2019年江苏省苏州市吴江市中考数学一模试卷及参考答案

合集下载

2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】

2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】

2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 化简|-2|的结果是()A.一2 B.2 C. D.±22. 下列腾讯QQ表情中,不是轴对称图形的是()3. 下列运算正确的是()A.x3+x3=2x6 B.(-x5)4=x20 C.xm•xn=xmn D.x8÷x2=x44. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17° B.34° C.56° D.68°5. 在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x-1 C.y=x+1 D.y=-x+16. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分.)()A.36,8 B.28,6 C.28,8 D.13,37. 设函数y=x+5与y=的图象的两个交点的横坐标为a、b,则的值是()A.- B. C.- D.8. 在△ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB上,使得△ADE为等腰直角三角形,∠ADE=90°,则BE的长为()A.4-2 B.2- C.-1 D.(-1)9. 在平面直角坐标系中,一次函数y=x的图象、反比例函数y=图象以及二次函数y=x2-6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是()A. B. C. D.10. 定义一个新的运算:a⊕b=,则运算x⊕2的最小值为()A.-3 B.-2 C.2 D.3二、填空题11. 已知1nm等于0.000001mm,则0.000001用科学记数法可表示为.12. 班30位女生所穿鞋子的尺码.数据如下(单位:码):13. 码号3334353637人数761511td14. “两直线平行,内错角相等”的逆命题是.15. 分解因式:2x2+x-6= .16. 如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,且AC=OC,若⊙O的半径为5,则图中阴影部分的面积是.17. 若二次函数y=ax2+bx+c(a<0)的对称轴为直线x=-1,图象经过点(1,0),有下列结论:①abc<0;②2a-b=0;③a+b+c>0;④b2>5ac,则以上结论一定正确的个数是。

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 3.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23−C . 23±D .32± 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .155. 已知 2 是关于y 的方程23202y a −=的一个解,则21a −的值是( ) A . 3B . 4C . 5D . 66.直线443y x =−−与两坐标轴围成的三角形面积是( ) A .3 B . 4 C . 6 D . 12 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .168.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个9.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯−=−;④(36)(9)4−÷−=−. 其中正确的有( ) A . 1个B . 2个C .3个D .4个二、填空题10.在 Rt △ABC 中,∠C= Rt ∠,AB=5 cm ,BC= 3 cm ,以 A 为圆心,4 cm 长为半径作圆,则:(1) 直线 BC 与⊙A 的位置关系是 ; (2)直线 AC 与⊙A 的位置关系是 .(3)以 C 为圆心,半径为 cm 的圆与直线 AB 相切.11.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 12.当a 时,二次根式3a −−−有意义. 13.二次根式14x −中,字母x 的取值范围是 .14.填空: (1)21122818323−+−= ; (2)2211()0.339+−= ; (3) 482375+− ; (4)3111212233−−= . 15.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为 .16.多项式24ax a −与多项式244x x −+的公因式是 .17.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.18.已知a 2-ab=15,ab-b 2= -10,则代数式a 2-b 2= .三、解答题19.已知二次函数y =x 2+ax +a -2,证明:不论a 取何值,抛物线的顶点总在x 轴的下方. Δ=(a-2)2+4>0,抛物线与x 轴有两个交点,又抛物线的开口向上,所以抛物线的顶点总在x 轴的下方.20.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值21.某人骑自行车以10km/h 的速度由 A 地到B 地,路上用了 6 h.(1)如果以 v(km/h)的速度行驶,那么需t(h)到达,写出 t 与 v 之间的函数关系式; (2)如果返回时以 12 km/h 的速度行进,求路上所需的时间? (3)如果要求在 4 h 内到达,那么速度至少要多少?22.用反证法证明:在一个三角形中,如果两条边不等,那么它们所对的角也不等.23.解下列方程:(1)0252=−−x x ; (2)0)52(4)32(922=−−+x x (3)3)76(2)76(222=−−−x x x x24.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台4325.如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D,过C 作BD的垂线交BD的延长线于E,交BA的延长线于F,请说明:(1)△BCF是等腰三角形;(2)△ABD≌△ACF;(3)BD=2CE.26.如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.球的体积公式为343r π,求地球的体积.(地球的半径6371 km ,结果保留2个有效数字)30.求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5 (4)132−与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.C6.C7.A8.B9.B二、填空题10.(1)相切;(2)相交;(3)12 511.12y x=−12. 3≤−13. 4x >14.(12)0. 3;(34) 15..2x − 17.△0AB ,418.5三、解答题 19. 20.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .21.(1)设 t 与 v 之间的函数关系式为st v =,其中 s 为A 地、B 地间距离. ∵当 t=6 时,v= 10,∴s =60,∴60t v=(2)v= 12 时,60512t ==,∴路上要用 5 h . (3)t=4 时,60154v ==,∴速度至少要 15 km/h . 22.略23.⑴2335,233521+=−=x x ;⑵219,10121−==x x ; ⑶61,1,31,234321==−==x x x x . 24.(1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.25.(1)利用△CBE≌△FBE来说明;(2)利用ASA说明;(3)利用CF=2CE而CF=BD来说明26.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合27.AB∥CD(同位角相等,两直线平行)28.略.29.1.O8×lO12km330.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。

(完整版)江苏苏州2019中考试卷-数学(解析版)

(完整版)江苏苏州2019中考试卷-数学(解析版)

江苏苏州2019中考试卷-数学(解析版)【一】选择题〔此题共10个小题,每题3分,共30分〕1、2的相反数是〔〕A、﹣2B、2C、﹣D、考点:相反数。

专题:常规题型。

分析:依照相反数的定义即可求解、解答:解:2的相反数等于﹣2、应选A、点评:此题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键、2、假设式子在实数范围内有意义,那么x的取值范围是〔〕A、x<2B、x≤2C、x>2D、x≥2考点:二次根式有意义的条件。

分析:依照二次根式中的被开方数必须是非负数,即可求解、解答:解:依照题意得:x﹣2≥0,解得:x≥2、应选D、点评:此题考查的知识点为:二次根式的被开方数是非负数、3、一组数据2,4,5,5,6的众数是〔〕考点:众数。

分析:依照众数的定义解答即可、解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5、应选C、点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数能够有多个、停止时,指针指向阴影区域的概率是〔〕A、B、C、D、考点:几何概率。

分析:确定阴影部分的面积在整个转盘中占的比例,依照那个比例即可求出转盘停止转动时指针指向阴影部分的概率、解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;应选B、点评:此题考查了几何概率、用到的知识点为:概率=相应的面积与总面积之比、5、如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,那么∠BDC的度数是〔〕A、20°B、25°C、30°D、40°考点:圆周角定理;圆心角、弧、弦的关系。

分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数、解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°、应选C、点评:此题考查了圆周角定理、此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用、6、如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,假设AC=4,那么四边形CODE的周长〔〕A、4B、6C、8D、10考点:菱形的判定与性质;矩形的性质。

2019年江苏省苏州市中考数学试题(解析版)两套

2019年江苏省苏州市中考数学试题(解析版)两套

上沿着 A B C 的方向匀速运动(不包含点 C).设动点 M 的运动时间为 t(s), APM 的面积为 S(cm²),S 与 t
的函数关系如图②所示:
(1)直接写出动点 M 的运动速度为
cm / s ,BC 的长度为
cm ;
(2)如图③,动点 M 重新从点 A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点 N 从点 D 出
发,在矩形边上沿着 D C B 的方向匀速运动,设动点 N 的运动速度为 v cm / s .已知两动点 M、N 经过时间 x s 在
线段 BC 上相遇(不包含点 C),动点 M、N 相遇后立即停止运动,记此时 APM 与DPN 的面积为 S1 cm2 , S2 cm2 .
①求动点 N 运动速度 v cm / s 的取值范围;
记本比软面笔记本贵 3 元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为 x 元,根据题意可列出的
方程为( )
A. 15 x
24 x3
B.
15 x
24 x3
C.
15 x3
24 x
D.
15 x3
24 x
7.若一次函数 y kx b( k、b 为常数,且 k 0 )的图像经过点 A0,1 ,B 1,1 ,则不等式 kx b 1的解为( )
(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:

(2)先从盒子中任意抽取一张卡片,再从余下的 3 张卡片中任意抽取一张卡片,求抽取的 2 张卡片标有数字之和大于 4 的
概率(请用画树状图或列表等方法求解).
23.(本题满分 8 分) 某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个 小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制 成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题: (1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据); (2) m ________, n ________; (3)若某校共有 1200 名学生,试估计该校选择“围棋”课外兴趣小组有多少人?

精品解析:江苏省苏州市吴中、吴江、相城区2019届九年级数学模拟试题(解析版)

精品解析:江苏省苏州市吴中、吴江、相城区2019届九年级数学模拟试题(解析版)

江苏省苏州市吴中、吴江、相城区2019届初三数学模拟试题一、选择题:(本大题共有10小题,每小题3分,共30分)1.下列实数中,无理数是()A. 0B. -1C.D. 1 3【答案】C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定.【详解】A、0是整数,是有理数,选项错误;B、-1是整数,是有理数,选项错误;C是无理数,选项正确;D、13是整数,是有理数,选项错误.故选:C.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.一个整数8150…0用科学记数法表示为8.15X1010,则原数中“0”的个数为()A. 7B. 8C. 9D. 10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.15×1010表示的原数为81500000000,∴原数中“0”的个数为8,故选:B.【点睛】考查了把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向后移几位.3.有一组数据:1, 2, 2, 5, 6, 8,这组数据的中位数是()A. 2B. 2.5C. 3.5D. 5 【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数.【详解】从小到大排列此数据为:1,2,2,5,6,8;数据2,5处在最中间, 故中位数为252+=3.5, 故选:C .【点睛】考查了中位数,解题的关键是熟练求中位数的方法.4.下列运算结果正确的是()A. 352()a a =B. 222()a b a b -=-C. 22232a b a b a b --=-D. 22a b a b -÷=-【答案】D【解析】【分析】结合幂的乘方和积的乘方的知识进行分析.【详解】A 选项:(a 2)3=(a 2)•(a 2)•(a 2)=a 6,∴A 选项的答案不对;B 选项:先默写完全平方公式;(a-b )2=a 2-2ab+b 2,∴B 选项的答案不对;C 选项:提取公因数a 2b ;-3a 2b -2a 2b=(-2-3)a 2b=-5a 2b ,∴C 选项的答案正确;D 选项:提取公因数a 2;-a 2b+a 2=(-b+1)a 2 ,∴D 选项的答案不对;故选:C .【点睛】考查幂的乘方和积的乘方的运算;解题的技巧:一定要区分它们不同的计算方法,懂得如何提取公因数.5.如图,ABC ∆是等边三角形,点C 在直线b 上,若直线//a b ,134∠=︒,则2∠的度数为()A. 26°B. 28°C. 34°D. 36°【答案】A【解析】【分析】过B作BD∥直线a,根据平行线的性质即可得到结论.【详解】过B作BD∥直线a,如图所示:∵直线a∥b,∴BD∥直线b,∴∠ABD=∠1,∠CBD=∠2,∵∠ABC=∠ABD+∠CBD=∠1+∠2=60°,∵∠1=34°,∴∠2=26°,故选:A.【点睛】考查了平行线的性质,解题关键是熟记并灵活运用平行线的性质.6.已知反比例函数3(ky kx-=为常数),当0x<时,y随x的增大而减小,k的取值范围是()A. k<0B. k0C. k<3D. k>3 【答案】D【解析】【分析】利用反比例的性质得到k-3>0,然后解不等式即可.【详解】∵当x <0时,y 随x 的增大而减小,∴k-3>0,∴k >3.故选:D .【点睛】考查了反比例函数的性质:反比例函数y=k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.7.如图,ABC ∆内接于⊙O ,25OAC ∠=︒,则ABC ∠的度数为()A. 110°B. 115°C. 120°D. 125°【答案】B【解析】【分析】 根据等腰三角形的内角和定理求出∠AOC ,根据圆周角定理解答.【详解】∵OA=OC ,∠OAC=25°,∴∠AOC=180°-25°×2=130°,由圆周角定理得,∠ABC=(360°-130°)÷2=115°,故选:B .【点睛】考查的是三角形的外接圆,解题关键是掌握并运用圆周角定理.8.如图,在边长为1的小正方形网格中,ABC ∆的三个顶点均在格点上,若向正方形网格中投针,落在ABC ∆内部的概率是()A. 14B. 38C. 516D. 12【答案】C【解析】【分析】先求得阴影部分面积和总面积,再用阴影部分的面积除以总面积即可得.【详解】∵阴影部分的面积为152=,总面积为16, ∴向正方形网格中投针,落在△ABC 内部的概率是516. 故选:C .【点睛】考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,在等腰ABC ∆中,3,5AB AC BC A ===,则AB长为()A. 15B. C. 20D. 【答案】A【解析】【分析】 过点C 作CD ⊥AB ,垂足为D ,设CD=3k ,则AB=AC=5k ,继而可求出BD=k ,解直角三角形即可得到结论.【详解】过点C 作CD ⊥AB ,垂足为D ,在Rt △ACD 中,sinA=35, 设CD=3k ,则AB=AC=5k ,∴AD==4k ,在Rt △BCD 中,∵BD=AB-AD=5k-4k=k ,在Rt △BCD 中,=,∵BC=10,,∴k=3,∴AB=5k=15,故选:A .【点睛】考查了等腰三角形的性质,解直角三角形的知识,过点C 作CD ⊥AB ,构造直角三角形是关键.10.若二次函数2(2)4y ax a x a =+++的图像与x 轴有两个交点12(,0),(,0)x x ,且121x x <<,则a 的取值范围是() A. 2153a -<<- B. 103a -<< C. 203a << D. 1233a << 【答案】B【解析】【分析】由根的判别式大于0和(x 1-1)(x 2-1)<0,求出a 的范围即可;【详解】由已知得:a≠0且△=(a+2)2-16a 2>0解得:−25<a <23,且a≠0, ∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,∴4+2aa++1<0,解得:−13<a<0,综合以上可得,−13<a<0.故选:B.【点睛】考查了二次函数与一元二次方程的关系,根的判别式及根与系数的关系,一元二次方程有两个不相等的实数根即为根的判别式大于0.二、填空题:(本大题共8小题,每小题3分,共24分,)11.-2的相反数是_______.【答案】2【解析】-2的相反数是:-(-2)=2.12.当x 时,分式11x-有意义。

2019-2020苏州市数学中考一模试题附答案

2019-2020苏州市数学中考一模试题附答案

2019-2020苏州市数学中考一模试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.72.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.45.如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 7.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C .24 D .0.310.an30°的值为( )A .B .C .D .11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.14.分解因式:x 3﹣4xy 2=_____.15.计算:2cos45°﹣(π+1)0111()42-=______. 16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.17.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 18.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .19.正六边形的边长为8cm ,则它的面积为____cm 2.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.24.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.25.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.4.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 5.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C .【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.6.B解析:B【解析】【分析】【详解】解:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD ,∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B . 7.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()2134204mm ∆=----⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()2134204m m ∆=----⨯≥,解得m≤52且m≠2.故选B.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.B解析:B【解析】【分析】【详解】A.18=32,与3不是同类二次根式,故此选项错误;B.13=33,与3,是同类二次根式,故此选项正确;C.24=26,与3不是同类二次根式,故此选项错误;D.0.3=310=3010,与3不是同类二次根式,故此选项错误;故选B.10.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.11.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.12.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.14.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【解析】解:原式==故答案为:32.【解析】解:原式=121222⨯-++3232.16.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=82=,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=22+=22FC FB+=5,34∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.25.(1)12(2)16【解析】解:所有可能出现的结果如下:甲组乙组结果AB CD(AB CD,)AC BD(AC BD,)(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162, A B ,都在甲组的概率=16。

2019年江苏省苏州市中考数学试卷-答案

2019年江苏省苏州市中考数学试卷-答案

江苏省苏州市2019年初中毕业暨升学考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】D【解析】∵5(5)0+-=,∴5的相反数是5-,故选D 。

【考点】相反数的概念 2.【答案】B【解析】这组数据已经从小到大进行排序,且共有5个数,∴中位数为第3个数,即为4,故选B. 【考点】求一组数据的中位数 3.【答案】D【解析】726000000 2.610=⨯,故选D.掌握用科学记数法表示较大的数的方法是解答本题的关键. 【考点】用科字记数法表示较大的数 4.【答案】A【解析】如图,∵a b ∥,∴3154∠=∠=︒,∴23180∠+∠=︒, ∴2180318054126∠=︒-∠=︒-︒=︒,故选A.【考点】平行线的性质,平角的定义 5.【答案】D【解析】∵AB 是O e 的切线,OA 是半径,∴OA AB ⊥,即90BAO ∠=︒,∠B=36°,∴54AOC ∠=︒,∴1272ADC AOC ∠=∠=︒,故选D.【考点】切线的性质,三角形的内角和定理,圆周角定理 6.【答案】A【解析】根据题意软面笔记本每本售价为x 元,则硬面笔记本每本售价为() 3x +元,∴15元能买15x本软面笔记本,24元能买243x +本硬面笔记本,根据“两人买到相同数量的笔记本”可列方程15243x x =+,故选A.【考点】列分式方程解应用题 7.【答案】D【解析】由题意可得方程组1,1,b k b -=⎧⎨=+⎩解得1,2,b k =-⎧⎨=⎩∴一次函数的解析方式为21y x =-,当211x ->时,解得1x >,即不等式的解集为1x >,故选D.【考点】一次函数的图像与性质 8.【答案】C【解析】如图,过点D 作DE AB ⊥于点E ,则四边形DCBE 是矩形,m DE BC ==,在Rt ADE △中,30ADE ∠=︒,∴tan3018(m)AE DE ︒=⋅==,又1.5B E C D ==,∴18 1.519.5(m)AB AE BE =+=+=,即教学楼的高度是19.5m ,故选C.作辅助线构造直角三角形和矩形是解答本题的关键. 【考点】解直角三角形的应用 9.【答案】C【解析】在菱形ABCD 中,对角线AC 与BD 互相垂直平分,∵4AC =,16BD =,∴2AO CO ==,8BO DO ==,由平移可知'2CO AO ==,'8'B O BO ==,∴42''6AO AC CO =+=+=,在Rt ''AB O △中,由勾股定理得'10AB =,即点A 与点'B 之间的距离为10,故选C. 【考点】菱形的性质,平移的性质,勾股定理 10.【答案】B【解析】如图,过点A 作AM BC ⊥于点M ,过点E 作EN BC ⊥于点N ,AM EN ∥,2AB AD ==,AD AB ⊥,∴BAD △是等腰直角三角形,∴45B ADB ∠=∠=︒,由勾股定理得BD AM BM MD ==又∵AD DE ⊥,∴90ADE ∠=︒,∴45EDN ∠=︒,∴DEN △是等腰直角三角形,∵1DE =,∴DN EN ==∴12EN AM =,易证~CEN CAM V △,∴12CE CN EN CA CM AM ===,∴点E 是AC 的中点,点N 是CM的中点,∴CN MN MD DN ==+==,∴BC =,∴11422ABC S AM BC ∆=⋅==,即ABC △的面积为4,故选B.作两条垂线是解答本题的关键。

江苏省2019中考一模数学试卷含答案

江苏省2019中考一模数学试卷含答案

初三一模数学模拟试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列数中,与﹣2的和为0的数是( )A .2B .﹣2C .21D .21-2.下列调查中,适宜采用普查方式的是( )A .了解一批圆珠笔的寿命B .了解全国九年级学生身高的现状C .检查一枚用于发射卫星的运载火箭的各零部件D .考察人们保护海洋的意识3.从下列不等式中选择一个与12x +≥组成不等式组,使该不等式组的解集为1x ≥,那么这个不等式可以是( )A .1x >-B .2x >C .1x <-D .2x <4.如图是小刘做的一个风筝支架示意图,已知BC ∥PQ ,:2:5AB AP =, AQ =20cm ,则CQ 的长是( )A .8 cmB .12 cmC .30 cmD .50 cm5.如图,在五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC的外角,则∠1+∠2+∠3等于( )A .90°B .180°C .210°D .270°(第4题) ( 第5题 ) (第6题)6.如图,已知点A ,B 的坐标分别为(-4,0)和(2,0),在直线 y =21-x +2上取一点C ,若△ABC 是直角三角形,则满足条件的点C 有( )A . 1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分)7.计算:(3a 3)2= .8.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是 .9.分解因式:ab 2-a = .10.已知a ,b 是一元二次方程220x x --=的两根,则a b += .11.计算:﹣= .12.已知扇形的圆心角为45°,半径长为12 cm ,则该扇形的弧长为 cm .13.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是cm3.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3yx的图像经过A,B两点,则菱形对ABCD的面积为.第12题第14题15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.CFD(第15题)16.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC 的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值为 .三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:(13)0+27 +| -3 |.18.(本题满分6分)2112x x x x x ⎛⎫++÷- ⎪⎝⎭,再从1、0、2中选一个你所喜欢的数代入求值。

2019年江苏省苏州市吴江市中考数学一模试卷

2019年江苏省苏州市吴江市中考数学一模试卷


16.(3 分)如图,AB 是半圆 O 的直径,点 C,D 是半圆 O 的三等分点,若弦 CD=6,则
图中阴影部分的面积为

17.(3 分)在一次综合社会实践活动中,小东同学从 A 处出发,要到 A 地北偏东 60°方向
第 2页(共 23页)
的 C 处,他先沿正东方向走了 2 千米到达 B 处,再沿北偏东 15°方向走,恰能到达目的
且 x1<1<x2,则 a 的取值范围是( )
A.﹣ <a<﹣ B.﹣ <a<0
C.0<a<
D. <a<
【解答】解:由已知得:a≠0 且△=(a+2)2﹣16a2>0
解得:
,且 a≠0,
∵x1<1<x2,
∴(x1﹣1)(x2﹣1)<0,
∴x1x2﹣(x1+x2)+1<0,


解得:

综合以上可得,

A.15
B.5
C.20
D.10
10.(3 分)若二次函数 y=ax2+(a+2)x+4a 的图象与 x 轴有两个交点(x1,0),(x2,0),
且 x1<1<x2,则 a 的取值范围是( )
A.﹣ <a<﹣ B.﹣ <a<0
C.0<a<
D. <a<
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分,把答案直接填在答题卡相对应的位 置上)
24.(8 分)如图,在平行四边形 ABCD 中,AC⊥DE,AE=AD,AE 交 BC 于 O. (1)求证:∠BCA=∠EAC; (2)若 CE=3,AC=4,求△COE 的周长.
25.(8 分)如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y= 在第一象限的图象经过点 D,交 BC 于 E.

2019年江苏省中考数学第一次联合测评试卷附解析

2019年江苏省中考数学第一次联合测评试卷附解析

2019年江苏省中考数学第一次联合测评试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列各条件不能确定圆的是( )A .已知直径B .已知半径和圆心C .已知两点D .已知不在一条直线上的三点2.给出以下几个命题:(1)三边都相等的三角形是正三角形;(2)各边都相等的四边形是正四边形;(3)各个角都相等的六边形是正六边形,其中正确的有 ( )A .0个B .l 个C .2个D .3个 3.用直接开平方法解方程2(3)8x −=,得方程的根为( ) A .322x =+ B .322x =−C .1323x =+,2323x =−D .1322x =+,2322x =− 4.化简422x x y +(0x ≤)的结果是( )A . 22x x y +B .22x x y −+C .()x x y +D .()x x y −+5.如图所示,下列判断正确的是( )A .若∠1 =∠2,则1l ∥2lB .若∠1 =∠4,则3l ∥4lC .若∠2=∠3,则1l ∥2lD .若∠2=∠4,则1l ∥2l6.如图,∠1=∠2,则下列结论中正确的是( )A .AD ∥BCB .AB ∥CDC .AD ∥EF D .EF ∥BC7.从1到20的20个自然数中,任取一个,既是2的倍数,又是3的倍数的概率是( )A .120B .320C .12D .3108.从A 、B 、C 、D 四人中用抽签的方法,任选2人去打扫公共场地,选中A•的概率是( )A .41 B .21 C .43 D .以上都不对 9.在多项式①2263aab b ++;②221449m mn n −++;③21025a a −+;④2221ab a b +−;④6321y y −+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤10.下列说法: ①两个无理数的和必是无理数②两个无理数的积必是无理数③有理数与无理数分别平方后,不可能相等④有理数都有倒数其中正确的个数是( )A .1 个B .2 个C .3 个D .4 个 11.下面的计算中错误..的是( ) A .0.00090.03=±B .0.00490.07±=±C .0.0225015=⋅D .0.0l690.13−=−二、填空题12.已知⊙O 的半径3r =,圆外一点P 到圆心距离 PO=2,则该圆的两条切线 PA 、PB 所夹的角的度数为 .13.已知α为锐角,sin α=cos500,则α等于 .14.如图,点 A .B 、C 把⊙O 三等分,那么△ABC 是 三角形.15.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 .16.命题“所有的偶数都能被2整除”的逆命题是.17.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为____________.18.按程序x→平方→+x→÷x→-2x进行运算后,结果用x的代数式表示是____________ (填入运算结果的最简形式).19.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.20.将一大块花布铺平,它上面的图案可以看做由一个基本图案通过不断地得到.21.如果一个角是30°,在10倍放大镜下观察,这个角应是 .三、解答题22.AB 是半圆0的直径,C、D是半圆的三等分点,半圆的半径为R.(1)CD 与 AB 平行吗?为什么?(2)求阴影部分的面积.23.如图,水管内原有积水的水面宽 CD=4 cm,水深 GH= 1 cm,因几天连续下雨水面上升 1 cm (即 EG= 1 cm). 求此时水面 AB 的宽是多少?24.如图所示,把边长为2的正方形剪成四个全等的直角三角形,•请你用这四个直角三角形拼成符合下列要求的图形各一个,并标上必要的记号:(1)不是正方形的菱形;(2)不是正方形的矩形;(3)梯形;(4)不是矩形和菱形的平行四边形;(5)不是梯形和平行四边形的凸四边形.25.通过证明结论的不成立,从而得出成立,这种证明方法叫做反证法,它的关键是找出由假设所产生的,与、、、之间的矛盾.26.已知一个几何体的三视图如图,请画出它的表面展开图(只需画一种).27.写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).28.由 16 个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.若“*”是新规定的某种运算法则,设2=⋅−,试求:*A B A B B(1)(2)6−*的值;(2)若(5)10x*−=,求x的值.30.用代数式表示图中阴影部分的面积,并计算 x=10,y=14时的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.C6.C7.B8.B9.C10.A11.A二、填空题12.120°13.40°14.等边15.12y x=−16. 能被2整除的数都是偶数17.0.518.–x+119.420.平移21.30°三、解答题22.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB.(2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,22,64ADC OCD R S s R π∆==扇形,∴222(6464R S R R ππ=+=+阴影 23.连结 CO 、AO ,∴.OG ⊥AB ,∴.CG=GD=2.在 Rt △OCG 中,222CO GG OG =+,∴CO=2. 5cm ,同理222E AO A OE =+∴cm ,∴此时水面 AB 的宽是24.略 .25.反面,结论,已知,定义,公理,定理 26.27.)2)(2(42−+=−n n m m mn (答案不唯一) . 28.略29.(1)-48 (2)7x =−30.19()2y y x −−;12。

2019年江苏省苏州市中考数学模拟考试试卷附解析

2019年江苏省苏州市中考数学模拟考试试卷附解析

2019年江苏省苏州市中考数学模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( ) A .52B .56C .2D .52.随机抛掷一枚均匀的硬币两次,则出现两面不一样的概率是( ) A .41 B .21 C .43 D .13.如图,△OCD 和△OAB 是位似三角形,则位似中心是( ) A .点AB .点CC .点0D .点B4.如图,A 、B 、C 三点在⊙O 上,且∠AOB=80°,则∠ACB 等于( ) A .100°B .80°C .50°D .40°5.如图所示的两同心圆中,大圆的半径 OA 、OB 、oO 、OD 分别交小圆于E 、F 、G 、H , ∠AOB =∠GOH ,则下列结论错误的是( )A .EF=GHB .⌒EF = ⌒GHC .∠AOG=∠BOD D . ⌒AB =⌒GH6.为了要了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组里的数据个数叫做( ) A .频数B .频率C .样本容量D .频数累计7.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,若全组有x 名同学,则根据题意列出的方程是( ) A .(1)182x x +=B .(1)182x x −=C .2(1)182x x +=D .(1)1822x x −=⨯8.关于x 的一元二次方程()22110a x x a −++−=的一个根是0,则a 的值为( ) A .1B .1−C .21 D .1或1−9.计算82−的结果是( ) A .6 B .2 2 D . 1.4 10.不论a 是什么数,下列不等式都能成立的是( )A .20a >B .a a ≥−C .210a +>D .2a a > 11.数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是( )A . 5,4B .4,5C .5,5D .4.5,412.如图,AD 是△ABC 的角平分线,DE 是△ABD 的高,DF 是△ACD 的高,则( )A . ∠B=∠CB . ∠EDB=∠FDC C .∠ADE=∠ADFD . ∠ADB=∠ADC13.如图,将四边形AEFG 变换到四边形ABCD,其中E 、G 分别是AB 、AD 的中点.下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大原来的2倍C .各对应角角度不变D .面积扩大到原来的2倍二、填空题14.将两块完全相同的等腰直角三角形摆放成如图的样子,假设图形中的所有点、线都在同一平面内,写出图中所有相似三角形: (不含全等).15.如图,作一个长为 2、宽为 1 的长方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是 ;这种研究和解决问题的方式,体现了 (①数形结合;②代入;③换元;④归纳)的数学思想方法(将正确的选项序号填在横线上).16.若x >y, 则x +2 ___ y +2(填“>”或“<”). 17.如图,请写出能判定 CE ∥AB 的一个条件: .18.如图:请写出图中有 个三角形,分别是 . 19.若方程213235a b x y −++=是二元一次方程,则a= ,b = .20.用四舍五入法取l00955的近似数,保留2个有效数字是 ,保留4个有效数字是 .三、解答题21.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?22.如果掷两枚正四面体被子,已细这两枚正四面体骰子每面的点数依次为 1、2、3、4,那么点数和机会均等的结果有哪些?请用树状图或列表来说明你的观点.23.如图,已知二次函数y=ax 2-4x +c 的图像经过点A 和点B . (1)求该二次函数的表达式;(2)点m >0),且这两点关于抛物线的对称轴对称,求24.如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,.(1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.25.如图,在四边形ABCD 中,∠B=∠C ,AB 不平行CD ,且AB=CD .求证:四边形ABCD 是等腰梯形.26. 已知:如图,点D 是等腰△ABC 的底边BC 上任意一点,DE ∥AC•交AB•于点E ,DF ∥AB 交AC 于点F .求证:DE+DF=AB .27.如图,直线OA ,OB 表示两条相互交叉的公路.点M ,N 表示两个蔬菜基地.现要建立一个蔬菜批发市场,要求它到两个基地的距离相等,并且到公路OA ,OB 的距离相等,请你作图说明此批发市场应建在什么地方?A BCO F E28.一个矩形的长为a,宽为b,在图(1)中将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1B1B2A2(即阴影部分).(1) (2)(3) (4)在图(2)中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画出一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线表示出;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=•______,S2=_________,S3=________.(3)联想与探索.如图(4),在一块草地上有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并请说明你的猜想是正确的.29.如图,若∠l与∠2互补,且∠l=60°,求∠3、∠4、∠5、∠6、∠7、∠8的度数.30.有一种电动车,只有一个电瓶,充一次电最多只能行驶7 h,李老师骑此电动车上班,上班途中他把车速固定在40 km/h,回家途中他把车速固定在30 km/h,问李老师家离他所在的学校最多有多远,他才能安然返回?(否则电不足)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.D5.D6.A7.B8.B9.C10.C11.A12.C13.D二、填空题 14.△ABE ∽△DAE ∽△DCA15.16.>17.答案不唯一.如∠A=∠DCE18.3,ΔABD 、ΔAB C 、ΔA CD19.1,13−20.1.O ×1O 5,1.OlO ×1O 5三、解答题 21.(1)()P 偶数23=(2)能组成的两位数为:86,76,87,67,68,78 恰好为“68”的概率为16. 22.从上表可以看出概率和掷出点数和为掷出点数和为“2”的概率和掷出点数和为“8”的概率是一样的,均为116;掷出点数和为“3”的概率和掷出点数和为“7”的概率是一样的,均为18;掷出点数和为“4”的概率和掷出点数和为“6”的概率是一样的,均为316;掷出点数和为“5”的概率为1423.(1)将x =-1,y =-1;x =3,y =-9分别代入y=ax 2-4x +c 得⎩⎨⎧+⨯−⨯=−+−⨯−−⨯=−.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧−==.6,1c a ∴二次函数的表达式为y=x 2-4x -6.(2)将(m ,m )代入y=x 2-4x -6,得m=m 2-4m -6, 解得121,6m m =−=.∵m >0,∴11−=m 不合题意,舍去.∴ m =6.∵点P 与点Q 关于对称轴2=x 对称,∴点Q 到x 轴的距离为6.24.(1)证明:当90AOF ∠=时,AB EF ∥, 又AF BE ∥,∴四边形ABEF 为平行四边形.(2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴=(3)四边形BEDF 可以是菱形. 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =,EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形.在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. 25.A BCOF E延长BA,CD交于P,证AD∥BC26.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∠EDB=∠C,∴DF=EA.∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∴BE=DE,∴DE+DF=BE+EA=AB,∴DE+DF=AB.27.的平分线OC和线段MN的垂直平分线DE,则射线OC与直线DE的交分别作AOB点P即为批发市场应建的地方.28.(1)略,(2)b(a-1), b(a-1) ,b(a-1),(3)b(a-1)29.∠3=∠4=∠2=∠7=120°,∠1=∠5=∠6=∠8=60°30.l2O km。

苏州市2019年中考数学模拟试卷(一)含答案解析

苏州市2019年中考数学模拟试卷(一)含答案解析

2019年江苏省苏州市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列式子结果为负数的是()A.(﹣3)0B.﹣|﹣3| C.(﹣3)2D.(﹣3)﹣2【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【试题解析】解:A、(﹣3)0=1>0;C、(﹣3)2=9>0;D、(﹣3)﹣2=>0;B、﹣|﹣3|=﹣3<0.【答案】B.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5 D.2.1×10﹣5【考点】科学记数法—表示较小的数.【试题解析】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;【答案】:D3.下列计算正确的是()A.(2a2)3=8a5B.()2=9 C.3﹣=3 D.﹣a8÷a4=﹣a4【考点】幂的乘方与积的乘方;算术平方根;同底数幂的除法;二次根式的加减法.【试题解析】解:A、(2a2)3=8a6,原式计算错误,故本选项错误;B、()2=3,原式计算错误,故本选项错误;C、3﹣=2,原式计算错误,故本选项错误;D、﹣a8÷a4=﹣a4,原式计算正确,故本选项正确.【答案】D.4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【考点】全面调查与抽样调查.【试题解析】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;【答案】:B.5.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【试题解析】解:应该将②涂黑.【答案】B.6.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【试题解析】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;【答案】:A.7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【试题解析】解:从上面看,图2的俯视图是正方形,有一条对角线.【答案】C.8.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【试题解析】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB∥OE,∴∠DBF=∠OEF,在△BDF和△EOF中,,∴△BDF≌△EOF(AAS),∴S 阴影=S 扇形DOE =×π×12=.【答案】B .9.在△ABC 中,∠ABC=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A .3个B .4个C .5个D .6个【考点】勾股定理;含30度角的直角三角形.【试题解析】解:如图,过点A 作AD ⊥BC 于D ,∵∠ABC=30°,AB=10,∴AD=AB=5,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6个.【答案】D .10.二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m 、n (m <n ),关于x 的方程x 2+px+q﹣5=0的两个实数根是d 、e (d <e ),则m 、n 、d 、e 的大小关系是( )A .m <d <e <nB .d <m <n <eC .d <m <e <nD .m <d <n <e【考点】抛物线与x 轴的交点.【试题解析】解:二次函数y=x 2+px+q+1图象如图所示:结合图象可知方程x2+px+q﹣5=0的两个实数根即为函数y=x2+px+q+1和y=6的交点,即d<m<n<e,【答案】B.二、填空题(本大题共8小题,每小题3分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【考点】函数自变量的取值范围.【试题解析】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.【答案】x≥﹣1且x≠0.12.若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】点的坐标.【试题解析】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.【答案】0<a<2.13.分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【考点】提公因式法与公式法的综合运用.【试题解析】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.【答案】x(2x﹣y)2.14.方程x(x﹣2)=﹣(x﹣2)的根是x1=2,x2=﹣1.【考点】解一元二次方程-因式分解法.【试题解析】解:x(x﹣2)=﹣(x﹣2)移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.【答案】x1=2,x2=﹣1.15.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1=1.【考点】一次函数图象上点的坐标特征.【试题解析】解:∵点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,∴,解得,∴原式=﹣4×﹣1=1.【答案】1.16.某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【考点】规律型:数字的变化类.【试题解析】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:(+1)=2,(+1)=,(+1)=…(+1)=,(+1)=,故这样得到的20个数的积为:2×××…××=21,【答案】21.17.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】旋转的性质;等边三角形的性质;正方形的性质.【试题解析】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,在△ABE与△ADF中,,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°【答案】15°或165°.18.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2019=32019.【考点】切线的性质;一次函数图象上点的坐标特征.【试题解析】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2019=32019.【答案】32019.三、解答题(本大题共10小题,共76分)19.计算:﹣2cos30°+()﹣2﹣|1﹣|.【考点】特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.【试题解析】解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.【答案】+5.20.化简:÷(x+2﹣)【考点】分式的混合运算.【试题解析】解:÷(x+2﹣)=÷()=•=.【答案】.21.解不等式组:,并求它的整数解的和.【考点】一元一次不等式组的整数解.【试题解析】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣2<x≤1∴不等式组的整数解的和为﹣1+0+1=0.【答案】022.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S,△ABC的面积为S△,试说明>π.圆【考点】作图—复杂作图;勾股定理;三角形的外接圆与外心.【试题解析】解:(1)如图所示:,(2)∵△ABC的外接圆的面积为S圆=π×()2=π,∴S圆△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【答案】见解析23.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【试题解析】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【答案】见解析24.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(2019•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【试题解析】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【答案】见解析26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【试题解析】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.【答案】见解析27.如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P 从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【试题解析】解:(1)∵A(5,0),B(3,0),∴OA=5,OB=3,∵∠CBO=45°,∴OC=OB=3,∴点C的坐标(0,3);(2)①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∵CO=3,∴OP=CO=,∵Q(﹣4,0),∴QP=+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,②当P在点B的右侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∵CO=3,∴OP=CO=3,∵Q(﹣4,0),∴QP=3+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述当∠BCP=15°时,t的值为或;(3)①如图1,当PC⊥BC时,⊙P与BC相切,∵∠CBO=45°,∴∠CPB=45°,CP=BC,∵CO=3,∴PO=3,∴QP=QO﹣PO=4﹣3=1,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=0.5(秒),②如图2,当PC⊥CD时,⊙P与CD相切,∵QO=4,点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=4÷2=2(秒)③如图3,当PA⊥AD时,⊙P与AD相切,设PA=r∵OA=5,OC=3,∴OP2+OC2=PC2,即(5﹣r)2+32=r2,解得:r=,∴QP=4+5﹣=,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述t1=0.5秒,t2=2秒,t3=秒.【答案】见解析28.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.【试题解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t ﹣1,∵NL=AD=,∴FL=t ﹣,∴当<t ≤2时,S=S △FMN ﹣S △FKL =t 2﹣(t ﹣)(t ﹣1)=﹣t 2+t ﹣; ③如图⑤,当G 在CD 上时,B ′C :CH=B ′G :DH ,即B ′C :4=2:3,解得:B ′C=,∴EC=4﹣t=B ′C ﹣2=,∴t=,∵B ′N=B ′C=(6﹣t )=3﹣t ,∵GN=GB ′﹣B ′N=t ﹣1,∴当2<t ≤时,S=S 梯形GNMF ﹣S △FKL =×2×(t ﹣1+t )﹣(t ﹣)(t ﹣1)=﹣t 2+2t ﹣,④如图⑥,当<t ≤4时,∵B ′L=B ′C=(6﹣t ),EK=EC=(4﹣t ),B ′N=B ′C=(6﹣t ),EM=EC=(4﹣t ),S=S 梯形MNLK =S 梯形B ′EKL ﹣S 梯形B ′EMN =﹣t+.综上所述:当0≤t ≤时,S=t 2,当<t ≤2时,S=﹣t 2+t ﹣;当2<t ≤时,S=﹣t 2+2t ﹣,当<t ≤4时,S=﹣t+.【答案】见解析。

2019年江苏省苏州市中考数学一模试卷 解析版

2019年江苏省苏州市中考数学一模试卷  解析版

2019年江苏省苏州市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应位置上)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.2.(3分)苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×1063.(3分)下列运算结果等于x6的是()A.x2•x3B.x6÷x C.x2+x4D.(x3)24.(3分)关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m 的取值范围是()A.B.C.D.5.(3分)如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°6.(3分)如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B 的度数为()A.50°B.60°C.70°D.80°7.(3分)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°8.(3分)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米9.(3分)已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.10.(3分)如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上.)11.(3分)若在实数范围内有意义,则x的取值范围是.12.(3分)分解因式2x2﹣4x+2=.13.(3分)分式方程的解是.14.(3分)某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为.个数678910人数23465 15.(3分)若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为.16.(3分)在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为元.17.(3分)如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为.18.(3分)如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE 绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.22.(6分)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:CG=FG.23.(8分)有三张正面分别写有数字﹣1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.24.(8分)我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?25.(8分)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.27.(10分)如图1,在平面直角坐标系中,一次函数y=﹣x+8的图象与y轴交于点A,与x轴交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB 交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(10分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C 的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.2019年江苏省苏州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应位置上)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:45000=4.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算结果等于x6的是()A.x2•x3B.x6÷x C.x2+x4D.(x3)2【分析】直接利用合并同类项法则以及同底数幂的乘除法运算法则分别化简得出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、x6÷x=x5,故此选项错误;C、x2与x4=不是同类项,不能合并,故此选项错误;D、(x3)2=x6,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除法运算,正确化简各式是解题关键.4.(3分)关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m 的取值范围是()A.B.C.D.【分析】根据根的判别式,可知△>0,据此即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,∴△=(2m+1)2﹣4m2=4m2+4m+1﹣4m2=4m+1>0,解得m>﹣.故选:C.【点评】此题考查了根的判别式,解题时要注意一元二次方程成立的条件:二次项系数不为0.5.(3分)如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°【分析】由平行线的性质得出∠AEC=∠AFD=58°,再由三角形的外角性质即可得出∠BCE的度数.【解答】解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.【点评】本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等.6.(3分)如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B 的度数为()A.50°B.60°C.70°D.80°【分析】直接利用圆内接四边形的性质得出∠A=50°,进而利用等腰三角形的性质和平行线的性质分析得出答案.【解答】解:∵四边形ABCD内接于⊙O,∠C=130°,∴∠A=50°,∵DO=AO,∴∠ADO=∠A=50°,∴∠AOD=80°,∵BC∥OD,∴∠AOD=∠B=80°.故选:D.【点评】此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠A的度数是解题关键.7.(3分)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°【分析】根据统计图中的数据可以求得本次调查的学生数,进而求得扇形统计图中“步行”对应的圆心角的度数.【解答】解:由图可得,本次抽查的学生有:15÷30%=50(人),扇形统计图中“步行”对应的圆心角的度数为:360°×=72°,故选:C.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米【分析】设CE=x米,根据正切的定义用x分别表示出AE、BE,根据题意列方程,解方程得到答案.【解答】解:设CE=x米,在Rt△ACE中,tan∠CAE=,则AE==x,在Rt△BCE中,tan∠CBE=,则BE==x,由题意得,x﹣x=120,解得,x=60,即CE=60,则AC=2CE=120(米)故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.9.(3分)已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.【分析】连接CD,证明四边形CDEF是平行四边形,则CD=EF=4,再利用直角三角形斜边上的中线性质可求AB长.【解答】解:连接CD,∵点D,E分别是AB,BC的中点,∴DE∥AC,DE=AC.∵延长AC到F,使得CF=AC,∴DE∥CF且DE=CF,∴四边形CDEF是平行四边形.∴CD=EF=4.∵∠ACB=90°,CD为斜边AB中线,∴AB=2CD=8.故选:A.【点评】本题主要考查了平行四边形的判定和性质、直角三角形斜边上的中线性质,解题的关键是利用平行四边形的性质进行线段的转化.10.(3分)如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上.)11.(3分)若在实数范围内有意义,则x的取值范围是x≥﹣3.【分析】根据二次根式有意义的条件可得x+3≥0,再解即可.【解答】解:由题意得:x+3≥0,解得:x≥﹣3,故答案为:x≥﹣3.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.(3分)分解因式2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.13.(3分)分式方程的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+x﹣2=﹣1,解得:x=,经检验x=是分式方程的解,故答案为:x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为18.个数678910人数23465【分析】根据众数和中位数的概念求解.【解答】解:数据9出现了6次,最多,故众数为:9,中位数为:=9,所以二者的和为9+9=18.故答案18.【点评】本题考查了众数和中位数的知识,解答本题的关键是熟练掌握众数和中位数的定义.15.(3分)若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为﹣6.【分析】将点(1,3)和点(﹣1,2)代入解析式可求k,b的值,即可求k2﹣b2的值.【解答】解:根据题意得:解得:∴k2﹣b2=﹣=﹣6故答案为:﹣6【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.16.(3分)在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为270元.【分析】根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式,进而代入解答即可.【解答】解:由图象可得(200,180)和(300,260),设解析式为:y=kx+b,可得:,可得:,所以解析式为:y=0.8x+20,把y=236代入y=0.8x+20,解得:x=270,故答案为:270.【点评】此题考查函数图象,关键是根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式.17.(3分)如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为π﹣2.【分析】连接OC交AB于点P,根据折叠的性质求出OP=PC=1,根据勾股定理求出AP,根据垂径定理求出AB,根据扇形的面积公式和三角形的面积求出即可.【解答】解:连接OC交AB于点P,由题意知,OC⊥AB,且OP=PC=2=1,在Rt△AOP中,∵OA=2,OP=1,∴cos∠POA==,∴∠POA=60°,同理∠BOP=60°,∴∠AOB=120°,AP===,由垂径定理得:AB=2PM=2,∴阴影部分的面积=S扇形AOB ﹣2S△AOB=﹣2××21=π﹣2,故答案为:π﹣2.【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.18.(3分)如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE 绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.【分析】作CH⊥BF于H,GK⊥BC于K.证明△BCE≌△DCF(SAS),推出BE=DF =6,易知CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,根据BC2=BH2+CH2,构建方程求出a,再由tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,构建方程求出k,求出BG即可解决问题.【解答】解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.【点评】本题考查正方形的性质,旋转变换,勾股定理,全等三角形的判定和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣)+=1﹣2++=﹣1+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.20.(5分)解不等式组:.【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:解不等式3x﹣2<x,得:x<1,解不等式≤2x+1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.【分析】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:原式=•=,当x=﹣1时,原式=【点评】本题考查了分式的化简求值.解题的关键是对分式的分子分母要因式分解.22.(6分)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:CG=FG.【分析】由“SAS”可证△ABC≌△DEF,可得∠ACB=∠DFE,可得结论.【解答】证明:∵BF=CE∴BF+CF=CE+CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠ACB=∠DFE∴CG=FG【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题关键.23.(8分)有三张正面分别写有数字﹣1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.【分析】(1)直接根据概率公式计算可得.(2)列表得出有放回的所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得【解答】解:(1)抽到的卡片为正面写有正数的卡片的概率为,故答案为:;(2)列表如下:﹣123﹣1(﹣1,﹣1)(2,﹣1)(3,﹣1)2(﹣1,2)(2,2)(3,2)3(﹣1,3)(2,3)(3,3)由表知,共有9种等可能结果,其中点P在第一象限内的有4种结果,所以点P在第一象限内的概率为.【点评】本题考查了列表法与树状图法:列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?【分析】(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,根据“一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该学校购买m个甲种规格的漂流书屋,则购买(15﹣m)个乙种规格的漂流书屋,根据总价=单价×数量结合总价不超过3040元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,依题意,得:,解得:.答:每个甲种规格的漂流书屋的价格为240元,每个乙种规格的漂流书屋的价格为160元.(2)设该学校购买m个甲种规格的漂流书屋,则购买(15﹣m)个乙种规格的漂流书屋,依题意,得:240m+160(15﹣m)≤3040,解得:m≤8.答:该学校至多能购买8个甲种规格的漂流书屋.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.【分析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.【解答】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD⊥AC,AH=2,∵对角线AC⊥x轴,∴BD∥x轴,∴B、D的纵坐标均为2,在Rt△ABH中,AH=2,AB=,∴BH=,∵OA=4,∴B点的坐标为:(,2),∵点B在反比例函数y=的图象上,∴k=11;(2)设A点的坐标为(m,0),∵AE=AB=,CE=,∴B,E两点的坐标分别为:(m+,2),(m,).∵点B,E都在反比例函数y=的图象上,∴(m+)×2=m,∴m=6,作DF⊥x轴,垂足为F,∴OF=,DF=2,D点的坐标为(,2),在Rt△OFD中,OD2=OF2+DF2,∴OD=.【点评】此题主要考查了菱形的性质以及勾股定理和反比例函数图象上的性质,正确得出D点坐标是解题关键.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.【分析】(1)连接OD,证明OD∥BC,再由OB=OD证明∠OBD=∠ODB,进而得结论;(2)①解Rt△PBC得PC与PB,设⊙O的半径为x,由相似三角形列出x的方程求得x,进而求得CD,便可用勾股定理求得BD;②过点O作OM⊥BE于点M,得四边形ODCM为矩形,得到BM的长度,再得BE,由△ODF∽△EBF便可求得结果.【解答】解:(1)证明:连接OD,如图1,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠CBD=∠OBD,即BD平分∠ABC;(2)①∵∠PCB=90°,BC=6,tan P=,∴PC=,∴PB=,设⊙O的半径为x,则OA=OB=OD=x,PB=10﹣x,∵OD∥BC,∴△POD∽△PBC,∴,即,解得,x=,∴PD=,∴CD=PC﹣PD=8﹣5=3,∴BD=;②过点O作OM⊥BE于点M,如图2,则四边形ODCM为矩形,∴CM=OD=,∴BM=BC﹣CM=,∵OB=OE,∴BE=2BM=,∵OD∥BE,∴△ODF∽△EBF,∴,即,解得BF=.【点评】本题是圆的综合题,主要考查了圆周角定理,圆的切线的性质,平行线的判定与性质,等腰三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,矩形的性质与判定,有一定难度,第(1)题关键是过切点连半径,第(2)题的突破口是构造矩形与相似三角形.27.(10分)如图1,在平面直角坐标系中,一次函数y=﹣x+8的图象与y轴交于点A,与x轴交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB 交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.【分析】(1)①由四边形AOCD是正方形知AO=CO,∠AOD=∠EOC,据此依据“SAS”可证得△AOE≌△COE;②∠ECB+∠CBG=90°,∠CBG=∠BCG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,利用角的代换得到∠GCF=∠CFG,即可解题;(2)设C(m,0),则可表示出F(m,﹣m+8),D(m,8),E(,),利用勾股定理分别求出EC2=,CF2=,EF2=;然后分三种情况进行讨论:①当EC=EF时,=;②当CF=EF时,=;③当EC=EF时,=;【解答】解:(1)①∵四边形AOCD是正方形.∴AO=CO,∠AOD=∠EOC,∴△AOE≌△COE(SAS);②∴△AOE≌△COE,∴∠OAB=∠ECB,∵∠OAB+∠OBA=∠OAB+∠CBG=90°,∴∠ECB+∠CBG=90°,∵CG⊥CE,∴∠CBG=∠BCG,∴BG=CG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,∴∠GCF=∠CFG,∴CG=GF;(2)设C(m,0),F(m,﹣m+8),D(m,8),直线OD的解析式为y=x,两直线y=x与y=﹣x+8的交点为E,x=﹣x+8,∴x=,∴E(,),∴EC2=,CF2=,EF2=,当EC=EF时,=,∴m=;当CF=EF时,=,∴m=4;当EC=EF时,=,∴m=6;此时C与F重合,不合题意;综上所述:m=4或m=时△CEF是等腰三角形;【点评】本题考查一次函数图象与性质;等腰三角形的性质;三角形全等;动点问题;能够熟练用三角形的判定方法证明三角形全等,利用勾股定理结合等腰三角形的性质求点的坐标,计算准确是解题的关键.28.(10分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C 的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.【分析】(1)由一次函数的解析式求出A、B两点坐标,再根据A、C两点坐标求出b、c即可确定二次函数解析式;(2)由平移的性质设E(m,m﹣3),则D(m+3,m﹣6),代入抛物线的解析式则可求出点D的坐标;(3)分两种情况讨论:①△COM∽△PFC,②△COM∽△CFP,可求得点P的横坐标.【解答】解:∵一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B两点,∴A(3,0),B(0,﹣3),。

最新江苏省苏州市重点学校2019年最新中考数学一模试题及答案(已审阅)

最新江苏省苏州市重点学校2019年最新中考数学一模试题及答案(已审阅)

2019年初中毕业暨升学模拟考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0. 5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0. 5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.―4的倒数是( )A. 4B. ―4C. 14D. 14- 2.数据―1,0,1, 2,3的平均数是( )A. ―1B. 0C. 1D. 53.过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A. 3.12×104B. 3.12×105C. 3.12×106D. 0.312×107 4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过1 5min 的频率为( )A. 0B. 0.4C. 0.5D. 0.9 5.下列关于x 的方程中一定有实数根的是( )A. 220x x -+= B. 220x x +-= C. 220x x ++= D. 210x +=6.在半径为1的⊙O 中,弦1AB =,则弧AB 的长是( ) A.6π B. 4πC. 3πD. 2π7.如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点,M N 在边OB 上,PM PN =,若2MN =,则OM =( )A .3 B. 4 C. 5 D .68.如图,在菱形ABCD 中,DE AB ⊥,3cos ,25A BE ==,则tan DBE ∠的值是( ) A .12B. 2C.D .9.对任意实数x,点2(,2)P x x x -一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限 10.如图,四边形ABCD 的对角线交于点O ,且//AB CD .有以下四个结论: ①AOB COD ∆∆: ②AOD ACB ∆∆: ③::DOC AOD S S DC AB ∆∆= ④AOD BOC S S ∆∆=其中,始终正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.计算: 42a a ÷= .12.小丽近6个月的手机话费(单位:元)分别为: 18,24,37,28,24,26.这组数据的中位数是 元.13.如图,点,,B C D 在同一条直线上,//,54CE AB A ∠=︒,如果36ECD ∠=︒,那么ACB ∠ = º.14.已知点(,)P a b 在一次函数43y x =+的图象上,则代数式42a b --的值等于 .15.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 16.如图,已知//,30,AB CD A BC AD ∠=︒⊥于O .若5BC =,则AD =.17.如图,点,,,A B C D 在⊙O 上,点O 在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= 度.18.如图,将ABC ∆沿边AC 翻折得到ADC ∆,在边AB 上取一点E (非A 和B 点),连结,DE F 为DE 中点,FH DE ⊥交AC 于H .若2tan 5BAC ∠==,则DH DE的值= .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算: 01)2+-20.(本题满分5分)解不等式组: 221212x x x x -≤⎧⎪⎨+>--⎪⎩21.(本题满分6分)先化简,再求值: 22(1)(1)1a a a -+÷++,其中1a =.22.(本题满分6分)西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?23.(本题满分8分)在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小 学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分 布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生, 进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题: (1)从图②中,我们可以看出人均捐赠图书最多的是 年级; (2)估计九年级共捐赠图书多少册? (3)全校大约共捐赠图书多少册?24.(本题满分8分)如图,AOB ∆和COD ∆均为等腰直角三角形,90,AOB COD D ∠=∠=︒ 在AB 上. (1)求证: AOC BOD ∆≅∆;(2)若20ACD ∠=︒,求ADC ∠的度数.25.(本题满分8分)已知直线112y x =+与x 轴交于点A ,与反比例函数(0)ky x x=>的图像交于点,E B 为该直线上不同于E 的一点,BC x ⊥轴于(6,0)C ,交(0)ky xx=>的图像于点D .(1)求点B 的坐标;(2)连结ED ,若EB ED =,求k 的值.26.(本题满分10分)为了考前放松心情,小明利用清明小长假上山游玩,设小明出发x min 后行走的路程为y m.图中的折线表示小明在整个行走过程中y 与x 的函数关系. (1)小明途中体息了 min .(2)求y 与x 的函数关系式;(并写出自变量的取值范围)(3)一名挑山工(搬运物品上山的工人)在小明出发15分钟后挑担上山,途中他与小明相遇了两次。

吴江一模中考数学试卷答案

吴江一模中考数学试卷答案

---吴江一模中考数学试卷答案一、选择题(每题3分,共30分)1. 若\( a > b \),则下列不等式中正确的是()A. \( a + 2 > b + 2 \)B. \( a - 2 > b - 2 \)C. \( a - 2 < b - 2 \)D. \( a + 2 < b + 2 \)答案:A2. 下列函数中,是反比例函数的是()A. \( y = 2x + 3 \)B. \( y = \frac{2}{x} \)C. \( y = x^2 + 1 \)D. \( y = 3x \)答案:B3. 在等腰三角形ABC中,AB=AC,点D是BC的中点,若\( \angle A = 60^\circ \),则\( \angle ADC \)的度数是()A. \( 30^\circ \)B. \( 45^\circ \)C. \( 60^\circ \)D. \( 90^\circ \)答案:C4. 若\( x^2 - 4x + 3 = 0 \),则\( x^3 - 8 \)的值为()A. 1B. 3C. 5D. 7答案:A5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆答案:C二、填空题(每题3分,共30分)6. 若\( a = 3 \),\( b = -2 \),则\( a^2 - b^2 = \)__________。

答案:137. 函数\( y = 2x - 1 \)的图象与x轴的交点坐标为__________。

答案:(1/2,0)8. 在直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标为__________。

答案:(1,1)9. 若\( \angle A = 45^\circ \),\( \angle B = 2\angle A \),则\( \angleB = \)__________。

2019-2020年苏州市初三中考数学一模模拟试卷【含答案】

2019-2020年苏州市初三中考数学一模模拟试卷【含答案】

2019-2020年苏州市初三中考数学一模模拟试卷【含答案】一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;的面积;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2,在Rt △ACO 中,AO =,∴sin ∠OAB =. 故答案为:. 15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm ,∴△OBC 是等边三角形,∴∠BOC =60°,∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°.∴∠A =30°或150°.故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2,∴AP =PE =x ,PD =AD ﹣AP =2﹣x ,∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x 故答案为:y ═﹣x 2+3x .三.解答题17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学一模模拟试卷一.选择题(满分30分,每小题3分)1.估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.3.下列计算正确的是()A.3x2﹣2x2=1 B. +=C.x÷y•=x D.a2•a3=a54.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较6.如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.8.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=09.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二.填空题(满分18分,每小题3分)11.因式分解:a3﹣9a=.12.方程=的解是.13.已知,如图,扇形AOB中,∠AOB=120°,OA=2,若以A为圆心,OA长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为D,则图中阴影部分的面积为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.已知点A是双曲线y=在第一象限的一动点,连接AO,过点O做OA⊥OB,且OB=2OA,点B在第四象限,随着点A的运动,点B的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.16.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.三.解答题17.(9分)(x+3)(x﹣1)=12(用配方法)18.(9分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.19.(10分)先化简,再求值(1﹣)÷,其中x=4.20.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(12分)如图,在⊙O 中,点A 是的中点,连接AO ,延长BO 交AC 于点D . (1)求证:AO 垂直平分BC .(2)若,求的值.22.(12分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数y =(x >0)的图象与边BC 交于点F(1)若△OAE 的面积为S 1,且S 1=1,求k 的值;(2)若OA =2,OC =4,反比例函数y =(x >0)的图象与边AB 、边BC 交于点E 和F ,当△BEF 沿EF 折叠,点B 恰好落在OC 上,求k 的值.23.(12分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣,过点A(﹣3,2)和点B(2,),与y轴交于点C,连接AC交x轴于点D,连接OA,OB(1)求抛物线y=ax2+bx﹣的函数表达式;(2)求点D的坐标;(3)∠AOB的大小是;(4)将△OCD绕点O旋转,旋转后点C的对应点是点C′,点D的对应点是点D′,直线AC′与直线BD′交于点M,在△OCD旋转过程中,当点M与点C′重合时,请直接写出点M到AB的距离.25.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案1.B.2.B.3.D.4.D.5.B.6.A.7.C.8.C.9.A.10.D.11.a(a+3)(a﹣3).12.x=﹣413.π+.14.x=3.15.y=﹣.16..17.解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)18.解:(1)如图点P即为所求;(2)如图点Q即为所求;19.解:原式=(﹣)÷=•=,当x=4时,原式==.20.解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.21.(1)证明:延长AO交BC于H.∵=,∴OA⊥BC,∴BH=CH,∴AO垂直平分线段BC.(2)解:延长BD交⊙O于K,连接CK.在Rt△ACH中,∵tan∠ACH==,∴可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,∵OB2=BH2+OH2,∴r2=9k2+(4k﹣r)2,∴r=k,∴OH=AH=OA=k,∵BK是直径,∴∠BCK=90°,∴CK⊥BC,∵OA⊥BC,∴OA∥CK,∵BO=OK,BH=HC,∴CK=2OH=k,∵CK∥OA,∴△AOD∽△CKD,∴===.22.解:(1)设E(a,b),则OA=b,AE=a,k=ab∵△AOE的面积为1,∴k=1,k=2;答:k的值为:2.(2)过E作ED⊥OC,垂足为D,△BEF沿EF折叠,点B恰好落在OC上的B′,∵OA=2,OC=4,点E、F在反比例函数y=的图象上,∴E(,2),F(4,),∴EB=EB′=4﹣,BF=B′F=2﹣,∴=,由△EB′F∽△B′CF得:,∵DE=2,∴B′C=1,在Rt△B′FC中,由勾股定理得:12+()2=(2﹣)2,解得:k=3,答:k的值为:3.23.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.24.解:(1)∵抛物线y=ax2+bx﹣过点A(﹣3,2)和点B(2,)∴解得:∴抛物线的函数表达式为:y=x2+x﹣(2)当x=0时,y=ax2+bx﹣=﹣∴C(0,﹣)设直线AC解析式为:y=kx+c∴解得:∴直线AC解析式为y=﹣x﹣当y=0时,﹣x﹣=0,解得:x=﹣1∴D(﹣1,0)(3)如图1,连接AB∵A(﹣3,2),B(2,)∴OA2=32+(2)2=21,OB2=22+()2=7,AB2=(2+3)2+()2=28 ∴OA2+OB2=AB2∴∠AOB=90°故答案为:90°.(4)过点M作MH⊥AB于点H,则MH的长为点M到AB的距离.①如图2,当点M与点C′重合且在y轴右侧时,∵△OCD绕点O旋转得△OC'D'(即△OMD)∴OM=OC=,OD'=OD=1,∠MOD'=∠COD=90°∴MD'==2,∠MD'O=60°,∠OMD'=30°∵∠MOD'=∠AOB=90°∴∠MOD'+∠BOM=∠AOB+∠BOM即∠BOD'=∠AOM∵OA=,OB=∴∴△BOD'∽△AOM∴∠BD'O=∠AMO=60°,∴∠AMD'=∠AMO+∠OMD'=60°+30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'﹣MD'=t﹣2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t﹣2)2=28解得:t1=﹣2(舍去),t2=3∴AM=3,BM=1∵S△AMB=AM•BM=AB•MH∴MH=②如图3,当点M与点C′重合且在y轴左侧时,∴∠MOD'﹣∠AOD'=∠AOB﹣∠AOD'即∠AOM=∠BOD'∴同理可证:△AOM∽△BOD'∴∠AMO=∠BD'O=180°﹣∠MD'O=120°,∴∠AMD'=∠AMO﹣∠OMD'=120°﹣30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'+MD'=t+2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t+2)2=28解得:t1=2,t2=﹣3(舍去)∴AM=2,BM=4=AM•BM=AB•MH∵S△AMB∴MH=综上所述,点M到AB的距离为或.25.(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.中学数学一模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列运算正确的是( ) A .a2+a3=a5 B .(2a3)2=2a6 C .a3•a4=a12 D .a5÷a3=a2 7.有一组数据:1,2,3,6,这组数据的方差是( )A .2.5B .3C .3.5D .48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为( ) A .9cm2B .16cm2C .56cm2D .24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是( ) A .1000(1-x%)2=640B .1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.三、解答题(共54分)15.(1)计算:10 120192|3tan3022018π-︒⎛⎫⎛⎫--++⎪ ⎪⎝⎭⎝⎭;(2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt△ABC的直角边BC为直径作⊙O,交斜边AB于点D,作弦DF交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作Rt△ABC,且∠ACB=90°,tanA=3,点B位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;(3)在(2)的条件下(如图2),AB交x轴于点D,点E为直线AB上方抛物线上一动点,过点E作EF⊥BC于F,直线FF分别交y轴、AB于点G、H,若以点B、G、H为顶点的三角形与△ADC相似,求点E的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,。

2019年江苏省苏州市吴江市中考数学模拟试卷

2019年江苏省苏州市吴江市中考数学模拟试卷
②如图 2 中,当∠MON=∠ONM 时,
第 10 页(共 19 页)
∵∠BOC=∠OMN, ∴∠A+∠ACO=∠ACO+∠MOC, ∴∠MOC=∠A, ∵∠MCO=∠ACO, ∴△OCM∽△ACO, ∴OC2=CM•CA, ∴25=CM•8, ∴CM= ,
故答案为 或 .
16.【解答】解:连接 OA、OC, ∵∠D=45°, ∴∠AOC=2∠D=90°,

14.(3 分)分式方程 = 的解是

15.(3 分)如图,O 为 Rt△ABC 斜边中点,AB=10,BC=6,M,N 在 AC 边上,∠MON=∠B,若△OMN 与△
OBC 相似,则 CM=

第 2 页(共 19 页)
16.(3 分)如图,四边形 ABCD 是⊙O 的内接四边形,⊙O 的半径为 2,∠D=45°,则劣弧 AC 的长为
4.【解答】解:A、 =2 不是最Hale Waihona Puke 二次公式,故本选项错误;B、
是最简二次根式,故本选项正确;
C、 = 不是最简二次根式,故本选项错误;
D、 = 不是最简二次根式,故本选项错误;
故选:B.
第 7 页(共 19 页)
5.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y), 故选:C.
则劣弧 AC 的长为:
=π.
故答案为 π.
17.【解答】解:设 CF=a,DF=2a,S△CEF=S,则 CD=3a. ∵四边形 ABCD 是平行四边形, ∴AB=CD=3a,AB∥CF,
第 11 页(共 19 页)
∴△CFE∽△ABE, ∴ = =,

=,
∴S△ABE=9S, ∴S△BCE=3S, ∴S 平行四边形 ABCD=2•S△ABC=24S, ∴S△CEF:S▱ ABCD=1:24, 故答案为 1:24. 18.【解答】解:把 A(2,m)代入 y=2x 得 m=2×2=4,则 A(2,4), 因为正比例函数 y=2x 的图象与反比例函数 y= (k≠0)的图象的两交点关于原点对称,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


16.(3 分)如图,AB 是半圆 O 的直径,点 C,D 是半圆 O 的三等分点,若弦 CD=6,则
图中阴影部分的面积为

17.(3 分)在一次综合社会实践活动中,小东同学从 A 处出发,要到 A 地北偏东 60°方向
第 2 页(共 23 页)
的 C 处,他先沿正东方向走了 2 千米到达 B 处,再沿北偏东 15°方向走,恰能到达目的
11.(3 分)﹣2 的相反数是

12.(3 分)当
时,分式 有意义.
13.(3 分)若圆锥的母线为 5,底面半径为 3,则圆锥的侧面积为

14.(3 分)若 a+b=﹣3,ab=2,则 a2+b2=

15. (3 分)如果 α,β 是一元二次方程 x2+3x﹣2=0 的两个根,则 α2+4α+β+2019 的值是
B.115°
C.120°
第 1 页(共 23 页)
D.125°
8.(3 分)如图,在边长为 1 的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方 形网格中投针,落在△ABC 内部的概率是( )
A.
B.
C.
D.
9.(3 分)如图,在等腰△ABC 中,AB=AC,BC=3 ,sinA= ,则 AB 的长为( )
(1)当点 E 的坐标为(3,n)时,求 n 和 k 的值; (2)若点 E 是 BC 的中点,求 OD 的长.
第 4 页(共 23 页)
26.(10 分)如图,⊙O 是四边形 ABCD 的外接圆.AC、BD 是四边形 ABCD 的对角线,BD 经过圆心 O,点 E 在 BD 的延长线上,BA 与 CD 的延长线交于点 F,DF 平分∠ADE. (1)求证:AC=BC; (2)若 AB=AF,求∠F 的度数;
A.7
B.8
C.9
D.10
ห้องสมุดไป่ตู้
3.(3 分)有一组数据:1,2,2,5,6,8,这组数据的中位数是( )
A.2
B.2.5
C.3.5
D.5
4.(3 分)下列运算结果正确的是( )
A.(a2)3=a5
B.(a﹣b)2=a2﹣b2
C.﹣3a2b﹣2a2b=﹣5a2b
D.﹣a2b+a2=﹣b
5.(3 分)如图,△ABC 是等边三角形,点 C 在直线 b 上,若直线 a∥b,∠1=34°,则∠
20.(5 分)解不等式组:
21.(5 分)先化简,再求值:(1﹣ )÷(
),其中 x=

22.(7 分)2018 年 8 月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是 最新的复兴号动车组,提速后车速是之前的 1.5 倍,100 千米缩短了 10 分钟,问提速前 后的速度分别是多少千米与小时?
(3)若
,⊙O 半径为 5,求 DF 的长.
27.(10 分)如图,抛物线 y=ax2﹣3ax﹣4a(a<0)与 x 轴交于 A,B 两点,直线 y= x+ 经过点 A,与抛物线的另一个交点为点 C,点 C 的横坐标为 3,线段 PQ 在线段 AB 上移 动,PQ=1,分别过点 P、Q 作 x 轴的垂线,交抛物线于 E、F,交直线于 D,G. (1)求抛物线的解析式; (2)当四边形 DEFG 为平行四边形时,求出此时点 P、Q 的坐标; (3)在线段 PQ 的移动过程中,以 D、E、F、G 为顶点的四边形面积是否有最大值,若 有求出最大值,若没有请说明理由.
地 C,如图所示,则 A、C 两地相距
千米.
18.(3 分)如图,在 Rt△ABC 中,∠ACB=90°,AC=10,BC=5,将直角三角板的直角
顶点与 AC 边的中点 P 重合,直角三角板绕着点 P 旋转,两条直角边分别交 AB 边于 M,
N,则 MN 的最小值是

三、解答題:(本大题共 10 小题,共 76 分,把解答过程写在答题卡相应的位置上,解答时 应写出必要的计算过程、推理步骤或文字说明) 19.(5 分)计算:|﹣ |+(π﹣1)0﹣2cos30°
2 的度数为(
A.26°
B.28°
C.34°
D.36°
6.(3 分)已知反比例函数 y= (k 为常数),当 x<0 时,y 随 x 的增大而减小,k 的取
值范围是( )
A.k<0
B.k>0
C.k<3
D.k>3
7.(3 分)如图,△ABC 内接于圆 O,∠OAC=25°,则∠ABC 的度数为( )
A.110°
24.(8 分)如图,在平行四边形 ABCD 中,AC⊥DE,AE=AD,AE 交 BC 于 O. (1)求证:∠BCA=∠EAC; (2)若 CE=3,AC=4,求△COE 的周长.
25.(8 分)如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y= 在第一象限的图象经过点 D,交 BC 于 E.
23.(8 分)为了缓解上学时校门口的交通压力,某校随机抽取了部分学生进行了调查,来 了解学生的到校方式,并根据调查结果绘制了如下统计图表: 某校学生到校方式抽样调查统计表
到校方式 学生人数
乘车
90
骑车
m
第 3 页(共 23 页)
步行
20
其他
50
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是
A.15
B.5
C.20
D.10
10.(3 分)若二次函数 y=ax2+(a+2)x+4a 的图象与 x 轴有两个交点(x1,0),(x2,0),
且 x1<1<x2,则 a 的取值范围是( )
A.﹣ <a<﹣ B.﹣ <a<0
C.0<a<
D. <a<
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分,把答案直接填在答题卡相对应的位 置上)
2019 年江苏省苏州市吴江市中考数学一模试卷
一、选择题:(本大题共有 10 小题,每小题 3 分,共 30 分,以下各题都有四个选项,其中 只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.) 1.(3 分)下列实数中,无理数是( )
A.0
B.﹣1
C.
D.
2.(3 分)一个整数 8150…0 用科学记数法表示为 8.15×1010,则原数中“0”的个数为( )
,m=

(2)扇形统计图中学生到校方式是“步行”所对应扇形的圆心角的度数是

(3)若该校共有 1500 名学生,请根据统计结果估计该校到校方式为“乘车”的学生人
数;
(4)现从四名采取不同到校方式的学生中抽取两名学生进行问卷调查,请你用列表或画
树状图的方法,求出正好选到到校方式为“骑车”和“步行”的两名学生的概率.
相关文档
最新文档