恩施州咸丰县2020-2021年新人教版七年级下第一次月考数学试卷含解析(A卷全套)

合集下载

新人教版七年级数学下册第一次月考试卷含解析(2021年整理)

新人教版七年级数学下册第一次月考试卷含解析(2021年整理)

新人教版七年级数学下册第一次月考试卷含解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版七年级数学下册第一次月考试卷含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版七年级数学下册第一次月考试卷含解析(word版可编辑修改)的全部内容。

123(第三题)ABCD1234(第2题)12345678(第4题)ab c新人教版七年级数学下册第一次月考试卷一、单项选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120°C 、180°D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①② B、①③ C、①④ D、③④5、一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的 方向上平行前进,那么这两次转弯的角度可以是( ). A 、先右转80°,再左转100° B 、先左转80°,再右转80°C 、先左转80°,再右转100°D 、先右转80°,再右转80°6、下列哪个图形是由左图平移得到的( )BD7、点P 为直线l 外一点,点A 、B 、C 为直线l 上三点,PA =4cm ,PB=5cm ,PC=2cm , 则点P 到直线l 的距离为( )。

新版人教版七年级(下册)第一次月考数学试卷(附答案)

新版人教版七年级(下册)第一次月考数学试卷(附答案)

新版人教版七年级(下册)第一次月考数学试卷(附答案)一、选择题:(本大题12个小题,每小题4分,共48分)每小题中只有一个答案是正确的,请将正确答案的代号填在答题卡内.1.(4分)下面四个图形中,∠1 与∠2是对顶角的图形是()A.B.C.D.2.(4分)4的平方根是()A.2 B.16 C.±2 D.±163.(4分)如图五幅图案中,②、③、④、⑤哪一个图案可以通过平移图案①得到?()A.②B.③C.④D.⑤4.(4分)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.20°B.30°C.35°D.40°5.(4分)如图,直线l1与l2相交于点O,OM⊥l1,若β=44°,则α为()A.44°B.45°C.46°D.56°6.(4分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2 B.∠3=∠4 C.∠D=∠DCE D.∠D+∠ACD=180°7.(4分)如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角8.(4分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1309.(4分)下列命题:①内错角相等;②同旁内角互补;③直角都相等;④若n <1,则n2﹣1<0.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个10.(4分)如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.611.(4分)已知两个角的两边分别平行,且其中一个角比另一个角的3倍多36°,则这两个角的度数是()A.20°和96°B.36°和144°C.40°和156°D.不能确定12.(4分)如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案填在答题卡中对应的横线上.13.(4分)如图,直线AB、CD相交于点O,若∠AOD=28°,则∠BOC=,∠AOC=.14.(4分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.15.(4分)如图,直线a∥b,∠1=130°,则∠2=度.。

2020-2021学年度七年级下学期数学第一次月考试卷(含答案)

2020-2021学年度七年级下学期数学第一次月考试卷(含答案)

七年级下学期数学第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−122. 下面运算结果为a 6的是( )A. a 3+a 3B. a 8÷a 2C. a 2⋅a 3D. (−a 2)33. 已知二元一次方程组{x −3y =4(1)y =2x −1(2),把(2)代入(1),整理,得( )A. x −2x +1=4B. x −2x −1=4C. x −6x −3=6D. x −6x +3=44. 现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A. 50B. 60C. 70D. 805. 在下列的计算中,正确的是( )A. m 3+m 2=m 5B. m 5÷m 2=m 3C. (2m)3=6m 3D. (m +1)2=m 2+16. 下列整式的运算可以运用平方差公式计算的有( )①(2m +n)(n −2m);②(a 2−4b)(4b −a 2);③(x +y)(−x −y); ④(3a +b)(−3a +b)A. 1个B. 2个C. 3个D. 4个7. 学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A. 3种B. 4种C. 5种D. 6种8. 若代数式M ⋅(3x −y 2)=y 4−9x 2,那么代数式M 为( )A. −3x −y 2B. −3x +y 2C. 3x +y 2D. 3x −y 29. 方程(m −2016)x |m|−2015+(n +4)y |n|−3=2018是关于x 、y 的二元一次方程,则( )A. m =±2016;n =±4B. m =2016,n =4C. m =−2016,n =−4D. m =−2016,n =410. 若(x 2+px +q)(x −2)展开后不含x 的一次项,则p 与q 的关系是( )A. p =2qB. q =2pC. p +2q =0D. q +2p =0第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k的解也是二元一次方程2x −y =−7的解;则k 的值是______.12. (−0.5)2013×(−2)2014=______.13. 在等式y =kx +b 中,当x =3时,y =−2;当x =−1时,y =4,则k +b 的值为______.14. 若x +y =4,xy =3,则x 2+y 2= ______ .15. 已知二元一次方程2x +3y =18的解为正整数,则满足条件的解共有______对. 16. 计算:2(1+12)(1+122)(1+124)(1+128)+1214=______. 17. 如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据如图中所示,则图中阴影部分的面积为__________(平方单位).18. 我们知道下面的结论,若a m =a n (a >0,且a ≠1),则m =n ,利用这个结论解决下列问题:设2m =3,2n =6,2p =12,现给出m 、n 、p 三者之间的三个关系式:①m +p =2n ,②m +n =2p −3,③m 2−mp =1,其中正确的是________.(填编号) 三、解答题(本大题共7小题,共78.0分)19. (10分)计算下列各式:(1)(3a −2)(4a −1);(2)3a(−a −4)+(3a −1)(a +3).20. (10分)已知,关于x ,y 的方程组{x −y =4a −3x +2y =−5a 的解为x 、y .(1)x =______,y =______(用含a 的代数式表示); (2)若x 、y 互为相反数,求a 的值;21. (10分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?22.(10分)如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式;(2)选取1张A型卡片,10张C型卡片,______张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为______;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.23.(12分)先阅读后解答:根据几何图形的面积关系可以说明一些等式.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:__________________________.(2)已知等式(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图①或图②画出图形即可).24.(12分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?25.(14分)某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?答案1.B2.B3.D4.B5.B6.B7.B8.A9.D10.B11.−112.−213.114.1015.216.417.1818.①②19.解:(1)(3a−2)(4a−1)=12a2−3a−8a+2=12a2−11a+2.(2)3a(−a−4)+(3a−1)(a+3)=−3a2−12a+3a2+9a−a−3 =−4a−3.20.解:(1)a−2−3a+1(2)由题意得,a−2+(−3a+1)=0,解得,a=−1.221.解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.22.解:(1)方法1:大正方形的面积为(a +b)2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b)2=a 2+2ab +b 2,(2)由面积拼图可知a 2+10ab +25b 2=(a +5b)2, 故答案为:25,(a +5b), (3)由图形面积之间的关系可得,S 阴影=12m 2−12n(m −n)=1m 2−1mn +1n 2 =12[(m +n)2−3mn] =12(102−3×19) =432.23.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2;(2)由题意,可画出几何图形如下:其中一条边可看做x +1,另一条边可看做x +3,四个区域面积的和即为计算结果.24.解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95解得:{x =25y =10,答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元; (2)设购进A 型汽车m 辆,购进B 型汽车n 辆, 依题意,得:25m +10n =200, 解得:m =8−25n , ∵m ,n 均为正整数,∴{m 1=6n 1=5,{m 2=4n 2=10,{m 3=2n 3=15,∴共3种购买方案:方案一:购进A 型车6辆,B 型车5辆; 方案二:购进A 型车4辆,B 型车10辆; 方案三:购进A 型车2辆,B 型车15辆;(3)方案一获得利润:8000×6+5000×5=73000(元); 方案二获得利润:8000×4+5000×10=82000(元); 方案三获得利润:8000×2+5000×15=91000(元). ∵73000<82000<91000,∴购进A 型车2辆,B 型车15辆获利最大,最大利润是91000元.25.解:(1)设需要甲车x 辆,乙车y 辆,根据题意可得{600x +800y =11400500x +600y =8700解得{x =3y =12;(2)设需要甲车x 辆,乙车y 辆,根据题意得 600x +800y +900(15−x −y)=11400, 整理得3x +y =21, ∵x ,y 都是正整数,x +y <15 x =4,5,6 ,方案一:甲车4辆,乙车9辆,丙车2辆,运费8800元 方案二:甲车5辆,乙车6辆,丙车4辆,运费8900元方案三:甲车6辆,乙车3辆,丙车6辆,运费9000元∵8800<8900<9000∴方案一运费最省,运费是8800元.。

2020-2021年七年级下第一次月考数学试卷含解析

2020-2021年七年级下第一次月考数学试卷含解析

一、选择题1.下列计算中,正确的是()A.a3•a5=a15B.(a2)5=a7C.a0=1(a≠0)D.(ab2)n=ab2n 2.下列多项式乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b﹣a)C.(﹣a+b)(a﹣b)D.(x2﹣y)(x+y2)3.自从扫描隧道显微镜发明以后,世界上变诞生了一门新兴的学科,这就是“纳米技术”,已知1纳米=0.000000001米,则2.25纳米用科学记数法表示为()米.A.3.25×109B.2.25×108C.2.25×10﹣9D.2.25×10﹣8 4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm5.如图,AB∥CD∥EF,若∠ABC=50c,∠CEF=150°,则∠BCE=()A.60° B.50° C.30° D.20°6.若2x=4y﹣1,27y=3x+1,则x﹣y等于()A.﹣5 B.﹣3 C.﹣1 D.17.代数式(22+1)(24+1)(28+1)…+1的个位数是()A.4 B.0 C.6 D.28.如图所示,下列推理正确的个数有()①若∠1=∠2,则AB∥CD②若AD∥BC,则∠3+∠4③若∠C+∠CDA=180°,则AD∥BC④若AB∥CD,则∠C+∠CDA=180°.A.0个B.1个C.2个D.3个9.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1)剩余部分虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()cm2A.2 B.2a C.4a D.(a2﹣1)10.由(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b2可得:(a+b)(a2﹣ab+b2)=a3+b3…①我们把等式①叫做多项式乘法的立方和公式.下列应用这个立方和公式进行的变形中,等式不成立的是()A.(x+4y)(x2﹣4xy+16y2)=x2+64y3B.(2x+y)(4x2﹣2xy+y2)=8x3+y3C.x3+27=(x+3)(x2﹣3x+9)D.a3+1=(a+1)(a2﹣2a+1)二、填空题11.(﹣)﹣2+(π﹣3.14)0= .12.若常数k使多项式y2﹣3(k+1)y+9是一个完全平方式,则k= .13.如图,BA∥DE,∠B=150°,∠D=130°,则∠C的度数是.14.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.15.一副直角三角板如上图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠DBC= °.16.多项式2x2﹣2xy+y2+4x+25的最小值为.三、解答题17.计算题(1)982(简便计算)(2)(a﹣5)2﹣(a﹣2)(a+3)(3)(m﹣n)2+(m﹣n)(n﹣m)(4)(3m﹣2n+2)(3m+2n+2)18.先化简再求值[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷(8y),其中x=2016,y=2014.19.(1)如图,以点B为顶点,射线BC为一边,利用尺规作∠CBE,使得∠CBE=∠A.(只保留作图痕迹,不写作法).(2)按(1)的要求作出的图形中,BE与AD一定平行吗?为什么?20.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.21.小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小明9点离开家,15点回家.根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需小时?此时离家千米.(2)何时开始第一次休息?休息时间多长?(3)小强何时距家21km?(写出计算过程)22.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.参考答案与试题解析一、选择题1.下列计算中,正确的是()A.a3•a5=a15B.(a2)5=a7C.a0=1(a≠0)D.(ab2)n=ab2n 【考点】6E:零指数幂;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】分别根据零指数幂,同底数幂的乘法,幂的乘方与积的乘方法则计算即可.【解答】解;A、a3•a5=a8,故本选项错误;B、(a2)5=a10,故本选项错误;C、a0=1(a≠0),故本选项正确;D、(ab2)n=a n b2n,故本选项错误;故选C.2.下列多项式乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b﹣a)C.(﹣a+b)(a﹣b)D.(x2﹣y)(x+y2)【考点】4F:平方差公式.【分析】根据平方差公式的特点,两个数的和乘以这两个数的差,对各选项分析判断后利用排除法求解.【解答】解:A、不存在互为相反数的项,故本选项错误;B、b是相同的项,互为相反项是a与﹣a,正确;C、(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不符合平方差公式的特点;D、不存在相同的项,故本选项错误.故选B.3.自从扫描隧道显微镜发明以后,世界上变诞生了一门新兴的学科,这就是“纳米技术”,已知1纳米=0.000000001米,则2.25纳米用科学记数法表示为()米.A.3.25×109B.2.25×108C.2.25×10﹣9D.2.25×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,此题n<0,n=﹣9.【解答】解:∵1纳米=0.000000001米,∴2.25纳米=2.25×0.000000001米=0.00000000225米=2.25×10﹣9米故选:C.4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm【考点】E8:函数的表示方法.【分析】根据给出的表格中的数据进行分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.【解答】解:A.x与y都是变量,且x是自变量,y是因变量,故A正确;B.所挂物体质量为4kg时,弹簧长度为12cm,故B正确;C.弹簧不挂重物时的长度为10cm,故C错误;D.物体质量每增加1kg,弹簧长度y增加0.5cm,故D正确.故选:C.5.如图,AB∥CD∥EF,若∠ABC=50c,∠CEF=150°,则∠BCE=()A.60° B.50° C.30° D.20°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠ABC=∠BCD,∠CEF+∠ECD=180°,等量代换即可得到结论.【解答】解:∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°﹣∠CEF=30°,∴∠BCE=∠BCD﹣∠ECD=20°.故选D.6.若2x=4y﹣1,27y=3x+1,则x﹣y等于()A.﹣5 B.﹣3 C.﹣1 D.1【考点】47:幂的乘方与积的乘方.【分析】先把4y﹣1化为22y﹣2,27y化为33y,然后根据2x=4y﹣1,27y=3x+1,列出方程式,再解方程即可.【解答】解:4y﹣1=22y﹣2=2x,27y=33y=3x+1,∴2y﹣2=x,3y=x+1,把x=2y﹣2代入3y=x+1中,解得:y=﹣1,把y=﹣1代入x=2y﹣2得:x=﹣4,∴x﹣y=﹣4﹣(﹣1)=﹣3,故选B.7.代数式(22+1)(24+1)(28+1)…+1的个位数是()A.4 B.0 C.6 D.2【考点】4F:平方差公式;1Q:尾数特征.【分析】原式变形为(22﹣1)(22+1)(24+1)(28+1) (1)反复利用平方差公式计算即可得到结果.【解答】解:(22+1)(24+1)(28+1)…+1=×(22﹣1)(22+1)(24+1)(28+1)…+1=×(24﹣1)(24+1)(28+1)…+1=+1=,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选C8.如图所示,下列推理正确的个数有()①若∠1=∠2,则AB∥CD②若AD∥BC,则∠3+∠4③若∠C+∠CDA=180°,则AD∥BC④若AB∥CD,则∠C+∠CDA=180°.A.0个B.1个C.2个D.3个【考点】JB:平行线的判定与性质.【分析】由平行线的判定与性质即可得出结论.【解答】解:①若∠1=∠2,则AB∥CD,正确;②若AD∥BC,则∠3+∠4,正确;③若∠C+∠CDA=180°,则AD∥BC,正确;④若AB∥CD,则∠C+∠CDA=180°,错误;正确的有3个,故选:D.9.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1)剩余部分虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()cm2A.2 B.2a C.4a D.(a2﹣1)【考点】4G:平方差公式的几何背景.【分析】矩形的面积就是边长是a+1的正方形与边长是a﹣1的正方形的面积的差,列代数式进行化简即可.【解答】解:矩形的面积是(a+1)2﹣(a﹣1)2=4a.故选:C10.由(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b2可得:(a+b)(a2﹣ab+b2)=a3+b3…①我们把等式①叫做多项式乘法的立方和公式.下列应用这个立方和公式进行的变形中,等式不成立的是()A.(x+4y)(x2﹣4xy+16y2)=x2+64y3B.(2x+y)(4x2﹣2xy+y2)=8x3+y3C.x3+27=(x+3)(x2﹣3x+9)D.a3+1=(a+1)(a2﹣2a+1)【考点】4I:整式的混合运算.【分析】根据立方和公式,即可作出判断.【解答】解:A、正确;B、正确;C、正确;D、错误.应该是a3+1=(a+1)(a2﹣a+1);故选D.二、填空题11.(﹣)﹣2+(π﹣3.14)0= 5 .【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1=5,故答案为:512.若常数k使多项式y2﹣3(k+1)y+9是一个完全平方式,则k= 1或﹣3 .【考点】4E:完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可.【解答】解:∵y2﹣3(k+1)y+9=y2﹣3(k+1)y+32,∴﹣3(k+1)y=±2×y×3,∴k+1=±2,解得k=1或﹣3.故答案为1或﹣3.13.如图,BA∥DE,∠B=150°,∠D=130°,则∠C的度数是80°.【考点】JA:平行线的性质.【分析】过C作CF平行于AB,由AB与DC平行,利用平行于同一条直线的两直线平行得到CF与DE平行,利用两直线平行同旁内角互补得到两对角互补,根据∠BCD=∠BCF+∠FCD即可求出∠BCD的度数.【解答】解:过C作CF∥AB,∵AB∥CD,∴CF∥CD,∴∠B+∠BCF=180°,∠D+∠DCF=180°,∵∠B=150°,∠D=130°,∴∠BCF=30°,∠DCF=50°,则∠BCD=∠BCF+∠FCD=80°.故答案为:80°.14.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55 .【考点】E3:函数关系式.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+5515.一副直角三角板如上图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠DBC= 15 °.【考点】K8:三角形的外角性质;JA:平行线的性质;K7:三角形内角和定理.【分析】根据平行线的性质求出∠ACM,根据平角求出∠BCD,根据三角形外角性质求出∠BDC,根据三角形内角和定理求出即可.【解答】解:∵AB∥CF,∠A=60°,∴∠ACM=∠A=60°,∵∠BCA=0°,∴∠BCD=30°,∵∠EFD=90°,∠E=45°,∴∠EDC=∠E+∠EFD=135°,∴∠DBC=180°﹣30°﹣135°=15°,故答案为:15.16.多项式2x2﹣2xy+y2+4x+25的最小值为21 .【考点】AE:配方法的应用.【分析】根据完全平方公式把多项式进行变形,根据非负数的性质解答即可.【解答】解:2x2﹣2xy+y2+4x+25=x2﹣2xy+y2+x2+4x+4+21=(x﹣y)2+(x+2)2+21,∵(x﹣y)2≥0,(x+2)2≥0,∴(x﹣y)2+(x+2)2+21≥21,∴多项式2x2﹣2xy+y2+4x+25的最小值为21,故答案为:21.三、解答题17.计算题(1)982(简便计算)(2)(a﹣5)2﹣(a﹣2)(a+3)(3)(m﹣n)2+(m﹣n)(n﹣m)(4)(3m﹣2n+2)(3m+2n+2)【考点】4F:平方差公式;46:同底数幂的乘法;4C:完全平方公式.【分析】(1)变形为2,根据完全平方公式计算即可求解;(2)根据完全平方公式和单项式乘以单项式的计算法则计算即可求解;(3)先变形为(m﹣n)2﹣(m﹣n)2,再合并即可求解;(4)先变形为[(3m+2)﹣2n][(3m+2)+2n],再根据完全平方公式计算即可求解.【解答】解:(1)982=2=1002﹣2×100×2+22=10000﹣400+4=9604;(2)(a﹣5)2﹣(a﹣2)(a+3)=a2﹣10a+25﹣a2﹣a+6=﹣11a+31;(3)(m﹣n)2+(m﹣n)(n﹣m)=(m﹣n)2﹣(m﹣n)2=0;(4)(3m﹣2n+2)(3m+2n+2)=[(3m+2)﹣2n][(3m+2)+2n]=(3m+2)2﹣4n2=9m2+12m+4﹣4n2.18.先化简再求值[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷(8y),其中x=2016,y=2014.【考点】4J:整式的混合运算—化简求值.【分析】原式中括号中利用平方差公式,完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷(8y)=(﹣4y2+4xy)÷(8y)=﹣y+x,当x=2016,y=2014时,原式=﹣1007+1008=1.19.(1)如图,以点B为顶点,射线BC为一边,利用尺规作∠CBE,使得∠CBE=∠A.(只保留作图痕迹,不写作法).(2)按(1)的要求作出的图形中,BE与AD一定平行吗?为什么?【考点】N2:作图—基本作图;J9:平行线的判定.【分析】(1)根据作一个角等于已知角的方法作图即可;(2)此题要分两种情况进行讨论,①当BE在∠CAD的内部时;②当BE在∠CAD的外部时.【解答】解:(1)如图所示:;(2)不一定平行,如图所示:当BE在∠CAD的内部时,BE平行于AD,当BE在∠CAD的外部时,BE不平行于AD.20.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.【考点】JB:平行线的判定与性质.【分析】首先证明BD∥CE,根据平行线的性质可得到∠ABD=∠C,然后根据∠C=∠D,证明∠D=∠ABD,即可得到DF∥AC,根据平行线的性质即可证得.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D=∠ABD.∴DF∥AC.∴∠A=∠F.21.小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小明9点离开家,15点回家.根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需 3 小时?此时离家30 千米.(2)何时开始第一次休息?休息时间多长?(3)小强何时距家21km?(写出计算过程)【考点】E6:函数的图象.【分析】(1)根据折线统计图可知,小强到达离家最远的地方距离他家是30千米,到达最远的时间是12:00﹣9:00=3小时;(2)统计图中,折线持平的就是小强休息的时间,由图可见可用11:00﹣10:30进行计算即可得到小强第一次休息的时间;(3)根据图象列出直线的解析式,代入解答即可.【解答】解:(1)小强到达距离家最远的地方的时间是12:00﹣9:00=3小时,此时他离家有30千米;故答案为:3;30;(2)11:00﹣10:30=30(分钟),答:小强第一次休息了30分钟;(3)设直线CD的解析式为:y=kx+b,把(11,15)和(12,30)代入可得:,解得:,所以解析式为:y=15x﹣150,把y=21代入解析式得:x=11,设直线EF的解析式为:y=ax+c,把(13,30)和(15,0)代入可得:,解得:,所以解析式为:y=﹣15x+225,把y=21代入解析式得:x=13,所以当11时或13时,小强距家21km.22.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是∠ABE+∠CDE=∠BED .(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系2∠BFD+∠BED=360°.【考点】JA:平行线的性质.【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1,∠CDE=∠2,据此推得∠ABE+∠CDE=∠BED即可.(2)首先根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CDF=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CDF,∠BED=∠ABE+∠CDE,据此推得∠BFD=∠BED.(3)首先过点E作EG∥CD,再根据AB∥CD,EG∥CD,推得AB∥CD∥EG,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,据此推得∠ABE+∠CDE+∠BED=360°;然后根据∠BFD=∠ABF+∠CDF,以及BF,DF分别平分∠ABE,∠CDE,推得2∠BFD+∠BED=360°即可.【解答】解:(1)∠ABE+∠CDE=∠BED.理由:如图1,作EF∥AB,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1,∠CDE=∠2,∴∠ABE+∠CDE=∠1+∠2=∠BED,即∠ABE+∠CDE=∠BED.故答案为:∠ABE+∠CDE=∠BED.(2)∠BFD=∠BED.理由:如图2,∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE),由(1),可得∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)∠BED=∠ABE+∠CDE,∴∠BFD=∠BED.(3)2∠BFD+∠BED=360°.理由:如图3,过点E作EG∥CD,,∵AB∥CD,EG∥CD,∴AB∥CD∥EG,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠CDE+∠BED=360°,由(1)知,∠BFD=∠ABF+∠CDF,又∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=(∠ABE+∠CDE),∴2∠BFD+∠BED=360°.故答案为:2∠BFD+∠BED=360°.。

2020-2021学年咸丰县新人教版七年级下月考数学试卷(4月)(A卷全套)

2020-2021学年咸丰县新人教版七年级下月考数学试卷(4月)(A卷全套)

辽宁省营口市大石桥市水源二中2021~2021学年度七年级下学期月考数学试卷(4月份)一、精心选一选(本大题共有8个小题,每小题3分,共24分.每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格内).1.化简的结果是()A.±4 B.4 C. 2 D.±22.下列语句中正确的是()A.﹣9的平方根是﹣3 B.9的平方根是3C.9的算术平方根是±3 D.9的算术平方根是33.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.4.如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为()A.36° B.54° C.64° D.72°5.如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD6.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°7.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与28.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.二、填空题(每题3分,共24分)9.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=2021则∠COE等于度.10.的算术平方根是7;的立方根是;的平方根是.11.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是.12.如图,点D在AC上,点E在AB上,且BD⊥CE,垂足为点M.下列说法:①BM的长是点B 到CE的距离;②CE的长是点C到AB的距离;③BD的长是点B到AC的距离;④CM的长是点C到BD的距离.其中正确的是(填序号).13.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是(不允许添加任何辅助线).14.比较大小:,,.15.的整数部分;小数部分.16.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.三、解答题17.仔细算一算,要细心哦:(1)(3)(4)(5)(6)(7)﹣4×(8).18.你能求出下列各式中的x吗?(1)x2﹣49=0(3)8x3+125=0(4)(4x﹣1)3=343.19.在四边形ABCD中,已知AB∥CD,∠B=60°,(1)求∠C的度数;试问能否求得∠A的度数(只答“能”或“不能”)(3)若要证明AD∥BC,还需要补充一个条件,请你补充一个条件并加以证明.2021下两题任选其一作答:(1)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:①画出平移后的△A′B′C′.②直接写出点A′、B′、C′的坐标.一个正数x的平方根是2a﹣4与6﹣a,求a和x的值.21.如图所示,某地一条小河的两岸都是直的,为测定河两岸是否平行,小明和小亮分别在河的两岸拉紧了一根细绳,并分别测出∠1=70°,∠2=70°,测出这个结果后,他们的同学小华说河岸两边是平行的,这个说法对不对?为什么?22.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.23.已知:表示a、b两个实数的点在数轴上的位置如图所示,请你化简.24.依照下图,在下列给出的解答中,在括号内填空或填写适当的理由:(1)∵∠()=∠()(已知),∴AD∥BC ();∵∠()=∠() (已知),∴AB∥CD ();(3)∵EF∥AD(已知)又∵AD∥BC(已证)∴∥(平行于同一条直线的两条直线平行)25.附加题:(1)如图①,EF∥BC,试说明∠B+∠C+∠BAC=180°.如图②,AB∥CD,试说明∠A+∠B+∠ACB=180°.(3)由前两个问题,你总结出什么结论?。

2020-2021学年度七年级下学期人教版数学第一次月考试卷(附答案)

2020-2021学年度七年级下学期人教版数学第一次月考试卷(附答案)

七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第五章《相交线与平行线》~第六章《实数》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A. 65°B. 60°C. 55°D. 75°2.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°3.下列语句正确的是()A. 4是16的算术平方根,即±√16=4B. −3是27的立方根C. √64的立方根是2D. 1的立方根是−14.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b5.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A6. 如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF//BC 时,∠EGB 的度数是( )A. 135°B. 120°C. 115°D. 105°7. 若a 2=4,b 2=9,且ab <0,则a −b 的值为( )A. −2B. ±5C. 5D. 58. 下列结论正确的是( )A. 数轴上任意一点都表示唯一的有理数B. 数轴上任意一点都表示唯一的无理数C. 两个无理数之和一定是无理数D. 数轴上任意两点之间还有无数个点9. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个10. 如图,AF//CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 若√3a −23与√2−b 3为相反数,且b ≠0,则ab 的值为________. 12. 已知y =√x −3+√3−x +1,则x +y 的算术平方根是________. 13. 如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.15.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.16.一个正数x的两个不同的平方根是2a−3和5−a,则x的值是________.17.如图所示,AB//CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.已知直线a//b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是______.19.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.20.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.三、解答题(本大题共6小题,共80.0分)21.(12分)计算:3;(1)(−1)3+|1−√2|+√8(2)(−3)2+2×(√2−1)−|−2√2|.22.(12分)阅读下列材料∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).规定实数m的整数部分记为[m],小数部分记为{m).如:[√7]=2,{7}=√7−2.解答以下问题:(1)[√10]=________,{√5}=________;(2)求{√5}+{5−√5}的值.23.(12分)工人师傅准备从一块面积为16平方分米的正方形工料上裁剪出一块面积为12平方分米的长方形的工件。

2020-2021学年七年级下学期数学第一次月考试卷(含答案)

2020-2021学年七年级下学期数学第一次月考试卷(含答案)

七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分第Ⅰ卷一、选择题(本大题共10小题,共30.0分)1.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A. 互为相反数B. 互为倒数C. 相等D. a比b大2.下图中,∠1和∠2是同位角的是().A. B. C. D.3.计算[(−a2)3−3a2·(−a2)]÷(−a)2的结果是A. −a3+3a2B. a3−3a2C. −a4+3a2D. −a4+a24.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b5.点P为直线l外一点,点A,B,C为直线l上的三点,PA=2cm,PB=3cm,PC=4cm,那么点P到直线l的距离是()A. 2cmB. 小于2cmC. 不大于2cmD. 大于2cm,且小于5cm6.如图,直线AB与直线CD相交于点O,点E是∠AOD内一点,已知OE⊥AB,∠COE=135∘,则∠BOD的度数是()A. 35∘B. 45∘C. 50∘D. 55∘ 7. 当a =34时,代数式(28a 3−28a 2+7a)÷7a 的值是( )A. 6.25B. 0.25C. −2.25D. −48. 如图,E 是直线CA 上一点,∠FEA =40∘,射线EB 平分∠CEF ,GE ⊥EF ,则∠GEB =( )A. 10∘B. 20∘C. 30∘D. 40∘ 9. 若a =(−32)−2,b =(−1)−1,c =(−π2)0,则a ,b ,c 的大小关系是( )A. a >b >cB. a >c >bC. c >a >bD. c >b >a10. 下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A. 2个B. 3个C. 4个D. 5个第Ⅱ卷二、填空题(本大题共5小题,共20.0分)11. 小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y −2xy 2,商式必须是2xy ,则小亮报一个除式是 .12. 如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是 cm .13.设M=x+y,N=x−y,P=xy.若M=1,N=2,则P=.14.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM的度数是______.15.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE= ______ .三、解答题(本大题共10小题,共100.0分)16.(8分)计算.(1)(a7÷a2·a3)3(2)(2)(−x2)(−x)3−(x3)3÷(−x2)217.(10分)(1)已知2x=3,求2x+3的值;(2)若42a+1=64,求a的值.18.(10分)(1)如图1所示,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是;(2)由(1)可以得到一个公式:;(3)利用你得到的公式计算:20192−2020×2018.19.(10分)如图,已知∠AOB=155∘,∠AOC=∠BOD=90∘.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.∠BOC,OC是∠AOD的平20.(10分)如图所示,点O是直线AB上一点,∠AOC=13分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.21.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.22.(10分)如图,O为直线AB上一点,OC⊥OD.已知∠AOC的度数比∠BOD的度数的2倍多6°.(1)求∠BOD的度数.(2)若OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.23.(10分)如图,直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边分别位于OC的两侧.若OC刚好平分∠BOF,∠BOE=2∠COE,求∠BOD的度数.24.(12分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式______.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=______.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z=______.25.(12分)以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O处(注:∠DOE=90°).(1)如图①,若直角三角板DOE的一边OD放在射线OB上,且∠BOC=60°,求∠COE的度数;(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD的度数;(3)如图③,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.答案1.A2.D3.C4.D5.C6.B7.B8.B9.C10.Cx2−y11.1212.513.−3414.140°15.110°或70°16.解:(1)原式=a21÷a6·a9,=a24;(2)原式=(−x2)(−x3)−x9÷x4=x5−x5=0.17.解:(1)∵2x=3,∴2x+3=2x⋅23=3×8=24;(2)∵42a+1=43,∴2a+1=3,解得a=1.18.解:(1)a2−b2;(a+b)(a−b).(2)(a+b)(a−b)=a2−b2.(3)1.19.解:(1)因为∠AOC=∠BOD=90∘,所以∠COD+∠AOD=90∘,∠COD+∠BOC=90∘.所以与∠COD互余的角是∠AOD和∠BOC.(2)因为∠AOB=155∘,∠AOC=∠BOD=90∘,所以∠BOC=∠AOB−∠AOC=65∘,所以∠COD=∠BOD−∠BOC=25∘.(3)有,∠COD与∠AOB互补,∠AOC与∠BOD互补.20.解:(1)因为∠AOC=13∠BOC,所以∠BOC=3∠AOC.因为∠AOC+∠BOC=180∘,即∠AOC+3∠AOC=180∘,所以∠AOC=45∘.因为OC是∠AOD的平分线,所以∠COD=∠AOC=45∘.(2)OD⊥AB.理由:由(1)知,∠COD=∠AOC=45∘,所以∠AOD=2×45∘=90∘.所以OD⊥AB.21.解:绿化的面积为(3a+b)(2a+b)−(a+b)2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63.22.解:(1)设∠BOD=x,则∠AOC=2x+6°,∵OC⊥OD,∴∠COD=90°.∵∠AOC+∠COD+∠BOD=180°,∴2x+6°+90°+x=180°,解得x=28°,即:∠BOD=28°.(2)∵OE平分∠BOD,∴∠BOE=12∠BOD=14°,∵OF平分∠BOC,∴∠BOF=12∠BOC=12(90°+28°)=59°,∴∠EOF=∠BOF−∠BOE=59°−14°=45°.23.解:设∠COE=α,则∠BOE=2α,∠BOC=3α,∵∠AOE=90°,∴∠BOF=90°+2α,又∵OC平分∠BOF,∴∠BOC=1∠BOF=45°+α,2∴3α=45°+α,解得α=22.5°,∴∠BOC=67.5°,∴∠BOD=180°−∠BOC=112.5°.24.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)证明:(a+b+c)(a+b+c),=a2+ab+ac+ab+b2+bc+ac+bc+c2,=a2+b2+c2+2ab+2ac+2bc.(3)30(4)15625.解:(1)∵∠DOE=90°,∠BOC=60°,∴∠COE=∠DOE−∠BOC=30°.(2)设∠COD=x,则∠AOE=5x.∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,∴5x+90°+x+60°=180°,解得x=5°,即∠COD=5°.∴∠BOD=∠COD+∠BOC=5°+60°=65°.(3)∵OE平分∠AOC,∴∠AOE=∠COE.∵∠DOE=∠COE+∠COD=90°,∠AOE+∠DOE+∠BOD=180°,∴∠AOE+∠BOD=90°,又∠AOE=∠COE,∴∠COD=∠BOD,即OD所在射线是∠BOC的平分线.。

人教版2020-2021学年度下学期七年级数学期中测试题(含答案)

人教版2020-2021学年度下学期七年级数学期中测试题(含答案)

人教版2021年七年级(下)数学第一次月考测试题(含答案)一、选择题:(本大题共12个小题,每小题3分,共36分)1.如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于( ) A .120° B .110° C .100° D .80°(第1题图) (第2题图) (第3题图)2.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是( ) A .距点O 的4km 处 B .北偏东40°方向上的4km 处 C .在点O 北偏东50°方向上的4km 处 D .在点O 北偏东40°方向上的4km 处3.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,那么∠2的度数是( ) A .20°B .30°C .35°D .50°4.下列实数中,无理数有( )个7,0,722,3.1415926,π,0.1010010001…(每两个1之间0的个数依次加1) A .4 B .3 C .2 D .1 5.下列说法中正确的是( ) A .81的平方根是±9 B .﹣9没有立方根 C .36的平方根是6D .﹣5的立方根是356.如果P (a +b ,ab )在第二象限,那么点Q (a ,-b )在第( )象限. A .一 B .二 C .三 D .四7.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( )A .85°B .60°C .50°D .35°(第7题图)8.两条直线被第三条直线所截,内错角的角平分线( )A .无法确定B .平行C .相交成45°D .垂直9.点P 为直线l 外一点,点A 、B 、C 在直线l 上,若P A =8cm ,PB =9cm ,PC =6 cm ,则点P 到直线l 的距离( )A .8 cmB .9 cmC .小于6 cmD .不大于6 cm 10.已知8.622=74.3044,若x 2=0.743044,则x 的值( )A .86.2B .0.862C .±0.862D .±86.214.11.对于有序数对(a ,b )定义新运算”⊗”:(a ,b )⊗(c ,d )=(ac +bd ,ad ﹣bc ),那么(a ,b )⊗(0,1)等于( )A .(b ,a )B .(-b ,-a )C .(a ,-b )D .(-a ,b ) 12.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l .若知道l 的值,则不需测量就能知道周长的正方形的标号为( ) A .① B .② C .③ D .④(第12题图)二、填空题:本大题共6个小题,每小题3分,共18分. 13.若()0432=++-b a ,则a +b 的立方根是 .14.把命题“内错角相等”改写成“如果……那么……”的形式: .15.如图,在直角坐标系中,A (﹣1,2),B (3,﹣2),则△AOB 的面积为 .(第15题图) (第16题图) (第18题图)16.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =120°,则∠AED 的度数是 . 17.已知点P 的坐标是(a +2,3a -6),且点P 到两坐标轴的距离相等,则点P 的坐标是 . 18.如图,在坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2021个点的坐标为 .三、解答题:本大题共6个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.(8分)计算: (1)()33643216911+--+- (2)3227642-++-20.(7分)如图所示,三角形ABC (记作)ABC ∆在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是(2,1)A -,(3,2)B --,(1,2)C -,先将ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到111A B C . (1)在图中画出△111A B C ;(2)点1A ,1B ,1C 的坐标分别为 、 、 ;(3)若y 轴有一点P ,使PBC ∆与ABC ∆面积相等,求出P 点的坐标.21.(7分)在数轴上点A 表示a ,点B 表示b ,且a ,b 满足077=-+-b a . (1)a = ,b= . (2)若b <x <a ,则32++-x x 取最小整数值为 ;(3)x 表示a +b 的整数部分,y 表示a +b 的小数部分,求x-y 的相反数.22.(8分)如图,直线AB 、CD 相交于点O ,OE 是COB ∠的平分线,90EOF ∠=︒,70AOD ∠=︒. (1)求BOE ∠的度数;(2)OF 是AOC ∠的平分线吗?为什么?23.(8分)如图,直线AB 与CD 相交于O ,OE 是AOC ∠的平分线,OF CD ⊥,OG OE ⊥,52BOD ∠=︒. (1)求AOF ∠的度数;(2)求EOF ∠与BOG ∠是否相等?请说明理由.24.(8分)如图,已知射线//∠=∠,CB OA,100∠=∠=︒,E、F在CB上,且满足FOB AOBC OAB∠.OE平分COF(1)求EOB∠的度数(2)若在OC右侧左右平行移动AB,那么:OBC OFC∠∠的值是否随之发生变化?若变化,请找出变化规律;若不变,请求出这个比值.(3)在OC右侧左右平行移动AB的过程中,是否存在使OEC OBA∠=∠的情况?若存在,请直接写出OEC∠度数;若不存在,请说明理由.参考答案一、选择题(每题3分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBDBCADBAD13.-1; 14.如果两个角是内错角,那么这两个角相等; 15.2; 16.80; 17.(6,6)或(3,-3); 18.(45,4); 三、解答题(共46分) 19.(8分)(1)1.5 (2)1 20.(7分)解:(1)如图所示:(2)由图可得:1(0,4)A 、1(1,1)B -;1C (3,1), 故答案为:(0,4)、(1,1)-、(3,1);(3)设(0,)P y ,再根据三角形的面积公式得: 14||62PBC S h ∆=⨯⨯=,解得||3h =,求出y 的值为(0,1)或(0,5)-.21.(7分)解:(1)a ,b 满足077=-+-b a . 7a ∴=,7b =,(2)由77x <<可知,x 可取3,4,5,6 当x =6时,32++-x x 取最小整数值为5(3)77a b +=+;x 表示a b +的整数部分,y 表示a b +的小数部分,9x ∴=,779=72y =+-- 117x y ∴-=-∴x-y 的相反数711-22.(8分)解:(1)70COB AOD ∠=∠=︒, OE 是COB ∠的平分线,1352BOE COB ∴∠=∠=︒;(2)OF 是AOC ∠的平分线, 理由:90EOF ∠=︒,35COE ∠=︒, 903555COF ∴∠=︒-︒=︒, 180903555AOF ∠=︒-︒-︒=︒, COF AOF ∴∠=∠,即OF 是AOC ∠的平分线.23.(8分) 解:(1)OF CD ⊥,90COF ∴∠=︒,又AOC ∠与BOD ∠是对顶角,52AOC BOD ∴∠=∠=︒,905238AOF COF AOC ∴∠=∠-∠=︒-︒=︒;(2)相等, 理由:AOC ∠与BOD ∠是对顶角,52AOC BOD ∴∠=∠=︒, OE 是AOC ∠的平分线,1262AOE AOC ∴∠=∠=︒,又OG OE ⊥,90EOG ∴∠=︒,18064BOG AOE EOG ∴∠=︒-∠-∠=︒,而382664EOF AOF AOE ∠=∠+∠=︒+︒=︒,EOF BOG ∴∠=∠.24.(8分)解:(1)FOB AOB ∠=∠, OB ∴平分AOF ∠,又OE 平分COF ∠,11804022EOB EOF FOB COA ∴∠=∠+∠=∠=⨯︒=︒;故答案为:40︒;(2)不变因为FOB AOB ∠=∠所以12AOB FOA ∠=∠,因为//CB OA所以OBC AOB∠=∠,OFC FOA∠=∠所以12OBC OFC∠=∠,即1:2OBC OFC∠∠=;(3)存在,60 OEC∠=︒。

2020-2021七年级下第一次月考数学试卷含答案解析

2020-2021七年级下第一次月考数学试卷含答案解析

一、选择题下列计算正确的是()A.(2a)3=6a3B.a2a=a2C.a3+a3=a6D.(a3)2=a62.计算(a m)2×a n结果是()A.a2m B.a2(m+n)C.a2m+n D.3.下列多项式相乘,不能用平方差公式计算的是()A.(x﹣2y)(2y+x)B.(﹣2y﹣x)(x+2y)C.(x﹣2y)(﹣x﹣2y)D.(2y﹣x)(﹣x﹣2y)4.下列式子成立的是()A.(2a﹣1)2=4a2﹣1 B.(a+3b)2=a2+9b2 C.(a+b)(﹣a﹣b)=a2﹣b2D.(﹣a﹣b)2=a2+2ab+b25.计算(x3y)2÷(2xy)2的结果应该是()A.B.C.D.6.图中,∠1与∠2是对顶角的是()A.B.C.D.7.下列各式中,计算结果为81﹣x2的是()A.(x+9)(x﹣9)B.(x+9)(﹣x﹣9)C.(﹣x+9)(﹣x﹣9)D.(﹣x﹣9)(x﹣9)8.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6D.p=5,q=﹣69.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b810.计算(6×103)(8×105)的结果是()A.48×109B.4.8×109C.4.8×108D.48×1015 11.用小数表示3×10﹣2的结果为()A.﹣0.03 B.﹣0.003 C.0.03 D.0.003 12.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2 C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b2二、填空题13.计算:①a5a3a= ;②(a5)3÷a6= .14.用小数表示:2×10﹣3= .24×(﹣2)4×(﹣0.25)4= .15.计算:(﹣5a+4b)2= .(﹣2ab+3)2= .16.计算题:(2a+3b)(2a﹣3b)﹣(a﹣3b)2= .17.计算(﹣2)0+= ;(﹣2x2y)3= .18.计算:20082﹣2007×2009= .已知,则= .三.解答题(共7小题19-24每题6分共48分)19.利用整式的乘法公式计算:①1999×2001②992﹣1.20.化简(1)(a+b﹣c)(a+b+c)(2)(2a+3b)(2a﹣3b)﹣(a﹣3b)2.21.先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.22.计算:(2m+n﹣p)(2m﹣n+p)23.计算.24.若x﹣y=8,xy=10.求x2+y2的值.25.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).参考答案与试题解析一、选择题(2015春益阳校级期中)下列计算正确的是()A.(2a)3=6a3B.a2a=a2C.a3+a3=a6D.(a3)2=a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为(2a)3=8a3,故本选项错误;B、应为a2a=a3,故本选项错误;C、应为a3+a3=2a3,故本选项错误;D、(a3)2=a6,正确;应选D.【点评】本题考查同底数幂的乘法,幂的乘方,积的乘方,熟练掌握运算性质是解题的关键.2.计算(a m)2×a n结果是()A.a2m B.a2(m+n)C.a2m+n D.【考点】同底数幂的乘法;幂的乘方与积的乘方.【分析】首先算出(a m)2,然后根据同底数幂相乘进行判断.【解答】解:(a m)2×a n=a2m×a n=a2m+n.故选C.【点评】本题主要考查单项式的乘法,比较简单.3.下列多项式相乘,不能用平方差公式计算的是()A.(x﹣2y)(2y+x)B.(﹣2y﹣x)(x+2y)C.(x﹣2y)(﹣x﹣2y)D.(2y﹣x)(﹣x﹣2y)【考点】平方差公式.【专题】计算题.【分析】把A得到(x﹣2y)(x+2y),把C变形得到﹣(x ﹣2y)(x+2y),把D变形得到(x﹣2y)(x+2y),它们都可以用平方差公式进行计算;而把B变形得到﹣(x+2y)2,用完全平方公式计算.【解答】解:A、(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2,所以A选项不正确;B、(﹣2y﹣x)(x+2y)=﹣(x+2y)2,用完全平方公式计算,所以B选项正确;C、(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=﹣x2+4y2,所以C选项不正确;D、(2y﹣x)(﹣x﹣2y)=(x﹣2y)(x+2y)=x2﹣4y2,所以D选项不正确.故选B.【点评】本题考查了平方差公式:(a+b)(a﹣b)=a2﹣b2.也考查了完全平方公式.4.下列式子成立的是()A.(2a﹣1)2=4a2﹣1 B.(a+3b)2=a2+9b2 C.(a+b)(﹣a﹣b)=a2﹣b2D.(﹣a﹣b)2=a2+2ab+b2【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项展开后利用排除法求解.【解答】解:A、应为(2a﹣1)2=4a2﹣2a+1,故本选项错误;B、应为(a+3b)2=a2+6ab+9b2,故本选项错误;C、应为(a+b)(﹣a﹣b)=﹣a2﹣2ab﹣b2,故本选项错误;D、(﹣a﹣b)2=a2+2ab+b2,正确.故选D.【点评】本题考查了完全平方公式,熟记公式是解题的关键,漏掉乘积二倍项是同学们容易出错之处.5.计算(x3y)2÷(2xy)2的结果应该是()A.B.C.D.【考点】整式的除法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;单项式除单项式的法则进行运算.【解答】解:(x3y)2÷(2xy)2=x6y2÷4x2y2=x4.故选B.【点评】此题是考查单项式除法的运算,幂的乘方、积的乘方的性质,熟练掌握运算法则和性质是解题的关键.6.图中,∠1与∠2是对顶角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据对顶角是一个角的两边是另一个角的两边的反向延长线,可得答案.【解答】解:A、一个角的两边不是另一个角的两边的反向延长线,故A错误;B、一个角的两边不是另一个角的两边的反向延长线,故B 错误;C、一个角的两边是另一个角的两边的反向延长线,故C正确;D、一个角的两边不是另一个角的两边的反向延长线,故D 错误;故选:C.【点评】本题考查了对顶角,对顶角是一个角的两边是另一个角的两边的反向延长线.7.下列各式中,计算结果为81﹣x2的是()A.(x+9)(x﹣9)B.(x+9)(﹣x﹣9)C.(﹣x+9)(﹣x﹣9)D.(﹣x﹣9)(x﹣9)【考点】平方差公式.【专题】计算题.【分析】本题是平方差公式的应用,选项D中,﹣9是相同的项,互为相反项是x与﹣x,据此即可解答.【解答】解:81﹣x2=(﹣x﹣9)(x﹣9)或者(9+x)(9﹣x).故选D.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6D.p=5,q=﹣6【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+px+q,∴p=1,q=﹣6,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.9.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【考点】平方差公式;完全平方公式.【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.10.计算(6×103)(8×105)的结果是()A.48×109B.4.8×109C.4.8×108D.48×1015【考点】整式的混合运算.【分析】本题需先根据同底数幂的乘法法则进行计算,即可求出答案.【解答】解:(6×103)(8×105),=48×108,=4.8×109;故选B【点评】本题主要考查了整式的混合运算,在解题时要注意运算顺序以及简便方法的运用是本题的关键.11.用小数表示3×10﹣2的结果为()A.﹣0.03 B.﹣0.003 C.0.03 D.0.003 【考点】科学记数法—原数.【分析】一个用科学记数法表示的数还原成原数时,要先判断指数n的正负.n为正时,小数点向右移动n个数位;n 为负时,小数点向左移动|n|个数位.【解答】解:用小数表示3×10﹣2的结果为0.03.故选C.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.12.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2 C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b2【考点】完全平方公式.【分析】根据整式乘法中完全平方公式(a±b)2=a2±2ab+b2,即可作出选择.【解答】解:A.(a﹣b)2=a2﹣2ab+b2,故A选项正确;B.(a﹣b)2=a2﹣2ab+b2,故B选项错误;C.(a﹣b)2=a2﹣2ab+b2,故C选项错误;D.(a﹣b)2=a2﹣2ab+b2,故D选项错误;故选:A.【点评】本题考查了完全平方公式,关键是要了解(x﹣y)2与(x+y)2展开式中区别就在于2xy项的符号上,通过加上或者减去4xy可相互变形得到.二、填空题13.计算:①a5a3a= a9;②(a5)3÷a6= a9.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】①根据同底数幂的乘法,即可解答.②根据同底数幂的除法,幂的乘方,即可解答.【解答】解:①a5a3a=a5+3+1=a9;②(a5)3÷a6=a15÷a6=a9,故答案为:a9,a9.【点评】本题考查了同底数幂的乘法、除法,幂的乘方,解决本题的关键是熟记同底数幂的乘法、除法,幂的乘方.14.用小数表示:2×10﹣3= 0.002 .24×(﹣2)4×(﹣0.25)4= 1 .【考点】幂的乘方与积的乘方;科学记数法—原数.【分析】2×10﹣3就是把2的小数点向左移动3位即可;24×(﹣2)4×(﹣0.25)4逆用积的乘方公式即可求解.【解答】解:2×10﹣3=0.002;24×(﹣2)4×(﹣0.25)4=(2×2×0.25)4=1.故答案是:0.002,1.【点评】本题考查了幂的性质和积的乘方公式,正确理解积的乘方的性质是关键.15.计算:(﹣5a+4b)2= 25a2﹣40ab+16b2.(﹣2ab+3)2= 4a2b2﹣12ab+9 .【考点】完全平方公式.【分析】利用完全平方公式完全平方公式:(a±b)2=a2±2ab+b2,即可直接求解.【解答】解:(﹣5a+4b)2=(﹣5a)2﹣2×5a4b+(4b)2=25a2﹣40ab+16b2;(﹣2ab+3)=(﹣2ab)2﹣12ab+9=4a2b2﹣12ab+9.故答案是:25a2﹣40ab+16b2,4a2b2﹣12ab+9.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.16.计算题:(2a+3b)(2a﹣3b)﹣(a﹣3b)2= 3a2+6ab ﹣18b2.【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=4a2﹣9b2﹣a2+6ab﹣9b2=3a2+6ab﹣18b2.故答案为:3a2+6ab﹣18b2.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.计算(﹣2)0+= 10 ;(﹣2x2y)3= ﹣8x6y3.【考点】负整数指数幂;整式的混合运算;零指数幂.【分析】根据非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,可得答案;根据积的乘方等于乘方的积,可得答案.【解答】解:原式=1+9=10;原式=﹣8x6y3;故答案为:10,﹣8x6y3.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.18.计算:20082﹣2007×2009= 1 .已知,则= 7 .【考点】平方差公式;完全平方公式.【分析】先变形,再根据平方差公式进行计算,即可得出答案;先根据完全平方公式进行变形,再代入求出即可.【解答】解:20082﹣2007×2009=20082﹣(2008﹣1)×(2008+1)=20082﹣20082+1=1;∵a+=3,∴a2+=(a+)2=2a=32﹣2=7,故答案为:1,7.【点评】本题考查了完全平方公式和平方差公式的应用,能灵活运用公式进行变形是解此题的关键.三.解答题(共7小题19-24每题6分共48分)19.利用整式的乘法公式计算:①1999×2001②992﹣1.【考点】平方差公式.【专题】计算题;整式.【分析】两式变形后,利用平方差公式计算即可得到结果.【解答】解:①原式=(2000﹣1)×(2000+1)=20002﹣1=4000000﹣1=3999999;②原式=(99+1)×(99﹣1)=100×98=9800.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.20.化简(1)(a+b﹣c)(a+b+c)(2)(2a+3b)(2a﹣3b)﹣(a﹣3b)2.【考点】完全平方公式;平方差公式.【分析】(1)首先化成=【(a+b)﹣c】【(a+b)+c】的形式利用平方差公式计算,然后利用完全平方公式求解;(2)首先利用平方差公式和完全平方公式计算,然后合并同类项求解.【解答】解:(1)原式=【(a+b)﹣c】【(a+b)+c】=(a+b)2﹣c2=a2+b2+2ab﹣c2;(2)原式=4a2﹣9b2﹣(a2﹣6ab+9b2)=4a2﹣9b2﹣a2+6ab ﹣9b2=3a2﹣18b2+6ab.【点评】本题考查了完全平方公式和平方差公式,理解公式的结构是本题的关键.21.先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.【考点】整式的混合运算—化简求值.【分析】首先利用完全平方公式和平方差公式对括号内的式子进行化简,然后进行整式的除法计算即可化简,然后代入求值.【解答】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,则当x=3,y=1时,原式=3﹣1=2.【点评】本题主要考查平方差公式的利用,熟记公式并灵活运用是解题的关键.22.计算:(2m+n﹣p)(2m﹣n+p)【考点】平方差公式;完全平方公式.【分析】先把原式变形为[2m+(n﹣p)[2m﹣(n+p)],再根据平方差公式展开得到(2m)2﹣(n﹣p)2,然后利用完全平方公式展开得到4m2﹣(n2﹣2np+p2),接着去括号即可.【解答】解:原式=[2m+(n﹣p)][2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣(n2﹣2np+p2)=4m2﹣n2+2np﹣p2.【点评】本题考查了平方差公式:(a+b)(a﹣b)=a2﹣b2.也考查了完全平方公式.23.计算.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式先计算零指数幂、负整数指数幂运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣﹣××4×1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.若x﹣y=8,xy=10.求x2+y2的值.【考点】完全平方公式.【专题】计算题.【分析】将x﹣y=8两边平方后,利用完全平方公式展开,把xy的值代入计算即可求出所求式子的值.【解答】解:将x﹣y=8两边平方得:(x﹣y)2=x2﹣2xy+y2=64,将xy=10代入得:x2﹣20+y2=64,则x2+y2=84.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.25.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a﹣b ,长是a+b ,面积是(a+b)(a ﹣b)(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).【考点】平方差公式的几何背景.【专题】计算题.【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.2)×(10﹣0.2),=102﹣0.22,=100﹣0.04,=99.96;②解:原式=[2m+(n﹣p)][2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2.【点评】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.。

2020-2021学年七年级下学期第一次月考模拟测试数学试卷(答案带解析)

2020-2021学年七年级下学期第一次月考模拟测试数学试卷(答案带解析)

七年级下册第一次月考数学测试卷(答案带解析)一、选择题(本大题共10小题,共30.0分)1.下列计算错误的是()A. 2a3⋅3a=6a4B. (−2y3)2=4y6C. 3a2+a=3a3D. a5÷a3=a2(a≠0)2.如图,下列判断中正确的是()A. 如果∠3+∠2=180°,那么AB//CDB. 如果∠1+∠3=180°,那么AB//CDC. 如果∠2=∠4,那么AB//CDD. 如果∠1=∠5,那么AB//CD3.在人体血液中,红细胞的直径为0.00077cm,数0.00077用科学记数法表示为()A. 7.7×10−4B. 0.77×10−5C. 7.7×10−5D. 77×10−34.如图,点P是直线a外的一点,点A,B,C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A. 线段PB的长是点P到直线a的距离B. PA、PB、PC三条线段中,PB最短C. 线段AC的长是点A到直线PC的距离D. 线段PC的长是点C到直线PA的距离5.如图,已知a//b,将直角三角形如图放置,若∠2=50°,则∠1为()A. 120°B. 130°C. 140°D. 150°6.下列运算正确的是()A. (3a2)3=27a6 B. (a3)2=a5 C. a3⋅a4=a12 D. a6÷a3=a27.长方形的面积为4a2−6ab+2a,若它的一边长为2a,则它的周长为()A. 4a−3bB. 8a−6bC. 4a−3b+1D. 8a−6b+28.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°9.已知a1,a2,…,a2020都是正数,如果M=(a1+a2+⋯+a2019)(a2+a3+⋯+a2020),N=(a1+a2+⋯+a2020)(a2+a3+⋯+a2019),那么M,N的大小关系是()A. M>NB. M=NC. M<ND. 不确定10.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,共15.0分)11.若∠α=35°,则∠α的补角为______度.12.如果多项式1+9x2加上一个单项式后,能成为一个整式的完全平方式,那么加上的单项式可以是______(填上两个你认为正确的答案即可).13.如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=78°,则∠AOF等于____.14.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.x/ℎ 0 12345y/m33.33.63.94.24.5根据表格中水位的变化规律,则y 与x 的函数表达式为______.15. 图(1)是一个长为2a ,宽为2b(a >b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.三、解答题(本大题共8小题,共75.0分) 16. (1)(−1)3+(π−23)0−(−12)−2;(2)(9x 3y 2−6x 2y +3xy 2)÷(−3xy); (3)(a +b)(a −b)+(a +b)2−2(a −b)2;(4)先化简再求值:(m +1)2−5(m +1)(m −1)+3(m −1)2,其中m =−12. 17. 计算:(1)−12+(π−3.14)0−(−13)−2+(−2)3(2)(2a +3b)(2a −3b)−(a +3b)2 (3)(52x 3y 3+4x 2y 2−3xy)÷(−3xy)(4)(a +b −c)(a +b +c)18.已知,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合).∠ABC=n°,∠ADC=80°.(1)如图,若点B在点A的左侧,求∠BED的度数(用含n的代数式表示);(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.19.一辆汽车油箱内有油a升,从某地出发,每行驶1小时耗油6升,若设剩余油量为Q升,行驶时间为t/小时,根据以上信息回答下列问题:(1)开始时,汽车的油量a=______升;(2)在______小时汽车加油,加了______升,写出加油前Q与t之间的关系式______;(3)这辆汽车行驶8小时,剩余油量多少升?20.在计算(x+a)(x+b)时,甲把错b看成了6,得到结果是:x2+8x+12;乙错把a看成了−a,得到结果:x2+x−6.(1)求出a,b的值;(2)在(1)的条件下,计算(x+a)(x+b)的结果.21.司机小刘开车从A地出发去360千米远的B地游玩,其行驶路程s与时间t之间的关系如图所示,当汽车行驶若干小时到达C地时,汽车发生故障,需停车检修,修好后又继续行驶,根据题意回答下列问题.(1)上述问题中反映的是两个变量______之间的关系,其中自变量是______,因变量是______;(2)汽车从A地到C地平均每小时行驶______千米;(3)汽车停车检修了______小时,修车的地方离B地的距离是______千米;(4)车修好后每小时走多少千米?22.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______(请选择正确的一个)A.a2−2ab+b2=(a−b)2B.a2−b2=(a+b)(a−b)C.a2+ab=a(a+b)(2)若x2−9y2=12,x+3y=4,求x−3y的值;(3)计算:(1−122)(1−132)(1−142)…(1−120192)(1−120202)23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF//AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE=____度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE=____________;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.答案和解析1.【答案】C【解析】解:A、2a3⋅3a=6a4,故原题计算正确;B、(−2y3)2=4y6,故原题计算正确;C、3a2和a不是同类项,不能合并,故原题计算错误;D、a5÷a3=a2(a≠0),故原题计算正确;故选:C.根据单项式乘法、积的乘方和幂的乘方、同底数幂的除法、合并同类项的计算法则进行分析即可.此题主要考查了单项式乘以单项式,以及积的乘方和幂的乘方、同底数幂的除法,关键是熟练掌握各计算法则.2.【答案】D【解析】【分析】直接利用平行线的判定方法分别判断得出答案.此题主要考查了平行线的判定,正确掌握相关判定方法是解题关键.【解答】解:A、如果∠3+∠2=180°,邻补角互补,无法得出AB//CD,故此选项错误;B、如果∠1+∠3=180°,同位角互补,无法得出AB//CD,故此选项错误;C、如果∠2=∠4,对顶角相等,无法得出AB//CD,故此选项错误;D、如果∠1=∠5,内错角相等,两直线平行,那么AB//CD,正确.故选:D.3.【答案】A【解析】解:0.00077=7.7×10−4.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】C【解析】【分析】本题主要考查了点到直线的距离的定义,及垂线段最短的性质.利用点到直线的距离的定义、垂线段最短分析.【解答】解:A.根据点到直线的距离的定义:即点到这一直线的垂线段的长度.故选项A说法正确;B.根据垂线段最短可知选项B说法正确;C.线段AP的长是点A到直线PC的距离,故选项C说法错误,合题意;D.根据点到直线的距离即点到这一直线的垂线段的长度.故选项D说法正确.故选C.5.【答案】C【解析】解:如图所示,过A作AB//a,∵a//b,∴a//b//AB,∴∠2=∠3=50°,∠4=∠5,又∵∠CAD=90°,∴∠4=40°,∴∠5=40°,∴∠1=180°−40°=140°,故选:C.过A作AB//a,即可得到a//b//AB,依据平行线的性质,即可得到∠5的度数,进而得出1的度数.本题考查了平行线的性质,平行公理,熟记性质并作出辅助线是解题的关键.6.【答案】A【解析】解:∵(3a2)3=27a6,∴选项A符合题意;∵(a3)2=a6,∴选项B不符合题意;∵a3⋅a4=a7,∴选项C不符合题意;∵a6÷a3=a3,∴选项D不符合题意.故选:A.根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.此题主要考查了同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.7.【答案】D【解析】解:另一边长是:(4a2−6ab+2a)÷2a=2a−3b+1,则周长是:2[(2a−3b+1)+2a]=8a−6b+2.故选:D.首先利用面积除以一边长即可求得另一边长,则周长即可求解.本题考查了整式的除法,以及整式的加减运算,正确求得另一边长是关键.8.【答案】B【解析】【分析】本题考查的是平行线的性质,三角形的外角性质;熟练掌握平行线的性质,由三角形的外角性质求出∠CBE的度数是关键.先由三角形的外角性质求出∠CBE的度数,再根据平行线的性质得出∠E=∠CBE即可.【解答】解:∵∠A=35°,∠C=24°,∴∠CBE=∠A+∠C=59°,∵BC//DE,∴∠E=∠CBE=59°;故选B.9.【答案】A【解析】解:设S=a1+a2+⋯+a2019,则M=(a1+S)(S+a2020)=a1S+a1a2020+S2+a2020SN=(a1+S+a2020)S=a1S+S2+a2020S∴M−N=a1a2020>0(a1,a2,…,a2020都是正数)∴M>N故选:A.设S=a1+a2+⋯+a2019,用S分别表示出M,N,再利用作差法比较大小即可.本题主要考查了整式的混合运算,熟练掌握运算法则是解题的关键.另外,像本题中将一个整式设为一个字母这种方法在很多题型中也很常见,也需重点掌握.10.【答案】C【解析】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3−1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3−1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=313(小时),1+313=413<5,∴乙先到达B地,故④正确;正确的有3个.故选:C.观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.11.【答案】145【解析】解:180°−35°=145°,则∠α的补角为145°,故答案为:145.根据两个角的和等于180°,则这两个角互补计算即可.本题考查的是余角和补角,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.12.【答案】6x或−6x或814x4或−1或−9x2.【解析】解:①当9x2是平方项时,1±6x+9x2=(1±3x)2,∴可添加的项是6x或−6x,②当9x2是乘积二倍项时,1+9x2+814x4=(1+92x2)2,∴可添加的项814x4.③添加−1或−9x2.故答案为:6x或−6x或814x4或−1或−9x2.分9x2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.本题考查了完全平方式,熟记完全平方公式的结构特征是解题的关键,注意要分情况讨论.13.【答案】51°【解析】【分析】本题利用垂直的定义,对顶角和角平分线的定义计算,要注意领会由垂直得直角这一要点.由已知条件和观察图形,利用对顶角相等、角平分线的定义计算和垂直的定义,再结合平角为180度,就可求出角的度数.【解答】解:∵∠BOC=∠AOD=78°,又∵OE平分∠BOC,∴∠BOE=12∠BOC=39°.∵OF ⊥OE ,∴∠EOF =90°.∴∠AOF =180°−∠EOF −∠BOE =51°.故答案为51°.14.【答案】y =0.3x +3【解析】解:设y 与x 的函数表达式为y =kx +b ,由记录表得:{b =3k +b =3.3, 解得:{k =0.3b =3. 故y 与x 的函数表达式为y =0.3x +3.故答案为:y =0.3x +3.根据记录表由待定系数法就可以求出y 与x 的函数表达式.考查了函数关系式,在解答时求出函数的解析式是关键.15.【答案】(a −b)2【解析】解:∵图(1)是一个长为2a ,宽为2b(a >b)的长方形,∵由题意可得,正方形的边长为(a +b),∴正方形的面积为(a +b)2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b)2−4ab =(a −b)2.故答案为(a −b)2.先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积−矩形的面积即可得出答案.此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键. 16.【答案】解:(1)(−1)3+(π−23)0−(−12)−2=−1+1−4=−4;(2)(9x 3y 2−6x 2y +3xy 2)÷(−3xy)=−3x 2y +2x −y ;(3)(a +b)(a −b)+(a +b)2−2(a −b)2=a 2−b 2+a 2+2ab +b 2−2a 2−2b 2+4ab=−2b 2+6ab ;(4)(m +1)2−5(m +1)(m −1)+3(m −1)2=m 2+2m +1−5m 2+5+3m 2−6m +3=−m 2−4m +9,当m =−12时,原式=−14+2+9=1034.【解析】(1)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案;(2)直接利用整式的除法运算法则计算得出答案;(3)直接利用乘法公式化简,再合并同类项得出答案;(4)直接利用乘法公式化简,再合并同类项,把已知代入即可.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.17.【答案】解:(1)−12+(π−3.14)0−(−13)−2+(−2)3=−1+1−9−8=−17;(2)(2a +3b)(2a −3b)−(a +3b)2=4a 2−9b 2−(a 2+6ab +9b 2)=3a 2−6ab ;(3)(52x 3y 3+4x 2y 2−3xy)÷(−3xy) =−56x 2y 2−43xy +1;(4)(a +b −c)(a +b +c)=(a +b)2−c 2=a 2+2ab +b 2−c 2.【解析】(1)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案;(2)利用乘法公式进而计算得出答案;(3)直接利用整式的除法运算法则计算得出答案;(4)利用乘法公式进而计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18.【答案】解:(1)过点E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=40°,∴∠BED=∠BEF+∠DEF=12n°+40°;(2)∠BED的度数改变,过点E作EF//AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=40°,∵AB//CD,∴AB//CD//EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°−12n°+40°=220°−12n°.【解析】本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.(1)过点E作EF//AB,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=40°,代入∠BED=∠BEF+∠DEF求出即可;(2)过点E作EF//AB,根据角平分线定义得出∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=40°,根据平行线性质得出即可.19.【答案】42 5 24 Q=42−6t(0≤t≤5)【解析】解:(1)开始时,汽车的油量a=42升;故答案为:42.(2)在5小时汽车加油,加了:36−12=24(升),机动车每小时的耗油量为(42−12)÷5=6(升),∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42−6t(0≤t≤5).故答案为:5;24;Q=42−6t(0≤t≤5).(3)36−6×(8−5)=18(升),答:这辆汽车行驶8小时,剩余油量18升.(1)观察函数图象,即可得出结论;(2)察函数图象即可得加油时的时间和加油数量,出再根据加油前油箱剩余油量=42−每小时耗油量×行驶时间,即可得出结论;(3)根据题意列式计算即可解答.本题考查了一次函数的应用,解题的关键是:(1)观察函数图象找出结论;(2)根据数量关系,列出函数关系式.20.【答案】解:(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+8x+12,(x−a)(x+b)=x2+(−a+b)−ab=x2+x−6,所以6+a=8,−a+b=1,解得:a=2,b=3;(2)当a=2,b=3时,(x+a)(x+b)=(x+2)(x+3)=x2+5x+6.【解析】(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+8x+12,(x−a)(x+b)=x2+(−a+b)−ab=x2+x−6,得出6+a=8,−a+b=1,求出a、b 即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.21.【答案】s与t t s60 1 240【解析】解:(1)上述问题中反映的是两个变量驶路程s与时间t之间的关系,其中自变量是t,因变量是s.故答案为:s与t;t;s;(2)汽车从A地到C地平均每小时行驶:360÷6=60(千米),故答案为:60;(3)汽车停车检修了1小时,修车的地方离B地的距离是:360−120=240(千米).故答案为:1;240;(4)240÷(6−3)=80(千米/小时).答:车修好后每小时走80千米.(1)根据函数的图象可以知道横轴表示时间,纵轴表示路程,据此可以得到答案;(2)根据函数的图象可以知道汽车行驶的时间和路程,用路程除以时间即可得到速度;(3)根据图象解答即可;(4)观察图象可以得到汽车在3−4小时之间路程没有增加,说明此时在检修,检修后两小时走了150千米据此可以求得速度.此题主要考查了看函数图象,解此类问题时,首先要看清横纵坐标所表示的意义.22.【答案】解:(1)B(2)∵x2−9y2=(x+3y)(x−3y)=12,且x+3y=4∴x−3y=3(3)(1−122)(1−132)(1−142) (1)120192)(1−120202)=(1+12)(1−12)(1+13)(1−13) (1)12020)(1−12020)=32×12×43×23×54×34×…×20212020×20192020=12×20212020=2021 4040【解析】【分析】本题主要考查平方差公式的几何背景,熟练掌握平方差公式是解题的关键.(1)结合图1和图2阴影部分面积相等建立等式即可.(2)利用平方差公式计算即可.(3)利用平方差公式展开计算化简,最后求值.【解答】解:(1)∵边长为a的正方形面积是a2,边长为b的正方形面积是b2,剩余部分面积为a2−b2;图(2)长方形面积为(a+b)(a−b);∴验证的等式是a2−b2=(a+b)(a−b)故答案为:B.(2)见答案;(3)见答案.23.【答案】(1)20;(2)12y−12x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°−x−y,∵AD平分∠BAC,∴∠DAC=12∠BAC=90°−12x−12y,∵CF//AD,∴∠ACF=∠DAC=90°−12x−12y,∴∠BCF=y+90°−12x−12y=90°−12x+12y,∴∠ECF=180°−∠BCF=90°+12x−12y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°−∠ECF=12y−12x.【解析】【分析】此题考查三角形的内角和定理,角平分线的性质,平行线的性质以及垂直的意义等知识,结合图形,灵活选择适当的方法解决问题.(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE−∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°−∠ECF即可解决问题.【解答】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°−∠B−∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=60°,∴∠DAE=∠BAE−∠BAD=60°−40°=20°,∵CF//AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°−∠B,∠BAD=12∠BAC=12(180°−∠B−∠BCA),∴∠CFE=∠DAE=∠BAE−∠BAD=90°−∠B−12(180°−∠B−∠BCA)=12(∠BCA−∠B)=12y−12x.故答案为:12y−12x;(3)见答案.第21页,共21页。

2020-2021学年新人教版七年级下第一次月考数学试题

2020-2021学年新人教版七年级下第一次月考数学试题

一、选择题(每题3分,共30分)每题只有一个正确答案,请将正确答案填在括号内.1.如图所示,∠1和∠2是对顶角的是( )A B C D121212122.如图,由AB∥CD,可以得到( )A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43、点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A .(3,2) B.(3,2--) C.(2,3-) D.(2,3-)4、下图是北京奥运会福娃图,通过平移可将福娃“欢欢”移动到图( )5、线段CD是由线段AB平移得到的。

点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为( )A.(2,9) B.(5,3) C.(1,2) D.(– 9,– 4)6、如图3,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A.(3,2) B.(3,1)C.(2,2) D.(-2,2)7. 如图4,直线AB、CD相交于点O,OE⊥AB于O,若∠COE=55°,则∠BOD的度数为( )A. 40°B. 45°C. 30°D. 35°8、如图6,AB∥CD, ED平分∠BEF.图4OD CBAE图3AB CD1234(2题)若∠1=72°,则∠2的度数为( )A .36°B .54°C .45°D .68°9、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐 弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 10、如果点P(5,y)在第四象限,则y 的取值范围是( )A .y <0B .y >0C .y ≤0D .y ≥0二、填空题(每题3分,共24分)请把下列各题的正确答案填写在横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年湖北省恩施州咸丰县七年级(下)第一次月考数学试卷
一、选择题
1.如图,∠1和∠2是对顶角的图形有( )个.
A.1 B.2 C.3 D.4
2.∠1与∠2互为邻补角,则下列说法不一定正确的是( )
A.∠1>∠2
B.∠1+∠2=180°
C.∠1与∠2有一条公共边
D.∠1与∠2有一条边互为反向延长线
3.若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直 B.平行 C.重合 D.相交
4.如图所示,AB∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个B.4个C.3个D.2个
5.如图所示,已知AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于( )
A.45° B.30° C.50° D.36°
6.如图所示,a∥b,∠2是∠1的3倍,则∠2等于( )
A.45° B.90° C.135°D.150°
7.点P为直线l外一点,点A、B、C为直线上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离为( )
A.2cm B.3cm C.小于3cm D.不大于3cm
8.如图所示,已知∠1=∠2,要使∠3=∠4,只要( )
A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.AB∥CD
9.下列命题是真命题的是( )
A.若x>y,则x2>y2 B.若|a|=|b|,则a=b
C.若a>|b|,则a2>b2D.若a<1,则a>
10.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( )
A.相等 B.互余或互补C.互补 D.相等或互补
11.如图所示,△FDE经过怎样的平移可得到△ABC( )
A.沿射线EC的方向移动DB长 B.沿射线CE的方向移动DB长
C.沿射线EC的方向移动CD长 D.沿射线BD的方向移动BD长
12.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角;其中正确的是( )
A.①②③B.①②③④ C.①②③④⑤D.①②④⑤
二、填空题
13.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是,∠2的对顶角是.
14.如图,若∠1=25°,则∠2= ,∠3= ,∠4= .
15.如图,∠1+∠2=180°,∠3=108°,则∠4= 度.
16.如图,△ABC是由四个形状、大小完全一样的三角形拼成,则可以看着是由△ADE平移得到的小三角形是.
三.解答题(72分)
17.推理填空:
(1)∵AD∥BC,
∴∠FAD= ;
(2)∵∠1=∠2,
∴∥;
(3)∵AD∥BC,
∴∠C+∠=180°.
18.按要求画图.
(1)过P点画直线L的垂线 (2)过点C画线段AB的垂线段
19.如图,AB∥CD∥EF,写出∠A,∠C,∠AFC的关系并说明理由.
2021图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.
21.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.
22.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.
23.直线AB、CD相交于点O,OE、OF分别是∠AOC、∠BOD的平分线
(1)射线OE、OF在同一直线上吗?为什么?
(2)OG平分∠AOD,OE与OG有什么位置关系?为什么?
24.如图,在四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β.
(1)试说明不论P在BC上怎么移动,总有α+β=∠B的理由;
(2)点P在BC的延长线移动是否存在上述结论?若存在,给予证明;若不存在写出你的结论.。

相关文档
最新文档