圆、相似三角形、二次函数经典综合题精品教案
二次函数与相似三角形经典教学案

二次函数与相似三角形一、二次函数的系数问题【例1】 ⑴ 二次函数2y ax bx c =++的图象如下左图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号.⑵(福州)如下右图所示,二次函数2(0)y ax bx c a =++≠的图象经过点()12-,坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1b <-;④284b a ac +>.其中正确的有( ) A.1个 B.2个 C .3个 D .4个【巩固】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断24a b c a b c a b c b ac ++-+-、、、、、的符号. 【例2】 (甘肃)如图为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的其中一根为x=-1;③a+b+c=0; ④当1x >时,y 随x 值的增大而减小;⑤当0y >时,13x -<<.其中,正确的说法有 _______.(请写出所有正确说法的序号)【巩固】(湖北黄石)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤【例3】 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:① 0abc >;②b ac <+;③ 420a b c ++>;④ 23c b <;⑤ ()a b m am b +>+,(1m ≠的实数)其中正确的结论有( ) A. 2个 B. 3个 C. 4个 D. 5个【巩固】(08天门)已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③0a b c -+<;④0a c +>,其中正确结论的个数为( )A. 4个B. 3个C. 2个D. 1个【例4】 已知函数2y ax bx c =++(0a≠)的图象,如图所示.求证:22()a c b +<【例5】 2y ax bx c =++的图象如图所示.并设|||||2||2|M a b c a b c ab a b =++--+++--则() A .0M > B .0M =C .0M <D .不能确定M 为正,为负或为0【例6】 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围【巩固】 已知抛物线2y ax bx c =++的一段图象如图所示.⑴确定a 、b 、c 的符号;⑵求a b c ++的取值范围.【例7】 设二次函数2(0)y ax bx c a =++≠的图象如图所示,若OA OB =,求abc 的取值范围.二、二次函数图像特征【例8】 (09烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )【例9】 若二次函数c bx ax y ++=2的图象的开口向下,顶点在第一象限,抛物线交于y 轴的正半轴;则点⎪⎭⎫ ⎝⎛b c a P ,在( ).(A)第一象限 (B)第二象限限 (C) 第三象限 (D) 第四象限【例10】 ⑴(09湖北荆门)函数1y ax =+与()210y ax bx a =++≠的图象可能是( )(2) (09兰州)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是【巩固】(09嘉兴)已知,在同一直角坐标系中,函数与的图象有可能是( )ABCDDCB A 0≠a ax y =2ax y =1. ⑴ 下左图所示为二次函数2y ax bx c =++的图象,则一次函数by ax c=-的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 ⑵ 二次函数2y ax bx c =++的图象的一部分如下右图所示,试求a b c ++的取值范围.⑶(2008天津)已知,如图所示为二次函数2y ax bx c =++的图象,则一次函数y ax bc =+的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2. (092()0y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个 B .3个 C .2个 D .1个3. (1) 已知二次函数2y ax bx c =++(其中a 是正整数)的图象经过点()14A -,和()21B ,,且与x 轴 有两个不同的交点,求b c +的最大值.(2)二次函数2y ax bx c =++的图象一部分如下图,求a 的取值范围.4. ⑴ 函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( )A. 右移三个单位,下移四个单位B. 右移三个单位,上移四个单位C. 左移三个单位,下移四个单位D. 左移四个单位,上移四个单位 ⑵ (07萧山)二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( )A习题精讲A.向左移动1个单位,向上移动3个单位.B.向右移动1个单位,向上移动3个单位.C.向左移动1个单位,向下移动3个单位.D.向右移动1个单位,向下移动3个单位.2.如图,抛物线y=12x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断ABC△的形状,证明你的结论;(3)点(0)M m,是x轴上的一个动点,当MC+MD的值最小时,求m的值.三、相似三角形一、相似三角形的判定定理(1)有两个角对应相等的两个三角形相似;(2)两边对应成比例,且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)直角边和一条斜边对应成比例的两个直角三角形相似.二、相似三角形的性质(1)相似三角形对应的高线、中线、角平分线的比等于相似比;(2)相似三角形的周长之比等于相似比;(3)相似三角形的面积比等于相似比的平方.【例1】(2007年北师大附中期末试题)如图,D、E是ABC∆的边AC、AB上的点,且AD AC⋅=AE AB⋅,求证:ADE B∠=∠.巩固:如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,∠ADE=∠ACE, ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.A ED CBA EDC。
圆、相似三角形、二次函数经典综合题精品教案

相似、圆、二次函数---◆◆◆综合精品教案 认真解答,一定要细心哟! (培优)【1】已知:如图,△ABC 内接于⊙O ,∠BAC 的平分线交BC 于D ,交⊙O 于E ,EF ∥BC 且交AC 延长线于F ,连结CE.求证:(1)∠BAE=∠CEF ;(2)CE 2=BD ·EF.【2】如图,△ABC 内接于圆,D 为BA 延长线上一点,AE 平分∠BAC 的外角,交BC 延长线于E ,交圆于F.若AB=8,AC=5,EF=14.求AE 、AF 的长.BC FEAD O.ABD CEF【3】如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接(1)弦长AB等于▲(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.相似、圆、二次函数---◆◆◆综合精品教案 认真解答,一定要细心哟! (培优)【4】如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M,且ME = :2:5MD CO =.(1)求证:GEF A ∠=∠.(2)求O 的直径CD 的长.【5】如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。
(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.第9题图【6】相似、圆、二次函数---◆◆◆综合精品教案认真解答,一定要细心哟! (培优)【7】如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连结AB并延长交⊙O2于点C,连结O2C.(1)求证:O2C⊥O1O2;(2)证明:AB·BC=2O2B·BO1;(3)如果AB·BC=12,O2C=4,求AO1的长.【8】如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB 于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.第24题图相似、圆、二次函数---◆◆◆综合精品教案 认真解答,一定要细心哟! (培优)【9】 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.图(3)l '【10】如图l0.在平面直角坐标系xoy中,AB在x轴上,AB=10.以AB为直径的⊙O’与y轴正半轴交于点C.连接BC,AC。
圆与相似三角形综合题 教学设计

圆与相似三角形综合题教学设计1.题型地位分析以考纲规定,“几何综合题”为数学解答题(三)中出现的题型,一般出现在中考考卷的第 24 题,而近几年来都是以圆为主体图形来考察几何证明。
近六年广东省中考数学第 24 题的考查概况如下:区分考生数学成绩的关键题目之一。
2.学情分析首先,经历了平行线、三角形、四边形、圆等各种图形的推理训练和几何证明训练,学生们已经建立了较强的推理意识、培养了较强的图形观察力,也积累了较丰富的几何模型。
这是学生解决圆与相似三角形综合题的有利因素。
但由于对各种几何图形的学习是分散在六册书的不同章节,平常都是相对独立地训练某个知识点,一旦将各类图形和问题综合起来,学生就会感觉复杂而手足无措,不懂有逻辑地将大问题细化成小问题,无法通过知识的转化和迁移与平时的练习联系起来,这是学生解决综合题的不利因素。
3.教学任务分析知识与技能目标:(1)通过例题讲解,能将相似三角形与圆的相关内容整合成知识系统,掌握在圆的图形背景下如何找到证明相似的条件,然后通过相似找到成比例线段,达到求证和求算的目的。
(2)熟练掌握圆与相似三角形综合题解题的思考方法和一般流程。
过程与方法目标:能通过已知和未知双向推敲分析题干,发展合情推理和演绎推理的能力,体会探索与证明过程中所蕴含的抽象、类比、转化、数形结合等数学思想。
情态态度与价值观目标:在运用数学表述和解决问题的过程中,学生不仅学到科学的分析方法,而且体验到探究的乐趣,体会到成功的喜悦,增强备考中考的信心。
4.重难点分析教学重点:学会分析圆与相似三角形综合问题的方法和解题流程。
教学难点:在复杂的图形中识别相似形;通过已知和未知双向分析推导圆与相似三角形综合题,找到解题突破口。
5.教法与学法分析5.1教法分析本课采用师生互动的“探究式教学”法,抓住学生的最近发展区,引导学生从已知探未知,再从未知寻已知。
5.2学法指导学法强调问题引导下的“自主探索法”,组织学生开展“细观察,强联系,用脑想,动手做”的研讨式学习模式。
相似三角形的综合应用优秀教案

相似专题复习---“一线三等角模型”教材分析及学习者分析1.相似形在教材中的地位作用相似形的知识有很重要的实用价值,它与人类的生产和生活有着广泛的联系,如测量、绘图、电影、照相等都涉及相似形的知识。
从研究图形的全等发展到研究图形的相似,用几何变换的观点来看,就是从研究图形的保距变换发展到研究图形的保角变换,从研究线段的相等发展到研究线段的比,这是认识上的一次深化。
学生在学习了三角形和四边形之后,进一步学习相似形的知识,是对于直线形研究的继续。
相似形与前面学习的全等形之间既有密切的联系,又有明显的区别。
全等形是相似形的特殊情况,相似形比全等形更具有一般性。
所以,这一章所研究的知识实际上是前面学习的全等形问题的发展和拓广。
相似形与后续的“解直角三角形”和“圆”的内容有着密切的联系,在研究三角函数的定义、与圆有关的比例线段时都要依赖相似形的知识。
同时,有了全等形和相似形的知识,又可大大充实和丰富圆的研究内容。
所以,相似形在学习平面几何中起着承上启下的作用。
2.学生的认识发展分析我校是一所市级示范学校,学生学习数学热情较高,乐观向上;乐于参与,有较好的合作精神。
学生在学习本节课之前已经学习了四边形、三角形、相似三角形一些基础知识,对于相似三角形的判定有了一些了解和认识。
尽管如此,对于相似三角形和其他知识之间的联系方面还有待提高。
特别是相似三角形在其它背景中的应用还不熟练。
在课堂中,要充分调动学生的积极性,为学生营造一个良好的学习氛围,积极引导学生自主学习、探究发现、合作交流。
学生虽然对相似形和四边形、三角形等知识有一定的感性认识,但是更多的是在特定的范围内研究的,对于相似形的工具性作用,学生还不能合理运用。
特别是相似三角形和其他知识的紧密结合,对我校学生来讲还是有一定难度的。
因此在教学中,我采取从特殊到一般,再由一般到特殊的方式。
从学生已有认知入手,通过提出关键性问题,师生交流讨论、质疑,释疑等活动,逐步使学生思维走向深刻,一、教学目标1.学生会运用两组对应角分别相等的两个三角形为相似三角形的判定方法证明两个三角形相似。
圆、相似三角形、二次函数经典综合题

中考数学《圆》综合复习【1】已知:如图,△ABC 内接于⊙O ,∠BAC 的平分线交BC 于D ,交⊙O 于E ,EF ∥BC 且交AC 延长线于F ,连结CE.求证:(1)∠BAE=∠CEF ;(2)CE 2=BD ·EF.【2】如图,△ABC 内接于圆,D 为BA 延长线上一点,AE 平分∠BAC 的外角,交BC 延长线于E ,交圆于F.若AB=8,AC=5,EF=14.求AE 、AF 的长.【3】如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接 CO 并延长CO 交于⊙O 于点D ,连接AD . (1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.【4】如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GECD ,的交点为M ,且ME = :2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.B CF E A D O .A B D C EF 第9题图【5】如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。
(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 【6】【7】如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C. (1)求证:O 2C ⊥O 1O 2; (2)证明:AB ·BC=2O 2B ·BO 1;(3)如果AB ·BC=12,O 2C=4,求AO 1的长.O 1O 2A B【8】如图,在平面直角坐标系中,点A (10,0),以OA 为 直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连 结OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF (1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.【9】 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根. (1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+第24题图图(3)l '【10】如图l0.在平面直角坐标系xoy中,AB在x轴上,AB=10.以AB为直径的⊙O’与y轴正半轴交于点C.连接BC,AC。
第14讲 圆与相似三角形的综合 教案

中考压轴题——圆和相似三角形的综合1. 如图,AB为⊙O的直径,CF⊥AB于E,交⊙O于D,AF交⊙O于G.求证:AC·DG = AG·DF2 如图,PD切⊙O于D,PC = PD,B为⊙O上一点,PB交⊙O于A,连结AC、BC. 求证:AC·PB = PC·BC3. 如图,⊙O是弦AB∥CD,延长DC到E,EB延长线交⊙O于F,连结DF.求证:AD·ED = BE·DF证明:连结CB4. 如图,△ABC内接于⊙O,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G.求证:AB 2 = BG·BC5. 如图,AB是⊙O的直径,弦CD垂直AB于M,P是CD延长线上一点,PE切⊙O于E,BE交CD于F. 求证:PF 2 = PD·PC6. 如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C作CD⊥BA,垂足为D.求证:①∠DAC = 2∠B;② CA 2 = CD·CO7. 如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E.求证:①AE∥BD;②AD 2 = DF·AE证明:8. 已知:,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点.求证:ET = ED9.已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.试题解析:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN 是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MN=QN•sin∠MQN,∴MN=OP•sin∠MQN=2×sin60°=2MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.10:(1)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP长的最小值是.(2)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接AC,①求线段A′M的长度; ②求线段A′C长的最小值.试题解析:(1)1(2)①∵△AMN沿MN所在的直线翻折得到△A′MN ∴A′M=AM=1②由①知,点A′在以点M为圆心,1为半径的圆上连接CM交圆M于点A′,过点M向CD的延长线作垂线,垂足为点H.在Rt△MHD中,DH=DM·cos∠·sin∠在Rt△CHM中,根据勾股定理可得∴A′1.11.如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG ⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.12.如图所示,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径13:如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,60BAD ∠= ,点A 的坐标为(-2,0).(1)求C 点的坐标;(2)求直线AC 的函数关系式; (3)动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?13:(1) 菱形ABCD 中,点A 的坐标为(2,0)-,60BAD ∠= ,90AOD ∠= ABD ∴∆为正三角形,4AB =AB CD = 4x C ∴=(2)由(1)得设直线AC 的函数表达式为y kx b =+,则∴直线AC 的函数表达式为(3)由图可猜想,有四个满足要求的圆 四边形ABCD 是菱形 60DCB BAD ∴∠=∠= ,123430∠=∠=∠=∠= ,4AD DC CB BA ==== 如图所示,①点P 在AD 上与AC 相切时,122AP r == 12t ∴= ②点P 在DC 上与AC 相切时,222CP r == ∴26AD DP += 26t ∴= ③点P 在BC 上与AC 相切时,322CP r == 310AD DC CP ∴++= 310t ∴= ④点P 在AB 上与AC 相切时,422CP r == 414AD DC CB BP ∴+++= 414t ∴= 综上,当2t =或6t =或10t =或14t =时,以点P 为圆心、以1为半径的圆与对角线AC 相切.。
九年级数学下册《相似三角形》教案、教学设计

一、教学目标
(一)知识与技能
1.理解并掌握相似三角形的定义,能够识别图形中的相似三角形。
2.掌握相似三角形的性质,如对应角相等、对应边成比例,能够运用性质解决相关问题。
3.学会使用相似三角形的判定方法,如AA、SAS、SSS等,能够判断两个三角形是否相似。
4.能够运用相似三角形的知识解决实际问题,如测量物体的高度、计算角度等。
2.提出问题:询问学生是否知道这些图形中的相似三角形,它们有什么特点?如何判断两个三角形是相似的?
3.学生回答:鼓励学生积极思考,回答问题,分享他们的观察和发现。
4.教师总结:根据学生的回答,总结相似三角形的初步概念,为新课的学习做好铺垫。
(二)讲授新知
1.教学内容:详细讲解相似三角形的定义、性质(对应角相等、对应边成比例)及判定方法(AA、SAS、SSS)。
(ቤተ መጻሕፍቲ ባይዱ)情感态度与价值观
1.培养学生积极主动探索数学知识的热情,增强学生学习数学的自信心。
2.培养学生严谨、细致的学习态度,对待数学问题要有耐心和毅力。
3.培养学生善于发现生活中的数学问题,体会数学在现实生活中的应用价值。
4.培养学生的审美观念,欣赏相似三角形在几何图形中的美感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理。在此基础上,学习相似三角形的知识,对学生来说是水到渠成的过程。然而,由于相似三角形涉及的概念和性质较为抽象,学生在理解上可能存在一定困难。因此,在教学过程中,教师需要关注以下几点:
(3)单元测试:通过单元测试,检验学生对相似三角形知识的掌握程度,发现并解决学生存在的问题。
二次函数与相似三角形综合题教案

O 二次函数与相似三角形综合题教学目标:教学目标:1、会求二次函数解析式;、会求二次函数解析式;2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。
度,从而得出点的坐标。
教学重点:教学重点:1、求二次函数解析式;、求二次函数解析式;2、相似三角形的判定与性质在二次函数综合题中的运用。
、相似三角形的判定与性质在二次函数综合题中的运用。
教学难点:教学难点:根据条件构造相似三角形解决问题。
根据条件构造相似三角形解决问题。
情感与态度:情感与态度:1、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。
、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。
2、使学生感受在数学学习活动中获得成功的体验,锻炼学生克服困难的意志,建立自信心。
信心。
3、培养学生科学探索的精神。
、培养学生科学探索的精神。
教学过程:教学过程:一、复习巩固一、复习巩固如图,抛物线y=ax 2+b x -2与x 轴交于点A (-(-11,0),B (m ,0)两点,与y 轴交于C 点,且∠点,且∠ACB=90ACB=90ACB=90°,求抛物线的解析式°,求抛物线的解析式°,求抛物线的解析式. .分析:OC 2=OA·=OA·OB OB ∴4=1×4=1×m m ,m=4 ∴B (4,0)设抛物线解析式为y=a(x+1)(x -4) 代入C 点(0,-2) ∴抛物线解析式为213222y x x =--. 二、新授二、新授例题、如图,直线y =-x+3与x 轴、y 轴分别相交于B 、C ,经过B 、C 两点的抛物线y=ax 2+bx+c与x 轴另一交点为A ,顶点为P ,且对称轴是直线x=2x=2,,(1)求抛物线解析式;)求抛物线解析式;(2)连结AC AC,请问在,请问在x 轴上是否存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△为顶点的三角形与△ACB ACB 相似,若存在,请求出Q 点坐标;若不存在,说明理由点坐标;若不存在,说明理由. .(3)D 点为第四象限的抛物线上一点,过点D 作DE ⊥x 轴,交CB 于E ,垂足于H ,过D 作DF ⊥CB ,垂足为F ,交x 轴于G ,试问是否存在这样的点D ,使得△DEF 的周长恰好被x 轴平分?若能,请求出D 点坐标;若不能,请说明理由. [解] (1) 直线3y x =-+与x 轴相交于点B , \当0y =时,3x =,\点B 的坐标为(30),. 又 抛物线过x 轴上的A B ,两点,且对称轴为2x =,根据抛物线的对称性,根据抛物线的对称性, \点A 的坐标为(10),. 3y x =-+ 过点C ,易知(03)C ,,3c \=.又 抛物线2y ax bx c =++过点(10)(30)A B ,,,, ∴(1)(3)y a x x =--,经过C 点(0,3)243y x x \=-+. (2)连结PB ,由2243(2)1y x x x =-+=--,得(21)P -,,设抛物线的对称轴交x 轴于点M ,在Rt PBM △中,1PM MB ==,452PBM PB \== ,∠. 由点(30)(03)B C ,,,易得3OB OC ==,在等腰直角三角形OBC 中,中,45ABC = ∠,由勾股定理,得32BC =.假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与ABC △相似.相似. ①当BQ PB BC AB=,45PBQ ABC == ∠∠时,PBQ ABC △∽△. 即2232BQ=,3BQ \=, 又3BO = ,\点Q 与点O 重合,1Q \的坐标是(00),.②当QB PB AB BC=,45QBP ABC == ∠∠时,QBP ABC △∽△. 即2232QB=,23QB \=. A B C P O xy2x =21P 273333OB OQ OB QB =\=-=-= ,, 2Q \的坐标是703æöç÷èø,. 180********PBx BAC PBx BAC =-=<\¹ ,,∠∠∠∠.\点Q 不可能在B 点右侧的x 轴上.轴上.综上所述,在x 轴上存在两点127(00)03Q Q æöç÷èø,,,,能使得以点P B Q ,,为顶点的三角形与ABC △相似.相似.(3)设D (a ,a 2-4a+34a+3)),则E (a ,-a+3) △DFE ∽△BOC ∴DE :BC=L △DEF :L △BOC ∴2332a a -+=632DFE L D + ∴L △DEF =(21+)×(-a 2+3a) ∴DH+DG=12DFE L D = (21)DH += 2(21)(43)a a +-+- = 12(21+)×(-a 2+3a) ∴243a a -+-=21(3)2a a -+ ∴a 1=2,a 2=3(舍) ∴D (2,-1)应用变式:应用变式:1、在此抛物线上是否存在P 点?使得∠1+∠2=45°,若存在,请求出P 点坐标;若不存在,请说明理由. 分析:分析:(1)延长CP 与x 轴交于E 点,∠1+∠2=45°=∠ABC=∠E+∠2 ∴∠1=∠E ,E E N 的坐标为(113,169)的坐标为(,39)2x -(,24)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1】已知:如图,△ABC接于⊙O,∠BAC的平分线交BC于D,交⊙O于E,EF∥BC且交AC延长线于F,连结CE.求证:(1)∠BAE=∠CEF;(2)CE2=BD·EF.【2】如图,△ABC接于圆,D为BA延长线上一点,AE平分∠BAC的外角,交BC延长线于E,交圆于F.若AB=8,AC=5,EF=14.求AE、AF的长.【3】如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交于⊙O于点D,连接AD.Array(1)弦长AB等于▲(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.【4】如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M ,且46ME =, :2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.【5】如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。
(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.【6】EDGBFC O M 第9题图【7】如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连结AB并延长交⊙O2于点C,连结O2C.(1)求证:O2C⊥O1O2;(2)证明:AB·BC=2O2B·BO1;(3)如果AB·BC=12,O2C=4,求AO1的长.【8】如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.第24题图【9】 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.【10】如图l0.在平面直角坐标系xoy 中,AB 在x 轴上,AB=10.以AB 为直径的⊙O’与y 轴正半轴交于点C .连接BC ,AC 。
CD 是⊙O’的切线.AD ⊥CD 于点D ,tan ∠CAD=12,抛物线2y ax bx c =++过A 、B 、C 三点。
(1)求证:∠CAD=∠CAB ; (2)①求抛物线的解析式;②判断抛物线的顶点E 是否在直线CD 上.并说明理由:(3)在抛物线上是否存在一点P ,使四边形PBCA 是直角梯形.若存在,直接写出点P 的坐标(不写求解过程);若不存在.请说明理由.图(3)l '相似、圆、二次函数---◆◆◆综合答案认真解答,一定要细心哟! (培优)【1】证明:(1)∵EF∥BC,∴∠BCE=∠CEF. 又∵∠BAE=∠BCE,∴∠BAE=∠CEF.(2)证法一:∵∠BAD=∠CAD,∠BAE=∠CEF,∴∠CAD=∠CEF.又∵∠ACD=∠F,∴△ADC∽△ECF.∴CE EFAD AC=.∴CE ADEF AC=. ①又∵∠BAD=∠EAC,∠B=∠AEC,∴△ABD∽△AEC,∴BD ADCE AC=.②由①②得CE BDEF CE=,∴CE2=BD·EF.【2】解:连结BF.∵AE平分∠BAC的外角,∴∠DAE=∠CAE.∵∠DAE=∠BAF,∴∠CAE=∠BAF.∵四边形ACBF是圆接四边形,∴∠ACE=∠F.∴△ACE∽△AFB.∴AC AE AF AB=.∵AC=5,AB=8,EF=14,设AE=x,则AF=14-x,则有5x14x8=-,整理,得x2-14x+40=0.解得x1=4,x2=10,经检验是原方程的解.∴AE=4,AF=10或AE=10,AF=4. 【3】【4】(1)连接DF CD 是圆直径,90CFD ∴∠=,即DF BC ⊥90ACB ∠=,DF AC ∴∥. BDF A ∴∠=∠.在O 中BDF GEF ∠=∠,GEF A ∴∠=∠. ····························· 2分 (2)D 是Rt ABC △斜边AB 的中点,DC DA ∴=,DCA A ∴∠=∠, 又由(1)知GEF A ∠=∠,DCA GEF ∴∠=∠. 又OME EMC ∠=∠,OME ∴△与EMC △相似 OM ME ME MC∴=2ME OM MC ∴=⨯ 又46ME =,2(46)96OM MC ∴⨯==:2:5MD CO =,:3:2OM MD ∴=,:3:8OM MC ∴=设3OM x =,8MC x =,3896x x ∴⨯=,2x ∴=∴直径1020CD x ==.【5】 (1)证明:连接OC,∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。
∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。
又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线.(2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD.∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x ,在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。
由AD<DF ,知05x <<,故2x =。
从而AD=2, AF=5-2=3.∵OF ⊥AB ,由垂径定理知,F 为AB 的中点,∴AB=2AF=6. 【6】【7】解:(1)∵AO 1是⊙O 2的切线,∴O 1A ⊥AO 2 ∴∠O 2AB +∠BAO 1=90°又O 2A =O 2C ,O 1A =O 1B ,∴∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1 ∴∠O 2CB +∠O 2BC =∠O 2AB +∠BAO 1=90°,∴O 2C ⊥O 2B ,即O 2C ⊥O 1O 2 (2)延长O 2O 1交⊙O 1于点D ,连结AD . ∵BD 是⊙O 1直径,∴∠BAD =90° 又由(1)可知∠BO 2C =90°∴∠BAD =∠BO 2C ,又∠ABD =∠O 2BC ∴△O 2BC ∽△ABD ∴2O B BCAB BD=∴AB ·BC =O 2B ·BD 又BD =2BO 1 ∴AB ·BC =2O 2B ·BO 1(3)由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB ,又∠AO 2B =∠DO 2A ∴△AO 2B ∽△DO 2A ∴2222AO O BDO O A=∴AO 22=O 2B ·O 2D ∵O 2C =O 2A ∴O 2C 2=O 2B ·O 2D ① 又由(2)AB ·BC =O 2B ·BD ②由①-②得,O 2C 2-AB ·BC = O 2B 2 即42-12=O 1B 2 ∴O 2B =2,又O 2B ·BD =AB ·BC =12 ∴BD =6,∴2AO 1=BD =6 ∴AO 1=3 【8】(1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°,∴∠ACB =2∠AOB =60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分 (2)连结OD,∵OA 是⊙C 直径, ∴∠OBA =90°,又∵AB =BD,∴OB 是AD 的垂直平分线, ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DE OD 681022=-,∴AE =AO -OE=10-6=4,由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA , 得△OEF ∽△DEA, ∴OE EF DE AE =,即684EF=,∴EF =3;……4分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB , 当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC中点,即OE =25,∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x ,∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO,∴∠BEA =∠ECF ,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠, ∴△CEF ∽△AED, ∴CF CEAD AE=,而AD =2BE , ∴2OC CEOE AE=, 即55210x x x-=-, 解得417551+=x , 417552-=x <0∴E 3(41755+,0); ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA,∴CF ∥BE,∴OEBE =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠, ∴△CEF ∽△AED, ∴ADCFAE CE =, 而AD =2BE , ∴2OC CE OE AE=,∴5+5210+x x x =, 解得417551+-=x , 417552--=x <0(舍去),∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分【9】 解:(1)以AB 为直径的圆过点C ,90ACB ∴∠=,而点C 的坐标为(02),,由CO AB ⊥易知AOC COB △∽△,2CO AO BO ∴=, 即:4(5)AO AO =-,解之得:4AO =或1AO =.OA OB >,4AO ∴=,即41A B x x =-=,.由根与系数关系有:21A B A B x x m x x n +=+⎧⎨=-⎩,解之5m =-,3n =-.(2)如图(3),过点D 作DE BC ∥,交AC 于点E ,易知DE AC ⊥,且45ECD EDC ∠=∠=,在ABC △中,易得AC BC ==AD AE DE BC DB EC∴=∥,, AD AEDE EC BD DE =∴=,, 又AED ACB △∽△,有AE AC ED BC =,2AD ACDB BC ∴==,553AB DB ==,,则23OD =,即203D ⎛⎫- ⎪⎝⎭,,易求得直线l 对应的一次函数解析式为:32y x =+. ······································· (3)过点D 作DE AC ⊥于E ,DF CN ⊥于F .CD 为ACB ∠的平分线,DE DF ∴=.由MDE MNC △∽△,有DE MDCN MN=由DNF MNC △∽△, 有DF DN CM MN =1DE DF MD DNCN CM MN MN∴+=+=,即11110CM CN DE +== 【10】。