毛坯)由于凸,凹模不同的接触点力作用而产生弯矩,在弯矩作用下发生弹性变形,产生弯曲。

2. 随着凸模继续下行,毛坯与凹模表面逐渐靠近接触,使弯曲半径及弯曲力臂均随之减少,毛坯与凹模接触点由凹模两肩移到凹模两斜面上。

(塑变开始阶段)。

3. 随着凸模的继续下行,毛坯两端接触凸模斜面开始弯曲。

(回弯曲阶段)。

4. 压平阶段,随着凸凹模间的间隙不断变小,板料在凸凹模间被压平。

5. 校正阶段,当行程终了,对板料进行校正,使其圆角直边与凸模全部贴合而成所需的形状。

(三) 、弯曲变形的特点:弯曲变形的特点是:板料在弯曲变形区内的曲率发生变化,即弯曲半径发生变化。

从弯曲断面可划分为三个区:拉伸区、压缩区和中性层。

二、弯曲件的质量分析在实际生产中,弯曲件的主要质量总是有回弹、滑移、弯裂等。

1. 弯曲件的回弹:由于弹性回复的存在,使弯曲件弯曲部分的曲率半径和弯曲角度在弯曲外力撤去后(工件小模具中取出后)发生变化(与加工中在模具里的形状发生变化)的现象称弹性回复跳(回弹)。

回弹以弯曲角度的变化大小来衡量。

Δφ=φ-φt1) 影响回弹的回素:A. 材料的机械性能与屈服极限成正比,与弹性模数E成反比。

B. 相对弯曲半径r/t,r越小,变形量越大,弹性变形量所点变形量比例越小。

回弹越小。

C. 弯曲力:弯曲力适当,带校正成分适合,弯曲回弹很小。

D. 磨擦与间隙:磨擦越大,变形区拉应力大,回弹小。

凸、凹模之间隙小,磨擦大,校正力大,回弹小。

弯曲模工作原理

弯曲模工作原理

弯曲模工作原理
弯曲模工作原理是指在制作弯曲零件时,使用专门的弯曲模具来施加力量使材料发生弯曲变形的工艺过程。

其工作原理如下:
1. 材料选择:根据零件的需求和性能要求,选择适当的材料,常用的材料有金属、塑料等。

2. 弯曲模设计:根据需要制作的零件形状和尺寸,设计并制造具有相应几何形状的弯曲模具。

3. 材料预处理:为了提高材料的可塑性和延展性,通常需要对材料进行预处理,例如加热或冷却。

4. 定位固定:将待弯曲的材料放置在弯曲模具上,并进行适当的定位和固定,以确保其准确的位置和姿态。

5. 施加力量:通过机械、液压或电力设备,施加适当的力量在材料上进行弯曲。

力量的大小和方向由弯曲模具的设计和设置决定。

6. 弯曲变形:在施加力量的作用下,材料逐渐发生弯曲变形,其形状和角度符合弯曲模具的几何形状。

7. 弯曲角度控制:通过调节施加的力量和改变弯曲模具的几何形状,可以控制弯曲零件的角度和曲率。

8. 材料回弹:材料在弯曲过程中会受到弹性回弹的影响,需要
考虑并进行相应的修正,以确保最终得到符合要求的零件形状。

9. 弯曲完成:当达到所需的弯曲角度和形状后,停止施加力量,取下弯曲好的零件,并进行必要的后续处理(如冷却、修整等)。

总之,弯曲模的工作原理是通过施加适当的力量,对材料进行弯曲变形,以制作符合要求的弯曲零件。

第3章 弯曲工艺与弯曲模具

第3章 弯曲工艺与弯曲模具
0 绪论 一、冲压概念
总之影响最小弯曲半径的主要因素如下:
⒈ 材料的机械性能;
⒉ 板材纤维的方向性;
⒊ 弯曲件的宽度; ⒋ 板材的表面质量和剪切断面质量;
⒌ 弯曲角;
⒍ 板材的厚度。 最小弯曲半径可按表3-1选取
表3-1 最小弯曲半径rmi
3.2.2、弯曲时的回弹及控制回弹的措施 1、弯曲回弹现象 弯曲回弹现象产生于弯曲变形结束后的卸载过程,是由其内部产生 的弹性回复力矩造成的。弯曲件卸载后的回弹,表现为弯曲件的弯曲 半径和弯曲角的变化,如图3-6所示。
(a )
(b ) (c) 图3-25 防止尖角处撕裂的措施
0 绪论 一、冲压概念
图3-26所示的零件,根据需要设置了工艺孔、槽及定位孔。图(a) 所示工件弯曲后很难达到理想的直角,甚至在弯曲过程中变宽、开 裂。如果在弯曲前加工出工艺缺口(M×N),则可以得到理想的弯 曲件。图(b)所示的工件,在弯曲处预先冲制了工艺孔,效果与 图(a)相同。图(c)所示的工件,要经过多次弯曲,图中的D是 定位工艺孔,目的是作为多次弯曲的定位基准,虽然经多次弯曲, 该零件仍保持了对称性和尺寸精度,
0 绪论 一、冲压概念
凸模下行,减小到r/t>200时,板料处于线形弹塑性状态,
即板料中心几附近区域为弹性变形,其他部分为塑性变形, 弯曲进行至r/t值大约在(200>r/t>5)时,板料进入线形全塑
性弯曲状态。
当其进一步减小到r/t3~5时,则为立体塑性弯曲,此即模 具弯曲最终状态。
• 窄板(b/t3)弯曲时,宽度 方向可以自由变形,故其应 力b0,内外层的应变状态 是立体的,应力状态是平面 的。 • 宽板(b/t>3)弯曲时,由于 宽度方向材料不能自由变形 (宽度基本不变),即

管子弯曲的相关知识点总结

管子弯曲的相关知识点总结

管子弯曲的相关知识点总结一、管子弯曲的原理管子弯曲是通过机械设备或模具对管材进行弯曲加工,改变其原来的形状以适应特定需求。

在进行管子弯曲加工时,需要考虑到材料的可塑性,并遵循一定的原理和规范操作。

管子弯曲的原理主要包括以下几点:1. 弯曲半径弯曲半径是指管子在弯曲过程中所形成的弯曲曲线的半径,是影响弯曲工艺的重要参数之一。

不同材质、壁厚的管材在弯曲半径上会有不同的要求,一般要按照相关标准进行选择和操作。

2. 弯头角度弯头角度是指管子在弯曲成型后与原来的直线构成的夹角。

根据具体要求,可以进行90度、45度、30度等各种角度的弯曲。

弯头角度在弯曲加工中需要进行严格的控制以确保零件的精度和质量。

3. 弯曲方向管子弯曲通常分为两种方向:一个是径向弯曲,即管子弯曲的方向与管子的直径方向垂直;另一个是轴向弯曲,即管子弯曲的方向与管子的轴线平行。

在实际应用中,根据具体的设计要求和加工工艺进行合理选择。

4. 弯曲角度弯曲角度是指管子在弯曲过程中所旋转的角度,通常以弧度或度数来表示。

在弯曲加工中,要根据设计要求精确控制管子的弯曲角度,以确保零件的精度和稳定性。

5. 弯管管壁厚度管子的弯曲过程中,管壁会发生拉伸和压缩,因此管子的壁厚会对弯曲加工产生影响。

不同的材质和壁厚的管材在弯曲加工中需要进行合理的选择和操作。

以上是管子弯曲的基本原理,了解和掌握这些原理对正确进行管子弯曲加工至关重要。

二、管子弯曲的工艺流程管子弯曲加工具有一定的复杂性,通常需要经过多道工序才能完成。

合理的工艺流程可以极大提高生产效率和产品质量。

一般来说,管子弯曲的工艺流程可分为以下几个步骤:1. 设计在进行管子弯曲加工之前,首先需要根据客户提供的要求进行零件设计,包括弯曲半径、弯头角度、弯曲方向、弯曲角度等技术要求。

设计人员通常会采用CAD/CAM软件进行设计和模拟,以确保符合客户的要求和需求。

2. 切割在管子弯曲加工之前,需要对管材进行切割,以获得所需要的长度。

第3章弯曲工艺与弯曲模

第3章弯曲工艺与弯曲模

1.V形件弯曲模
图4-39 无压料装置的V形件弯曲模 1—模柄 4 、7 —定位板 2 —上模座 5 —下模座 3 —导柱导套 6 —凹模 8 —凸模
1—顶杆 4 —凸模
有压料装置的V形件弯曲模(avi4-3) 2 —定位钉 3 —模柄 5 —凹模 6 —下模座
图4-40 防止毛坯偏移的措施
图4-41 带顶料及定料销的弯曲模 1—凹模 2 —顶板 3 —定料销 4 —凸凹模 5 —反侧压块
第五节 弯曲力计算
一.校正弯曲时弯曲力计算
F=qA
式中: F—校正弯曲力(N); A— 校正部分投影面积(mm2); q—单位面积上的校正力(MPa), 值可按表3-4选取。 图3-35 校正弯曲示意图
四.压力机公称压力的确定
• 对于自由弯曲
F压机≥ 1.3(F自+Q)
式中 F压机—选用的压力机公称压力(kN); F自—自由弯曲力(kN); Q—有压料或顶件装置的压力(kN).
式中:δ — 伸长率; r — 弯曲件内表面圆角半径(mm); η— 变薄系数; t — 材料厚度(mm); ρ—应变中性层曲率半径(mm) 。
则弯曲半径 r= ρ(1+δ)- ηt 若以断面收缩率Ψ表示变形程度,则Ψ与δ有如下关系: δ= Ψ/(1- Ψ) 根据式(4-15), ρ=(r/t+ η/2)ηβt,当板料宽度大于板料厚度3 倍时,则 ρ=(r/t+ η/2)ηt 将上式与式(4-19)代入式(4-18),化简后得:
3.弯曲件上孔的位置
t < 2mm, l ≥ t; t ≥ 2mm, l ≥ 2t.
图4-33 弯曲件上的孔边距离
4.弯曲件上增添工艺孔和工艺槽
图4-34 防止尖角处撕裂的措施

模具设计第3章弯曲工艺与弯曲模课件

模具设计第3章弯曲工艺与弯曲模课件
b/t>3宽板弯曲,横断面几乎 不变
b/t<3窄板弯曲,断面产生了 畸变 ,外窄内宽
3.1.4 弯曲件的结构工艺性
弯曲件的结构工艺性是指弯曲零件的形状、 尺寸、精度、材料以及技术要求等是否符合弯 曲加工的工艺要求。具有良好工艺性的弯曲件, 能简化弯曲的工艺过程及模具结构,提高工件 的质量。
1. 弯曲件的形状 弯曲件形状对称,对应r 相等
播放动画
1-顶杆 2-定位钉 3-模柄 4-凸模 5-凹模 6-下模座
3. L形件弯曲 适用于两直边长度相差较大的单角弯曲件
a)竖边无校正
b)竖边可校正
L形件弯曲
4.复杂零件 多次V形弯曲制造复杂零件举例
3.2.2 U形件弯曲模
1.U形件弯曲模的一般结构形式
U 形 件 弯 曲 模
1.凸模 2.凹模 3.弹簧 4.凸模活动镶块 5.凹模活动镶块 6.定位销 7.转轴 8.顶板 9.凹模活动镶块
弯曲半径r>0.5t: 按中性层不变原理,坯料总长度应等于弯曲 件直线部分和圆弧段长度之和,即:
提问:下面的弯曲件展开长度如何计算?
L
l1
l2
l3
π α1 180
(r1
xt
)
π α2 180
S / E 越大,回弹越大。
E1>E2
1 2
.
1 2
图a)
E3=E4
3 4
3 4
图b)
材料的力学性能对回弹值的影响 1、3-退火软钢 2-软锰黄铜 4-经冷变形硬化的软钢
应尽量选择屈服极限小、n值小的材料以获得 形状规则、尺寸精确的弯曲件。
(2)相对弯曲半径r/t r/t越小,变形程度越大,回弹量减小。
例:1mm厚铝板、65Mn板,弯曲时易裂,退火后 再弯,则弯曲正常。

弯曲与弯曲模具设计

弯曲与弯曲模具设计

二、弯曲件的工艺计算
2.弯曲力的计算
(1)自由弯曲力对于V形件,有
F自
0.6kbt 2 b
rt
对于U形件,有
F自
0.7kbt 2 b
rt
(2)校正弯曲力如果弯曲件在冲压行程结束时受到模具的校正
(见图3-27)
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
二、弯曲件的工艺计算
(3)顶件力或压料力
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
一、弯曲件的工艺性
(6)增添连接带和定位工艺孔 如图3-22所示。 (7尺寸标注 尺寸标注对弯曲件的工艺性有很大的影响。 如图3-23所示。
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
二、弯曲件的工艺计算
1.弯曲件展开长度的确定
第三章 弯曲与弯曲模具设计
第一节 弯曲技术概述 第二节 弯曲变形过程分析 第三节 弯曲件坯料尺寸的计算 第四节 弯曲件的工艺特性及工艺计算 第五节 弯曲件的工序安排 第六节 弯曲模典型结构及结构设计
第一节 弯曲技术概述
弯曲是利用压力使金属板料、管料、棒料或型材在模具中弯 成一定曲率、一定角度和形状的变形工序。弯曲工艺在冲压 生产中占有很大的比例,应用相当广泛,如汽车纵梁、电器 仪表壳体、支架、铰链等,都是用弯曲方法成型的。
所示为V形件弯曲的变形过程。 2.弯曲变形特点 为了分析板料弯曲变形的规律,将试验用的长方形板料的 侧面画成正方形网格,如图3-4(a)所示,然后弯曲,观察其
变形特点,弯曲后情况如图3-4(b)所示。
下一页

第二节 弯曲变形过程分析
一、弯曲的变形特点
(1)变形区主要在弯曲件的圆角部分,圆角区内的正方形网 格变成厂扇形。

弯曲工艺与弯曲模

弯曲工艺与弯曲模

5.7 弯曲模类型及典型结构
1. V形件弯曲模 这类形状的弯曲件可以用两种方法弯曲: (1)是沿着工件弯曲角的角平分线方向弯曲,称为V
形弯曲; (2)是垂直于工件一条边的方向弯曲,称为L形弯曲;
Y
L形件弯曲模
2、U形件弯曲模
(1)U形弯曲模在一次 弯曲过程中可以形成 两个弯曲角,右图为 U形件弯曲模结构 。
弯曲原理——弯曲变形特点(P83-P84) (重点)
(采用网格法分析弯曲时金属的变形规律)
分析结果: a、弯曲变形主要发生在弯曲圆角区;
弯曲角与弯曲带中心角
b、内层受压变短,外层受拉变长,中层不变; 中性层弯曲半径ρ=r+xt
变形程度的表示方法:
相对弯曲半径 r/t 来表示,其小,则 弯曲程度越大;
当弯曲件的折弯线与板料的纤维方向垂直时,材料具有 较大的伸长变形能力,最小弯曲半径可取较小值;
反之,如果弯曲 件的折弯线平行 于纤维方向,则 最小弯曲半径要 取大值;在双向 弯曲时,应该使 折弯线与材料纤 维方向成一定的 夹角,如图3.8所 示。
图 3.8 弯曲方向对弯曲半径的影响
(3)板宽
πα2 180
(r2

xt)
πα3 180
(r3

xt)
弯曲半径r<0.5t: 按体积不变原则进行计算。
注意事项:
∵弯曲件展开长度公式为经验公式

中t的公差、r、α、x的微小误差
∴展开长度计算数据不准确
∴弯曲模的制作顺序:
先作弯曲模→通过弯曲件实际尺寸调整展 开长度数据→确定展开毛坯准确落料刃口尺 寸→制作落料模。
③ 凹模刃口处的圆角 半径不等,圆角半径 小的摩擦力大,弯曲 件向圆角半径小的一 边滑移,如图3.16所 示。

弯曲模具的基本原理

弯曲模具的基本原理

弯曲模具的基本原理弯曲零件毛坯展开尺寸具体计算的程序是:先将零件划分成直线和圆角的各个不同单元体。

直线部分的长度不变,而弯曲的圆角部分长度则需要考虑材料的变形和应变中性层的相对移动。

故整个毛坯的展开尺寸应等于弯曲零件各部分长度的总和。

ρ=R+kt其中k是中性层位移系数,与r/t有关。

11.有圆角半径的弯曲r>0.5t的弯曲件即称有圆角半径的弯曲件。

由于弯曲部分变薄不严重及断面畸变较小,所以可按中性层展开长度等于毛坯长度的原则,求得毛坯尺寸。

L=ΣlE+ΣlwL----弯曲件毛坯长度;ΣlE----弯曲件各直线段之各;Σlw-各弯曲部分的展开长度之和。

Lw=πα/180°(γ+kt)其中:α-弯曲中心角k---中性层位移系数。

22.无角半径的弯曲无圆角半径或圆角半径很小(r<0.5t)的弯曲件,其毛坯尺寸是根据毛坯与制件体积相等,并考虑到在弯曲时材料变薄的情况而求得的。

在这种发问下,毛坯长度等于各直线长度之各再加上弯角处的长度,即:L=ΣlE+kntL-毛坯总长度ΣlE--各直线段长度之和;n-弯角数目t-材料厚度k-系数,取0.2~0.5。

33.铰链式弯曲件铰链式弯曲件毛坯展开长度的计算和一般弯曲件尺寸计算相似,所不同的只是中性层由材料厚度中间向弯曲外层移动。

毛坯展开长度可按下式:L=1.5πρ+R+l其中ρ=R+ktk-系数。

【弯曲力的计算】弯曲力是设计冲压工艺过程和选择设备的重要依据之一。

弯曲力的大小与毛坯尺寸、零件形状、材料的机械性能、弯曲方法和模具结构等多种因素有关。

弯曲力急剧上升部分表示由自由弯曲到接触弯曲转化为校正弯曲的过程。

41.自由弯曲力的计算:P=kbt2/(rp+t)*σbσb-材料抗拉强度rp-凸模圆角半径;b-弯曲线长度;t-材料厚度;k-系数52.校正弯曲时的弯曲力的计算:P=F*qP-校正弯曲力;F-校正部分投影面积;q-单位校正力。

63.顶件力和压料力对于设有顶件装置或压料装置的弯曲模,其顶件力或压料力Q 值可近似取自由弯曲力的30~80%。

弯曲工作原理

弯曲工作原理

弯曲工作原理
弯曲工作的原理是指通过施加外力使物体发生形变,使其弯曲或弯曲改变形状。

这种工作原理主要应用于弯曲金属或其他可塑性材料的加工过程中。

在弯曲工作中,通常会使用弯曲机、弯曲模具、夹具等辅助工具和设备。

首先,将待加工的金属材料放置于弯曲机上,并将其固定在夹具中。

然后,施加适当的力或压力于金属材料上,使其弯曲改变形状。

在施加力的时候,通过控制力的大小和施力的位置,可以实现所需的弯曲效果。

弯曲工作原理基于材料的可塑性变形。

当外力作用于材料时,材料内部的结构发生变化,原子和分子之间的相对位置发生改变,从而使材料改变形状。

在金属材料中,这种形变主要是由于材料中的晶体结构相对移动引起的。

通过施加很高的外力,可以使金属材料的晶体结构发生塑性变形,从而实现弯曲工作。

弯曲工作不仅可以用于金属材料的加工,还可以应用于其他可塑性材料,如塑料、橡胶等。

无论是金属还是其他材料,其弯曲工作的原理都是类似的,即施加外力引起内部结构的塑性变形。

总之,弯曲工作的原理是基于材料的可塑性变形,在施加外力的作用下使材料发生形状的弯曲改变。

这种工作原理在工业生产和制造过程中得到广泛应用,用于制造各种不同形状和尺寸的物体。

弯曲模工作原理

弯曲模工作原理

弯曲模工作原理
“哇,这是啥玩意儿啊?”我看着桌上一个奇奇怪怪的东西,好奇地问旁边的小伙伴。

小伙伴凑过来,眼睛睁得大大的:“嘿,我也不知道呢!这看着好神秘。


咱先说说这弯曲模是啥吧。

弯曲模就像一个神奇的小魔法师,它有好多关键部件呢。

有凸模、凹模,就像两个好搭档。

凸模就像一个勇敢的小战士,用力地往下压;凹模呢,就像一个温柔的小窝,等着材料进来。

它们一起合作,就能把一块平平的材料变成各种形状。

那弯曲模是咋工作的呢?就好比我们折纸。

我们用手把纸折来折去,弯曲模呢,就是用机器的力量把材料给弯过来。

它可厉害啦!一下子就能把硬邦邦的材料变得服服帖帖。

那弯曲模都用在啥地方呢?有一次,我和爸爸妈妈去逛商场,看到那些漂亮的金属架子。

我就想,这些架子是咋做出来的呢?后来我才知道,原来很多都是用弯曲模做出来的。

还有我们用的一些小工具,也可能是弯曲模的功劳呢。

弯曲模可真是个神奇的东西。

它能把普通的材料变成有用的东西,就像一个魔术师把一块普通的布变成了漂亮的衣服。

它让我们的生活变得更
加丰富多彩。

我觉得弯曲模真的好棒啊!以后我也要学习更多关于弯曲模的知识,说不定还能发明出更厉害的东西呢。

弯曲模具设计

弯曲模具设计

由于生产批量大,为了调整模具方便,也可采用具有导柱导 套导向装置的标准模架。
工作零件弯曲凸模零件图如图 6.21 所示,材质 T10A,热处
理硬度 58HRC~60HRC。
图6.21
弯曲凹模零件图如图 6.22 所示,材质 T10A,热处理硬度 58HRC~60HRC。
图6.21 U形件弯 曲模
3. 模具结构设计 毛坯由顶件板上
0.8t
0.8t
1.5t
1.0t
1.0t
1.7t
1.3t
1.3t
2.0t
Cr18Ni9
1.0t
磷铜

半硬黄铜
0.1t
软黄铜
0.1t
纯铜
0.1t

0.1t
2.0t
3.0t
4.0t

1.0t
3.0t
0.35t
0.5t
1.2t
0.35t
0.35t
0.8t
0.35t
1.0t
2.0t
0.35t
0.5t
1.0t
复杂的V形件折板式弯曲模
V形件折板式弯曲模, 两块活动凹模与芯轴相连, 并可沿支架的长槽上下滑动。
V形件折板弯曲模
两块定位板分别固定在两活动凹模上。 活动凹模下方有可浮动的顶杆。
模柄 凸模
靠板 铰链
定位板
下模座
工件 支架
U形件的 上模座
弯曲模。
U 毛坯用定 位板定位,
形 压料板与
顶杆
凸模将毛坯 下模座
r/t
V 形弯曲
r/t
U 形弯曲
表5-6
表 5-6 层位移系数 值
0.5 以下 0.5~1.5 1.5~3.0

弯曲的基本原理

弯曲的基本原理

② 径向
沿着板料的宽度和厚度方向,必然产生与绝对值 最大的应变εθ(切向)符号相反的应变。
在板料的外区,切向主应变为伸长应变所以径向 应变εP为压缩应变;
而内区切向主应变为压缩应变,所以径向方向的 应变εP为伸长应变。
③ 宽向
对于窄板,材料在宽度方向上可自由变形,所以 在外区的应变εB为压应变,内区为拉应变。
图3.5 弯曲区域的断面变化
1.3 弯曲变形的应力与应变
1.变形区的应力状态
图3.6所示为板料弯曲变形区的应力分布图
图3.6 弯曲变形区应力分布图
① 弹性弯曲阶段
板料断面应力分布为直线,如图3.6(a)所示。 弯曲圆弧内侧受压,是压应力;外侧受拉,是拉 应力。
② 弹-塑性变形阶段
塑性变形和弹性变形共存,如图3.6(b)所示. 塑性变形区也有弹性变形的恢复,这在宏观上表 现为弯曲角的回弹。
凸模继续下降,直到板料与凸模呈三点接触状 态,如图3.3(c)所示,这时曲率半径减小成 r2,此时弹性变形所占比例可以忽略,故此阶
段为完全塑性变形阶段。
在行程终了,对板料进行校正,使其圆角、直边完 全与凸模贴合,最终形成V形弯曲件,如图3.3(d) 所示。
弯曲过程中的实测压力曲线如图3.3(e)所示。
对于宽板,由于材料沿宽度方向流动受到阻碍, 几乎不能变形,内、外区在宽度方向的应变εB =0。
所以:窄板弯曲时呈平面应力状态,立体应变
状态;宽板弯曲呈立体应力状态,平面应变 状态。
冷冲模具设计
表示
r/t越小,表明ቤተ መጻሕፍቲ ባይዱ曲变形程度越大。
④ 在变形区中,板料变形后将产生厚度变薄的 现象,r/t越小,厚度变薄越大 板料厚度由t变薄至t1,其比值η=t1/t称为变薄系 数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弯曲模的基本原理(一)
一、弯曲的基本原理
(一)弯曲工艺的概念及弯曲件
1.弯曲工艺:是根据零件形状的需要,通过模具和压力机把毛坯弯成一定角度,一定形状工件的冲压工艺方法。

2.弯曲成形工艺在工业生产中的应用:应用相当广泛,如汽车上很多履盖件,小汽车的柜架构件,摩托车上把柄,脚支架,单车上的支架构件,把柄,小的如门扣,夹子(铁夹)等。

(二)、弯曲的基本原理:以V形板料弯曲件的弯曲变形为例进行说明。

其过程为:
1.凸模运动接触板料(毛坯)由于凸,凹模不同的接触点力作用而产生弯短矩,在弯矩作用下发生弹性变形,产生弯曲。

2.随着凸模继续下行,毛坯与凹模表面逐渐靠近接触,使弯曲半径及弯曲力臂均随之减少,毛坯与凹模接触点由凹模两肩移到凹模两斜面上。

(塑变开始阶段)。

3.随着凸模的继续下行,毛坯两端接触凸模斜面开始弯曲。

(回弯曲阶段)。

4.压平阶段,随着凸凹模间的间隙不断变小,板料在凸凹模间被压平。

5.校正阶段,当行程终了,对板料进行校正,使其圆角直边与凸模全部贴合而成所需的形状。

(三)、弯曲变形的特点:
弯曲变形的特点是:板料在弯曲变形区内的曲率发生变化,即弯曲半径发生变化。

从弯曲断面可划分为三个区:拉伸区、压缩区和中性层。

二、弯曲件的质量分析
在实际生产中,弯曲件的主要质量总是有回弹、滑移、弯裂等。

1.弯曲件的回弹:
由于弹性回复的存在,使弯曲件弯曲部分的曲率半径和弯曲角度在弯曲外力撤去后(工件小模具中取出后)发生变化(与加工中在模具里的形状发生变化)的现象称弹性回复跳(回弹)。

回弹以弯曲角度的变化大小来衡量。

Δφ=φ-φt
1)影响回弹的回素:
A.材料的机械性能与屈服极限成正比,与弹性模数E成反比。

B.相对弯曲半径r/t,r越小,变形量越大,弹性变形量所点变形量比例越小。

回弹越小。

C.弯曲力:弯曲力适当,带校正成分适合,弯曲回弹很小。

D.磨擦与间隙:磨擦越大,变形区拉应力大,回弹小。

凸、凹模之间隙小,磨擦大,校正力大,回弹小。

E.弯曲件的形状:弯曲部分中心角越大,弹性变形量越大,回弹大,形状越复杂,回弹时各部分相应牵制,回弹小。

2)回弹值的确定,可查表。

3)减小回弹的措施:
A.从工件设计上采取措施。

a). 加强筋的设计
b). 材料的选用:选用弹性模数大,屈服极限小,机械性能稳定的材料。

B.工艺措施
a). 采用校正弯曲,增加弯曲力
b). 冷作硬化材料,弯曲前进行退火,降低屈服极限。

c). 加热弯曲
d). r/t>100用拉深弯曲
C.模具结构上采取措施。

a).r>t时,V形弯曲可在凸模上减去一个回弹角,U形弯曲可将凸模壁作出等于回弹角的倾斜角或将凸模顶面做成弧面。

b).减小凸模与工件的接触区,使压力集中于角部。

c). U形件可以采用较少的间隙。

2.弯曲件的弯裂
弯曲件变形区外边是拉伸区,当此区的拉应力超出材料的应力极限时(强度极限)就产生裂纹。

弯曲件的相对弯曲半径r/t越小,则变形越大,越易拉裂。

3.弯曲件的滑移
由于毛坯与模具之间磨擦的存在,当磨擦力不平衡时造成毛坯的移位,称作滑移,使弯曲件的尺寸达不到要求:
1)产生滑移的原因:由于两边磨擦力不等。

A.工作不对称,毛坯两边与凹模接触面不相等。

B.凹模两边的边缘圆角半径不相等,半径小,磨擦力更大。

C.两边折弯的个数不一样。

D.V形弯曲中凹模不是中心对称,角度小的一边正压力大,磨擦大
E.凹模两边的间隙和润滑情况不一样。

2)防止滑移的措施
A.尽可能采用对称凹模,边缘圆角相等,间隙均匀。

B.采用弹性顶件装置的模具结构。

C.采用定位销的模具结构。

4.补充内容:
A.弯曲可以压力机上进行,亦可以专用的弯曲机械弯曲设备上进行。

B.弯曲分自由弯曲和校正弯曲:自由弯曲是指当弯曲终了时,凸模、毛坯和凹模三者吻合后就不再下压。

校正弯曲是指三者吻合后继续下压,对工件起校正作用,产生进一步的塑变。

相关文档
最新文档