材料力学 应力状态和强度理论答案

合集下载

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

材料力学B试题7应力状态_强度理论.docx

材料力学B试题7应力状态_强度理论.docx

40 MPa.word 可编辑 .应力状态强度理论1. 图示单元体,试求60100 MPa(1)指定斜截面上的应力;(2)主应力大小及主平面位置,并将主平面标在单元体上。

解: (1)x y xy cos 2x sin 276.6 MPa22xy sin 2x cos232.7 MPa231 (2)max xy( x y) 2xy281.98MPa39.35min22121.98181.98MPa,2,3121.98MPa12xy12000arctan()arctan39.352x y24020060602. 某点应力状态如图示。

试求该点的主应力。

129.9129.9解:取合适坐标轴令x25 MPa,x由120xy sin 2xy cos20 得y2所以m axx y( xy ) 2xy 2m in 22129.9 MPa2525(MPa)125MPa50752( 129.9)250 150100 MPa2001 100MPa,20 ,3200MPa3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。

解:y150 MPa,x120 MPa.word 可编辑 .由得45xy sin 2xy cos 2x 15080 22x10MPa所以max xy(x y)2222xy min yx454545214.22 MPa 74.221214.22 MPa,20 ,45374.22MPa4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。

求靠圆筒内壁任一点处的主应力。

0.19210 3解:xπ(0.10440.14)0.05 5.75MPat32x y pd MPa504tpd MPa1002tM e p M emax x y(x y ) 2xy2min22100.7 MPa 49.351100.7MPa,249.35 MPa,3 4 MPa5.受力体某点平面上的应力如图示,求其主应力大小。

材料力学带答疑

材料力学带答疑

第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。

拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。

)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。

)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。

)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。

)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。

A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。

)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。

A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。

)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。

A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。

材料力学习题应力状态和强度理论

材料力学习题应力状态和强度理论

应力状态分析与强度理论基 本 概 念 题一、选择题1. 三种应力状态分别如图(a )、(b )、(c )所示,则三者间的关系为( )。

A .完全等价B .完全不等价C .图(b )、图(c )等价D .图(a )、图(c )等价题1图2. 已知应力情况如图所示,则图示斜截面上的应力为( )。

(应力单位为 MPa)。

A .70-=ασ,30-=ατB .0=ασ,30=ατC .70-=ασ,30=ατD .0=ασ,30-=ατ3. 在纯剪切应力状态中,其余任意两相互垂直截面上的 正应力,必定是( )。

A .均为正值B .一为正值一为负值C .均为负值 题2图D .均为零值4. 单元体的应力状态如图所示,由x 轴至1σ方向的夹角为( )。

A .︒5.13 B .︒-5.76 C .︒5.76 D .︒-5.13题4图 题5图5. 单元体的应力状态如图所示,则主应力1σ、2σ分别为( )。

(应力单位MPa). -33-A .901=σ,102-=σB .1001=σ,102-=σC .901=σ,02=σD .1001=σ,02=σ 6. 如图6所示单元体最大剪应力m ax τ为( )。

A .100 MPaB .50 MPaC .25 MPaD .0题6图 题7图7. 单元体如图所示,关于其主应力有下列四种答案,正确的是( )。

A .1σ>2σ,03=σ B .3σ<2σ<0,03=σ01=σ C .1σ>0,2σ= 0,3σ<0,1σ<3σ D .1σ>0,2σ= 0,3σ<0,1σ>3σ8. 已知应力圆如图7-22所示,图(a )、(b )、(c )、(d )分别表示单元体的应力状态和A 截面的应力,则与应力圆所对应的单元体为( )。

A .图(a )B .图(b )C .图(c )D .图(d )题8图9. 在图示四种应力状态中,其应力圆具有相同的圆心和相同的半径是( )。

-34-题9图A .图(a )、图(d )B .图(b )、图(c )C .图(a )、图(b )、图(c ) 、图(d )D .图(a )、图(d )、图(b )、图(c )10. 如图所示,较大体积的钢块上开有一贯穿的槽,槽内嵌入一铝质立方体,铝块受到均布压力P 作用,假设钢块不变形,铝块处于( )。

材料力学习题参考答案2011年7月-第22章应力状态和强度理论

材料力学习题参考答案2011年7月-第22章应力状态和强度理论

22-6 图示受力板件,试证明A 点处各截面的正应力、剪应力均为零证明:若在尖点A 处沿自由边界取三角形单元体如图所示,设单元体 、面上的应力分量为、和、,自由边界上的应力分量为,则有由于、,因此,必有、、。

这时,代表A 点应力状态的应力圆缩为 坐标的原点,所以A 点为零应力状态。

22-7 图示槽形刚体,在槽内放置一边长为10mm 、的立方钢块,钢块顶面受到合力为P=8kN 的均布压力作用,试求钢块的三个主应力和最大剪应力。

已知材料的弹性模量GPa E 200=,泊松比3.0=μ。

解: 选取坐标轴x 、y 、z 如图。

x σ=0, σz =-10101083⨯⨯=-80MPa ,εy =1E 〔σy -μ(σz +σx )〕=1E〔σy -μσz 〕=0 由此得 σy =μσz =0.3×(-80)=-24 MPa 。

Pxzyo将x σ、y σ、z σ按代数值大小排列,得三个主应力为 σ1=0 、σ2 =-24 MPa 、σ3=-80 MPa 。

最大剪应力 τm a x =σσ132-=280=40 MPa 。

22-12 试比较图示正方形棱柱体在下列两种情况下的相当应力3xd σ:(a )棱柱体自由受压:(b )棱柱体在刚性方模内受压。

弹性常数E 、μ均为已知.解:对于图(a )中的情况,应力状态如图(c )对于图(b )中的情况,应力状态如图(d )所以,,22-20 N O.28a普通热轧工字钢简支梁如图所示。

今由贴在中性层上某点K处、与轴线夹45º角方向上的应变片测得ε45º=-260×10-6。

已知钢材的E=210GPa,μ=0.28。

求作用在梁上的载荷F P。

材料力学课后标准答案

材料力学课后标准答案
6-12薄壁钢圆筒受到内压 ,内径 ,壁厚 ,计算筒中主应力。若最大主应力限制为 ,则在筒的两端可加多大的扭矩。
解:取轴向长为 的管分析:微元 上,作用力为
向分量 ,积分得
则: ,而
则:
题6-12图题6-13图
6-13长输水管受内压 ,管的内径为 , , ,用第四强度理论计算壁厚。(提示:可设管的轴向应变为零。)
解: ,数据代入,得:

所以
现已知
,

题6-5图
题6-6图题6-7图
6-6图示简支梁为 工字梁, , 。 点所在截面在集中力 的左侧,且无限接近 力作用的截面。试求: 点在指定斜截面上的应力; 点的主应力及主平面位置(用单元体表示)。
解: 所处截面上弯矩、剪力:

查型钢表后, 点以下表面对中性轴静矩:

同理,积分得
所以, 处转角为 ,为顺时针方向; 处挠度为 ,为竖直向下。
8-6试求图示各刚架 点的竖直位移,已知刚架各杆的 相等。
解: 段: ; 段上
由卡氏定理, 处的竖直位移
分段带入后面积分:
为正值,则与 同向,竖直向下
分析可知, 处已经作用有竖直方向的力,为了能利用卡氏定理解题, 处和竖杆中间处的 分别为
(压), (拉)
进而求得 (拉),由
求得:
8-3计算图示各杆件结构的变形能。
题8-3图
解: 首先求解 处的约束反力为
弯矩方程为:

分段积分:
解: 以逆时针方向为正,
,积分得
8-4试求图示各梁的 点的挠度的转角。
题8-4图
解: 以 点为 轴起点,结构的弯矩方程为:
则:

撤去 和 ,在 处作用逆时针向

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。

2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。

5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。

材料力学习题 应力状态分析答案详解

材料力学习题 应力状态分析答案详解
解析: 与 无关
13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变 、 后,所能算出的材料常数有( D )。
(A)只有E;(B)只有v;(C)只有G;(D)E、v和G均可算出。
解析:中间段为纯弯曲,A点为单向拉伸,

14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是( C )。
解答:
确定 , 确定
6、 物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a)和(b)所示。试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
确定
确定
2、已知应力状态如图。试求主应力及其方向角,并确定最大切应力值。
解答:
确定
所以 确定
3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。
解答:
确定
所以 确定
4、用解析法求图示单元体ab面上的应力( ),并求 及主应力。
解答:
5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。
由第三强度理论 安全
10、直径为20mm的圆截面折杆受力情况如图所示,已知:F=0.2kN,材料的许用应力为 。试用第三强度理论确定折杆的长度a的许用值。
解答:
在危险截面A上危险点在七上下边缘
由第三强度理论

11、AB、CD两杆互相垂直,在水平面内,C点的集中力2F及D点的集中力F与刚架平面垂直。已知F=20kN,l=1m,各杆直径相同d=10cm, 。试按最大切应力强度理论校核强度。

应力状态和强度理论 习题及答案

应力状态和强度理论 习题及答案

应力状态和强度理论一、判断题1.若单元体某一截面上的剪应力为零,则该截面称为主平面。

()2.主平面上的剪应力称为主应力。

()3.当单元体上只有一个主应力不为零时,称作二向应力状态。

()5.图2所示单元体最大剪应力为25Mpa。

()6.图3所示单元体为单向应力状态。

()图2图3图47. 向应力状态如图4所示,其最大主应力σ1=3σ()。

8. 任一单元体,在最大正应力作用面上,剪应力为零。

()9. 主应力是指剪力为零的截面上的正应力。

()10.力圆上任一点的横坐标值对应单元体某一截面上的正应力。

()二、选择题1.图1所示应力圆对应的单元体为图()。

图 5三、选择题1.若一点的应力状态为平面应力状态,那么该点的主应力不可能为:()。

A 、σ1> 0 σ2=σ3=0 B、σ1> 0 σ2 =0 σ3 < 0C、σ1>σ2>0 σ3=0D、σ1>σ2>σ3>02.已知单元体各面上的应力如图,则其主平面方位为()。

A、B、C、D、四、填空题1.图示为一平面应力状态的单元体及其应力圆,试在应力圆上表示0-1,0-2,0-3平面的位置。

图 62.试验表明,材料受力后的破坏主要有两种形式,一种是,是由于或所引起;另一种是,是由于所引起的。

3.一单元体如图所示,则单元体的主应力为__________ ,为__________ ,为__________ ,最大主应力与x 轴的夹角为__________ 。

五、简单计算1.单元体上的应力如图7所示,试求其它应力和最大剪应力。

2.图8所示单元体,试求图示斜截面上的正应力和剪应力。

图7图8 3.试求图示单元体o斜截面应力。

已知:。

图 9。

家电公司研发部资料材料力学习题答案(七)

家电公司研发部资料材料力学习题答案(七)

第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。

答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。

A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。

答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。

材料力学第五版第七节应力状态答案.doc

材料力学第五版第七节应力状态答案.doc

材料力学第五版第七节应力状态答案第七章应力状态与强度理论一、教学目标和教学内容1.教学目标通过本章学习,掌握应力状态的概念及其研究方法;会从具有受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。

掌握强度理论的概念。

了解材料的两种破坏形式(按破坏现象区分)。

了解常用的四个强度理论的观点、破坏条件、强度条件。

掌握常用的四个强度理论的相当应力。

了解莫尔强度理论的基本观点。

会用强度理论对一些简单的杆件结构进行强度计算。

2.教学内容应力状态的概念;平面应力状态分析;三向应力状态下的最大应力;广义胡克定律体应变;复杂应力状态的比能;⑥梁的主应力主应力迹线的概念。

讲解强度理论的概念及材料的两种破坏形式。

讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。

介绍几种强度理论的应用范围和各自的优缺点。

简单介绍莫尔强度理论。

二、重点难点重点1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大剪应力的计算。

2、广义胡克定律及其应用。

难点1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。

2、斜截面上的应力计算公式中关于正负符号的约定。

3、应力主平面、主应力的概念,主应力的大小、方向的确定。

4、广义胡克定律及其应用。

5 强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。

6 常用四个强度理论的理解。

7 危险点的确定及其强度计算。

三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时10学时五、讲课提纲1、应力状态的概念所谓“应力状态”又称为一点处的应力状态(state of stresses at a given point),是指过一点不同方向面上应力的集合。

[材料力学]材料力学试题库精选题解精选题8_应力状态_强度理论.docx

[材料力学]材料力学试题库精选题解精选题8_应力状态_强度理论.docx

应力状态强度理论1.图示单元体,试求 (1) 指定斜截而丄的应力;(2) 主应力大小及主平而位置,并将主平而标在单元体上。

F<T r — CT V解:(1) (y (/ = — ----- + ---------- cos 2a 一 g sin 2& = 76.6 MPar r/ = ----- sin + r v cos2a =-32.7 MPaCc£X-50 ± 加 +(—129.9)2 = _50 ±1506=100 MPa, (r 2 = 0 , 6=-200 MPa解:b 、=150 MPa,「=—120 MPayx由 r = ----------- sin 2Q +「cos 2a = —~~— = -804522得 6 =-10 MPa3.—点处两个互成45°平面上的应力如图所示,其屮<7未知,求该点主应力。

max bmin81.98 MPa-121.98a = 81.98 MPa, <r 2 = 0 , cr 3 = -121.98 MPa^0=larctan(^^) = l arctan2 CT X -cr v 2402.某点应力状态如图示。

试求该点的主应力。

解:取合适坐标轴令6=25 MPa, r x =-129.9 MPa120"-- ----- sin 2a + T cos 2a = 0 得 = -125 MPa 2 -100MPa-200150 MPacr cr + cr所以max= __ ±2214.22MPa一74.226=214.22 MPa, cr2 = 0, <r3 = -74.22 MPa4.图示封闭薄壁圆筒,内径d=100 mm,壁厚f = 2 mm,承受内床“ =4 MPa, 外力偶矩M“=0・192 kN-mo求靠圆筒内壁任一点处的主应力。

解・・r常九严停32a=^- = 5Q MPax 4t<r v二四= 100 MPa、2tmax bmin 100.7MPa 49.356=100.7 MPa, 6=49.35 MPa, (r3 = -4 MPa5.受力体某点平面JL的应力如图示,求其主应力大小。

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第9章 应力状态与强度理论

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第9章 应力状态与强度理论

τ max =
σ1 −σ 3
2
=
380 1 2 + 100 2 + 4τ xy < 160 4 4
解得 | τ xy | <120MPa
所以,取 | τ xy | <120MPa。 9- 6 图示外径为 300mm 的钢管由厚度为 8mm 的钢带沿 20°角的螺旋线卷曲焊接而
成。试求下列情形下,焊缝上沿焊缝方向的剪应力和垂直于焊缝方向的正应力。 1.只承受轴向载荷 FP = 250 kN; 2.只承受内压 p = 5.0MPa(两端封闭) *3.同时承受轴向载荷 FP = 250kN 和内压 p = 5.0MPa(两端封闭)
εt =
2 π ( r + Δ r ) − 2 πr Δ r = 2 πr r 1 Δr = ε t ⋅ r = [σ t −νσ m ] E 1 = (118.72 − 0.33 × 59.36 ) × 254 = 0.336mm 75 ×103
9- 8
构件中危险点的应力状态如图所示。 试选择合适的准则对以下两种情形作强度校
9- 7
承受内压的铝合金制的圆筒形薄壁容器如图所示。 已知内压 p = 3.5MPa, 材料
的 E = 75GPa, ν = 0.33。试求圆筒的半径改变量。
5
习题 9-7 图
解:
σm =
3.5 × (254 × 2 + 7.6) = 59.36 MPa 4 × 7.6 3.5 × (254 × 2 + 7.6) = 118.72 MPa σt = 2 × 7.6
σ r4 =
1 (100 2 + 20 2 + 120 2 ) = 111.4 MPa 2
2. σ =

材料力学第7章应力和应变强度理论.答案

材料力学第7章应力和应变强度理论.答案

y
xy
x
§7.3 二向应力状态分析—解析法-实例1 解:1) 斜面上的应力
x y x y cos 2 xy sin 2 2 2
9.02 MPa
60 40 60 40 cos( 60 ) 30 sin( 60 ) 2 2
Me A B D C Me y
Me wt
在圆轴表层取出单元体ABCD ,单元体各面上的应力为:
x
ABCD
x y 0, xy
§7.3 二向应力状态分析—解析法-实例2
2). 主应力大小及方向确定
max x y x y 2 xy min 2 2
§7.3 二向应力状态分析—解析法-实例1
3)主应力单元体:
y
3
xy

1
x
15 .5
§7.3 二向应力状态分析—解析法-实例2 例7.4: 分析圆轴扭转时的应力状态。
Me A B D
C
Me
§7.3 二向应力状态分析—解析法-实例2
解:1). 单元体的应力状态
圆轴扭转时,在横截面的边缘 处切应力最大,数值为:x y来自2y xy

min
x y 2 xy 2 2 48.3MPa
x y
2
x
1 68.3MP a, 2 0, 3 48.3MP a
§7.3 二向应力状态分析—解析法-实例1
确定主平面的方位:
y
1 ( x y ) sin 2 xy cos 2 2
§7.3 二向应力状态分析—解析法
确定正应力和切应力的极值及它们所在平面的位置

材料力学习题应力状态分析答案详解

材料力学习题应力状态分析答案详解
二、填空题
1、图示应力状态,按第三强度理论的强度条件为 。
(注: )
解答:
2、第三强度理论和第四强度理论的相当应力分别为 及 ,对于纯剪切应力状态,恒有 / = 。
解答:纯剪应力状态
3、一般情况下,材料的塑性破坏可选用最大剪应力或形状改变能密度强度理论;而材料的脆性破坏则选用最大拉应力或最大伸长线应变强度理论(要求写出强度理论的具体名称)。
解答:
17、一体积为10×10×10mm3的立方铝块,将其放入宽为10mm的刚性槽中,已知v(铝)=0.33,求铝块的三个主应力。
解答:
18、外径为D、内径为d的空心圆轴受扭转时,若利用一电阻应变片作为测力片,用补偿块作为温度补偿,采用半桥接线。问:(1)此测力电阻片如何粘贴可测出扭矩;(2)圆轴材料的E、v均为已知, 为测得的应变值,写出扭矩计算式。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。
解答:
10、已知受力构件某处的 , , ,材料的E=200GPa,v=0.3。试求该点处的 、 。
解答:在危险截面A上危险点在七上下边缘
由第三强度理论
不安全
12、图示齿轮传动轴内电机带动,作用在齿轮上的力如图示,已知轴的直径d=30mm,P=0.8kN,Q=2kN,l=50mm,齿轮节圆直径D=200mm。试用第三强度理论校核轴的强度。已知轴的 。
13、图示传动轴,皮带轮Ⅰ直径D1=80cm,皮带轮Ⅱ直径D2=40cm,已知轴的许用应力 。试以第四强度理论设计轴的直径d,并指出危险截面位置,画出危险点的应力状态。

材料力学 应力状态和强度理论答案

材料力学 应力状态和强度理论答案

7-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。

由于实用的原因,图中的角限于范围内。

作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。

为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。

若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。

返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。

解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。

试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。

试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。

试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。

解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。

试问所画的圆将变成何种图形?并计算其尺寸。

已知钢板的弹性常数E=206GPa,=0.28。

材料力学习题册答案-第7章应力状态

材料力学习题册答案-第7章应力状态

第 七 章 应力状态 强度理论一、 判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。

(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。

(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。

(×) 原因:正应力一般不为零。

4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。

(×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。

三向等拉或等压倒是为一个点。

5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。

(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。

(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。

(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。

(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。

(×) 原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。

(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。

A 最大面积B 最小面积C 最大应力D 最大内力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。

A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。

由于实用的原因,图中的角
限于范围内。

作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力为许
用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。

为了使杆能承受最大的荷载F,试问角的值应取多大?
解:按正应力强度条件求得的荷载以表示:
按切应力强度条件求得的荷载以表示,则
即:
当时,,,
时,,,
时,,
时,,
由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。

若按胶合缝的达到的同时,亦达到的条件计算

即:


故此时杆件承受的荷载,并不是杆能承受的最大荷载。

返回
7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。

解:
=
由应力圆得
返回
7-3(7-8)各单元体面上的应力如图所示。

试利用应力圆的几何关系求:(1)指定截面上的应力;
(2)主应力的数值;
(3)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,

(b),,,,
(c)
, , ,
(d),,,,,
返回
7-4(7-9) 各单元体如图所示。

试利用应力圆的几何关系求:
(1)主应力的数值;
(2)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,
(b),,,
(c)
,,,
(d)



返回
7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。

试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的
夹角值。

解:由已知按比例作图中A,B两点,作AB的垂直平分线交
轴于点C,以C为圆心,CA或CB为半径作圆,得
(或由

半径)
(1)主应力
(2)主方向角
(3)两截面间夹角:
返回
7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。

试问所画的圆将变成何种图形?并计算其尺寸。

已知钢板的弹性常数E=206GPa,=0.28。

解:
所画的圆变成椭圆,其中
(长轴)
(短轴)
返回
7-7(7-15)单元体各面上的应力如图所示。

试用应力圆的几何关系求主应力及最大切应力。

解:(a)由xy平面内应力值作a,b点,连接ab交轴得圆心C(50,0)
应力圆半径

(b)由xz平面内应力作a,b点,连接ab交轴于C点,OC=30,故应力圆半径
则:
(c)由图7-15(c)yz平面内应力值作a,b点,圆心为O,半径为50,作应力圆得
返回
7-8(7-18)边长为20mm的钢立方体置于钢模中,在顶面上受力F=14kN作用。

已知=0.3,假设钢模的变形以及立方体与钢模之间的摩擦力可略去不计。

试求立方体各个面上的正应力。

解:(压)
(1)
(2)
联解式(1),(2)得
(压)
返回
7-9(7-20) D=120mm,d=80mm的空心圆轴,两端承受一对扭转力偶矩,如图所示。

在轴的中部表面A点处,测得与其母线成方向的线应变为。

已知材料的弹性常数,,试求扭转力偶矩。

解:方向如图
返回
7-10(7-22)一直径为25mm的实心钢球承受静水压力,压强为14MPa。

设钢球的E=210GPa,=0.3。

试问其体积减小多少?
解:体积应变
=
返回
7-11(7-23)已知图示单元体材料的弹性常数。

试求该单元体的形状改变能密度。

解:主应力:
形状改变能密度:
=
=
返回
7-12(7-25) 一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。

已知钢材
的许用应力为。

试校核梁内的最大正应力和最大切应力,并按第四强度理论校核危险截面上的点a的强度。

注:通常在计算点a处的应力时近似地按点的位置计算。

解:
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过的5.3%尚可。

(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外横截面上校核点a的强度
超过的3.53%,在工程上是允许的。

返回
7-13(7-27) 受内压力作用的容器,其圆筒部分任意一点A(图a)处的应力状态如图b所示。

当容器承受最大的内压力时,用应变计测得。

已知钢材的弹性模量E=210GPa,泊松比=0.3,许用应力。

试按第三强度理论校核A点的强度。

解:
,,根据第三强度理论:
超过的7.64%,不能满足强度要求。

相关文档
最新文档