ArcGIS中几种空间插值方法

合集下载

ArcGIS插值方法及其应用

ArcGIS插值方法及其应用

ArcGIS插值方法及其应用在 ArcGIS 中,插值方法是用来预测未知数据值的一种技术。

插值方法可以用于解决各种空间问题,例如地形分析、环境监测、城市规划等。

在 ArcGIS 中,插值方法可以分为两大类:空间插值和属性插值。

空间插值用于预测二维或三维数据的空间分布,而属性插值则用于预测某一属性值在空间区域中的分布。

ArcGIS 中提供了多种插值方法,包括:1. 全局多项式插值:这是一种传统的插值方法,可以用于预测二维或三维数据。

全局多项式插值方法通过建立一个多项式方程来预测未知数据值。

2. 局部多项式插值:与全局多项式插值不同,局部多项式插值方法可以指定插值区域的不同部分使用不同的多项式阶数和参数。

这种方法可以更好地适应局部数据分布。

3. 样条函数插值:样条函数是一种分段多项式插值函数,可以用于预测二维或三维数据。

样条函数插值方法可以通过选择不同的样条插值方法、参数和超参数来适应不同数据分布和复杂程度。

4. 克里金插值:克里金插值方法是一种基于距离权重的插值方法,可以用于预测二维或三维数据。

克里金插值方法通过将距离函数应用于数据点之间的相互关系来预测未知数据值。

5. 泛克里金插值:泛克里金插值方法是一种改进的克里金插值方法,可以用于预测二维或三维数据。

泛克里金插值方法在克里金插值方法的基础上引入了一个泛克里金参数,可以更好地适应数据分布和变化趋势。

6. 指示克里金插值:指示克里金插值方法是一种基于指示数据的插值方法,可以用于预测二维或三维数据。

指示克里金插值方法通过将指示数据应用于数据点之间的相互关系来预测未知数据值。

7. 概率克里金插值:概率克里金插值方法是一种基于概率统计的插值方法,可以用于预测二维或三维数据。

概率克里金插值方法通过将概率分布应用于数据点之间的相互关系来预测未知数据值。

8. 析取克里金插值:析取克里金插值方法是一种基于析取统计的插值方法,可以用于预测二维或三维数据。

析取克里金插值方法通过将析取统计应用于数据点之间的相互关系来预测未知数据值。

ArcGIS 自然邻域空间插值方法介绍2

ArcGIS 自然邻域空间插值方法介绍2

自然临域插值法
8、显示的结果图很不好看,将结果图层按“拉伸”方式 显示,稍微好看一点了
自然临域插值法
9、这是覆盖了等值线的结果,可以看出等值线基本是闭合 的,Pb浓度变化大的地方等值线密度高一些
自然临域插值法
10、这是克里金插值覆盖了等值线的结果,可以看出等值 线不很圆滑,基本集中在样本点的附近
自然临域插值法
自然临域法的特点
1、插值范围为输入样本最外层样本点构成的凸多边形。 2、如果输出栅格最外围像元的像元中心落在凸多边形( 由输入点定义)之外,那么这些像元将被赋予 NoData 值。如 果输入点落在其中一个最外围像元之内,而该像元的中心落 在凸多边形之外,那么该像元仍将被赋予 NoData 值。 3、此工具最多可处理约 1,500 万个输入点。如果输入要 素类包含非常多的点(大约 1,500 万或更多的点),此工具可 能无法生成结果。 4、插值得到的结果比较光滑,生成的等值线基本上是封 闭的。 5、在输入样本点不多并且比较分散或分布不均匀的情况 下,所得结果较克里金插值法拟合度要稍高一些。
自然临域插值法
1、打开ArcMap 10
自然临域插值法
2、新建一个项目,调入几个已有2014.xls”,双击,显 示“sheet1$”,选中,点击“添加”
自然临域插值法
4、点击“文件”“添加数据”“添加XY数据(A)”, 数据表选“Sheet1$”,X字段选JD,Y字段选WD,Z字段 可不选,坐标系选WGS-1984,点击“确定”
谢 谢!
ArcGIS几种空间插值方法介绍 自然临域插值法
自然临域插值法
基本思想:
自然邻域法插值工具使用的算法可找到距查询点 最近的输入样本子集,并基于区域大小按比例对这些 样本应用权重来进行插值 (Sibson 1981)。该插值也称为 Sibson 或“区域占用 (area-stealing)”插值。该插值方法 的基本属性是它具有局部性,仅使用查询点周围的样 本子集,且保证插值高度在所使用的样本范围之内。 该插值方法不会推断趋势且不会生成输入样本尚未表 示的山峰、凹地、山脊或山谷。该表面将通过输入样 本且在除输入样本位置之外的其他所有位置均是平滑 的。

arcgis空间内插值教程

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录一、空间插值的概念和原理当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。

但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。

例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。

空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。

利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。

二、空间插值的几种方法及本次实习采用的原理和方法–整体插值方法»边界内插方法»趋势面分析»变换函数插值–局部分块插值方法»自然邻域法»移动平均插值方法:反距离权重插值»样条函数插值法(薄板样条和张力样条法)»空间自协方差最佳插值方法:克里金插值■局部插值方法的控制点个数与控制点选择问题局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。

为此,第一要注意的是控制点的个数。

控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。

为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。

第二需要注意的是怎样选择控制点。

一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。

S6、按照不同方法进行空间插值,并比较各自优劣打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:A、采用反距离权重法(IDW)对降水量数据进行插值:反距离权重法的特点是按照距离待插值点的远近核定已知数据点的权重,从而对待插值点进行插值的过程。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

arcgis插值方法

arcgis插值方法

arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。

在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。

本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

我们来了解一下反距离加权插值(IDW)方法。

IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。

IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。

IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。

但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。

克里金插值(Kriging)是一种基于地统计学原理的插值方法。

克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。

根据克里金插值方法的预测模型,可以得到未知点的值。

克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。

克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。

除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。

样条插值方法通过拟合一个平滑的曲面来估计未知点的值。

样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。

样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。

但是样条插值方法需要较大的计算量,对数据噪声敏感。

除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。

这些方法各有特点,可以根据实际需求选择合适的插值方法。

在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。

数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。

ARCGIS插值操作

ARCGIS插值操作

ARCGIS插值操作在ARCGIS中,有多种插值方法可供选择,如Kriging插值、逆距离权重插值(IDW)、三角网插值(TIN)等。

以下将对这些方法进行探讨。

1. Kriging插值:Kriging是一种基于空间自相关的插值方法,可以通过评估观测点之间的空间相关性来进行数据推断。

Kriging插值对数据点之间的空间关系进行了建模,并生成了准确的等值面。

与其他插值方法相比,Kriging插值可以提供更准确和平滑的结果。

2.逆距离权重插值(IDW):IDW是一种基于观测点之间距离的插值方法,它假设离测量点越近的点对其值的影响越大。

IDW插值通过计算距离加权平均值来生成表面。

这种方法易于实现,并且对数据点的密度变化较为敏感,但可能会产生过度平滑的结果。

3.三角网插值(TIN):TIN是一种基于三角形的插值方法,它通过将测量点连接成三角形网格来生成表面。

TIN插值使用了Delaunay三角剖分算法,该算法有效地处理了不规则观测点布局的数据。

然后,通过线性插值在每个三角形内进行插值。

TIN插值对数据点的布局要求更高,可以有效处理非均匀分布的观测点。

除了这些主要的插值方法外,ARCGIS还提供了其他一些插值方法,如径向基函数插值(RBF),全局多项式插值(GPI),局部多项式插值(LPI)等。

这些方法可以根据数据的特点和用户的需求进行选择。

在ARCGIS中,进行插值操作的步骤包括:1.导入数据集:首先,需要将包含观测点和其对应值的数据集导入ARCGIS中。

2.创建插值图层:选择合适的插值方法,并根据数据分布和用户需求设置相应的插值参数。

然后,创建一个插值图层来表示生成的等值面。

3.插值处理:运行插值操作,ARCGIS会根据所选的插值方法和参数计算观测点的值,并生成光滑的等值面。

4.可视化和分析:通过调整等值面的样式和颜色编码,可以对结果进行可视化。

还可以进一步分析生成的等值面,如计算最大、最小值,获取特定值所在位置等。

ArcGIS三种插值功能

ArcGIS三种插值功能

ArcGIS三种插值功能
arcgis中有三个地方提供了空间插值的功能,
spatial analysis中有interpolate to raster 命令中主要是把矢量的点线图层,插值成栅格图层
3D Analysis中有也有interpolate to raste命令,只是这里面的工具多一个自然临近插值法。

这是传统的空间插值方法,近年来地统计的插值方法逐渐的流行起来,模块Geostatistical analysis中(克里金插值,协同克里金等方法),理论上有基台值等概念,前提是均值为零,方差为1。

这一模块用起来也比较复杂,简单的介绍一下:
步骤一:探索数据(比如十二个气象站点的降雨侵蚀力数据是不是满足某一个方程,具体和哪个方程想匹配,要通过不断的探索)这一过程通过explore data下的 Normal QQPlot来看,这里面有不少函数如long变换后数据在一个轴上,这就要在第二个过程中用long 函数运行
步骤二:wizard向导进行地统计学插值,选用Kriging方法,一路next后,在finish前面的最后一个对话框中观察均值是不是趋近于0,方差是不是趋近于1,这两个条件不满足,就要back到前面的对话框中不断地调整参数,直到满足这两个条件为止。

我还在想一个问题就是插值和重采样(arcgis中可以在arctoolbox中research--resample实现)的区别,当栅格不是我需要的大小是,我一般都是进行重采样的,可以选择不同的采样方法,二次方程,三次卷积等等。

ARCGIS插值方法原理

ARCGIS插值方法原理

ARCGIS插值方法原理ArcGIS是一款具备强大的空间分析和地理信息系统功能的软件。

在该软件中,插值方法是一种常用的空间分析工具,用于估计未知位置上的数据值。

ArcGIS提供了多种插值方法,包括克里金插值、反距离插值、样条插值等。

下面将分别介绍这些方法的原理和使用情况。

1.克里金插值方法克里金插值方法是一种基于空间自相关性原理的插值方法,通过对样本点进行空间相关分析,然后根据该分析结果对未知位置进行插值。

克里金插值方法的原理基于克里金理论,即通过计算样本点与未知点之间的空间相关性,来预测未知点的数值。

在ArcGIS中,克里金插值方法有多种变体,如简单克里金、普通克里金、泛克里金等。

2.反距离插值方法反距离插值方法是一种基于距离程度的插值方法,其原理是认为未知位置的值与其周围已知值的距离成反比。

因此,距离已知点越近的未知位置,其值越可能与该已知点相似。

在ArcGIS中,反距离插值方法提供了多种参数选项,如权重指数、半径等,用户可以根据具体应用场景进行选择和调整。

3.样条插值方法样条插值方法是一种基于数学函数模型的插值方法,在ArcGIS中也被称为Kriging方法。

该方法将空间表面视为一个连续的函数,通过对样本点进行函数拟合,来推断未知位置的值。

样条插值方法可分为二维样条插值和三维样条插值,具体使用哪种方法取决于输入样本数据的空间特征。

ArcGIS还提供了其他插值方法,如最近邻插值、多项式插值等。

这些方法根据数据特性和需求的不同,可以选择相应的插值方法来推断未知位置的值。

在插值过程中,用户可以调整一些参数选项,如网格大小、半径等,以获得更准确的插值结果。

此外,用户还可以通过制作插值模型和验证结果的方式,进一步优化插值的效果。

总结起来,ArcGIS提供了多种插值方法,可以根据实际情况选择适合的方法。

这些方法的原理基于空间自相关性、距离程度和数学函数模型等,利用已知点的信息来推测未知位置的值。

插值方法在地理信息系统中有着广泛的应用,可以用于生成地图、估算地下水位、预测空气质量等。

GIS空间数据插值方法优劣比较分析

GIS空间数据插值方法优劣比较分析

GIS空间数据插值方法优劣比较分析GIS(地理信息系统)是一种以地理坐标为基础,用于存储、处理、分析和可视化地理数据的强大工具。

在GIS中,空间数据插值是一种常用的技术,用于根据已知的点数据来估计未知地点的属性值。

本文将对常见的GIS空间数据插值方法进行优劣比较分析,以帮助用户选择适合自己需求的方法。

1. Kriging插值法Kriging是一种基于统计模型的插值方法,其基本思想是用已知点的值的权重的线性和来估计未知点的值。

Kriging方法考虑了空间数据的空间相关性,针对空间上的各点给予不同的权重,可以得到较为准确的预测结果。

相比于其他插值方法,Kriging在保持空间一致性和稳定性方面具有优势,但其计算复杂度较高,对于大规模数据和计算资源有要求。

2. 反距离加权插值法反距离加权法是一种简单而直观的插值方法。

其基本思想是根据已知点到未知点的距离的倒数来给予权重,在插值时对已知点的值进行加权平均。

反距离加权插值法对于局部数据的变化敏感,对离插值点较近的点给予较大的权重,因此适用于局部变化较为明显的情况。

然而,反距离加权法没有考虑空间相关性,容易受到离群点的影响。

3. 最近邻插值法最近邻插值法是一种简单而快速的插值方法。

其基本思想是在已知点中找到最近的邻居点,将其值作为未知点的值。

最近邻插值法适用于空间数据较为离散、空间相关性较小的情况。

然而,最近邻插值法无法提供流畅的表面,结果可能是一个由离散点组成的表面。

4. 样条插值法样条插值法是一种平滑而连续的插值方法。

其基本思想是通过插值节点处的多项式函数来逼近已知点的形态。

样条插值法能够提供流畅的表面,并在插值点周围具有较高的精度。

但样条插值法对于大规模数据的计算较为复杂,且对插值节点选取较为敏感,需要合适的节点密度来平衡平滑性与精度。

综上所述,不同的GIS空间数据插值方法具有各自的优势和劣势。

Kriging插值法在保持空间一致性和稳定性方面具有优势,但计算复杂度较高;反距离加权法适用于局部变化较为明显的情况,但容易受到离群点的影响;最近邻插值法简单而快速,适用于空间数据较为离散的情况,但无法提供流畅的表面;样条插值法能够提供流畅的表面,具有较高的精度,但计算复杂度较高,对插值节点选取敏感。

arcgis插值运算

arcgis插值运算

arcgis插值运算【实用版】目录1.插值运算概述2.ArcGIS 插值运算方法2.1 空间插值2.2 统计插值2.3 样条插值2.4 普通插值2.5 三维插值3.插值运算的应用4.常见问题与解决方案正文一、插值运算概述插值运算是一种通过已知数据点来预测或估计未知数据点的方法,广泛应用于地理信息系统(GIS)和遥感领域。

其目的是在空间上或时间上对数据进行平滑或预测,以填充数据空白或扩展数据范围。

二、ArcGIS 插值运算方法1.空间插值空间插值是根据已知数据点的空间关系来预测未知数据点的方法,主要包括以下几种:- 线性插值:通过计算已知点之间的线性关系,预测未知点的值。

- 反距离权重法:根据已知点与预测点的距离,赋予已知点不同的权重,然后计算预测点的值。

- 样条插值:通过计算已知点之间的曲线关系,预测未知点的值。

2.统计插值统计插值是根据已知数据点的统计特征来预测未知数据点的方法,主要包括以下几种:- 普通插值:根据已知数据点的平均值、最大值、最小值等统计特征,预测未知点的值。

- 三维插值:在三维空间中,根据已知数据点的三维坐标和统计特征,预测未知点的值。

3.样条插值样条插值是一种通过计算已知数据点之间的样条函数来预测未知数据点的方法,可以很好地处理数据点的非线性关系。

4.普通插值普通插值是根据已知数据点的平均值、最大值、最小值等统计特征,预测未知点的值,适用于数据点分布较为均匀的情况。

5.三维插值三维插值是在三维空间中,根据已知数据点的三维坐标和统计特征,预测未知点的值,适用于处理立体空间数据的情况。

三、插值运算的应用插值运算在 GIS 领域有着广泛的应用,例如:- 地形分析:通过插值运算,可以生成连续的地形模型,用于地形分析和制图。

- 气象预测:通过插值运算,可以预测未来一段时间内的气象数据,用于气象预报和防灾减灾。

- 生态环境评价:通过插值运算,可以预测生态系统的变化趋势,用于生态环境评价和保护。

ARCGIS中几种空间插值简单比较

ARCGIS中几种空间插值简单比较

ARCGIS中几种空间插值简单比较(2012-01-10 22:09:14)1.IDW。

基本思想是目标离观察点越近则权重越大,受该观察点的影响越大。

好处是观察点本身是绝对准确的,而且可以限制插值点的个数。

通过power可以确定最近原则对于结果影响的程度。

Search radius可以控制插值点的个数。

2.克里金插值。

克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。

它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。

对于这种方法,原始的输入点可能会发生变化。

在数据点多时,结果更加可靠。

时, 其内插的结果可信度较高。

通过某种函数来模拟他们之间的关系,这样就能够得到空间分布的关系了。

接着再用这种空间分布的关系来模拟出所得的数据。

Ordinary是指一般的情况,而universal是指已知某种分布模式比如风暴的模拟等等3.Natural Neighbour法原理是构建voronoi多边形,也就是泰森多边形。

首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。

个人感觉这种空间插值方法没有实际的意义来支持。

4.样条函数插值spline这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。

一下是一篇论文里spline与IDW之间的比较:从本文实验数据可以看出,IDW 插值主要受幂指数和各采样点属性值变化情况的影响,幂指数越高,其局部影响的程度越高,在IDW搜索半径内,若各个采样点属性值变化较小时,内插结果受幂指数的影响较小;Spline 插值主要受插值类型(Regularized 或Tension)和weight 值的影响,一般Regularize 插值结果比Tension插值结果光滑,Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;总体来看,IDW和SPLINE 插值受采样点范围、采样点密度、采样点属性取值变化以及各自的参数影响,当采样点足够密时,使用IDW插值可以取得良好效果,SPLINE插值则适合那些空间连续变化且光滑的表面的生成。

arcgis插值运算

arcgis插值运算

arcgis插值运算摘要:一、ArcGIS插值运算概述1.插值运算定义2.ArcGIS中插值运算的重要性二、ArcGIS插值运算方法1.距离权重插值2.样条插值3.克里金插值4.插值结果的优化与调整三、插值运算在GIS应用案例1.地形分析2.气象数据预测3.环境监测与评估4.城市规划与管理四、ArcGIS插值运算实践技巧与注意事项1.数据准备与处理2.插值参数设置与优化3.结果输出与分析4.插值运算在实际应用中的困境与解决方法正文:ArcGIS插值运算是一种在地理信息系统(GIS)领域广泛应用的技术。

它通过对空间数据进行插值,从而实现对未知区域数据的估计和预测。

本文将从插值运算的定义、ArcGIS中插值运算的方法、实际应用案例以及实践技巧等方面进行详细阐述。

一、ArcGIS插值运算概述1.插值运算定义插值运算是一种通过已知数据点来估计未知数据点的方法。

在GIS领域,插值运算主要用于将离散的空间数据转换为连续的表面数据,以便进行进一步的分析与应用。

2.ArcGIS中插值运算的重要性ArcGIS作为一款强大的GIS软件,为用户提供了丰富的插值运算功能。

通过插值运算,用户可以方便地生成连续的地理表面,从而在地形分析、气象预测、环境监测等领域发挥重要作用。

二、ArcGIS插值运算方法1.距离权重插值距离权重插值是一种基于距离的插值方法。

它根据已知数据点与未知数据点之间的距离,对未知数据点进行估计。

在ArcGIS中,距离权重插值可通过Interpolation工具实现。

2.样条插值样条插值是一种基于分段多项式的插值方法。

它具有良好的局部性和光滑性,适用于规则或不规则的数据点分布。

在ArcGIS中,样条插值可通过Spline Interpolation工具实现。

3.克里金插值克里金插值是一种基于协方差矩阵的插值方法。

它考虑了数据点之间的空间相关性,适用于具有较强空间相关性的数据。

在ArcGIS中,克里金插值可通过Kriging Interpolation工具实现。

ArcGIS中几种插值方法简述

ArcGIS中几种插值方法简述

ArcGIS中几种插值方法简述
ArcGIS中几种插值方法简述
ArcGIS中几种插值方法简述
插值是通过cell样本数据计算得到的一幅栅格影像,作用是预测某一区域内样本数据以外的该属性值。

在高程,降雨量,矿产,噪音分析等具有广泛应用。

以下是几种在ArcGIS中常见的插值方法:
IDW:确定性插值方法。

每个栅格单元内的样本点数据距离单元内加权平均距离点的距离为自变量,点对平均距离点的影响与其距离幂值成反比,适合样本密集情况下进行分析。

Kriging:与IDW类似,通过半变异函数,可以对预测的确定性或准确性提供某种度量。

Natural neighbour:可找到距查询点最近的输入样本子集,并基于区域大小按比例对这些样本应用权重来进行插值。

Spline:确定性插值方法。

使用可最小化整体表面曲率的数学函数来估计值,以生成恰好经过输入点的平滑表面。

Spline with Barriers:障碍以面要素或折线(polyline) 要素的形式输入。

过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。

Topo to Raster:旨在用于创建可更准确地表示自然水系表面的表面,而且通过这种技术创建的表面可更好的保留输入等值线数据中的山脊线和河流网络。

Trend:由数学函数(多项式)定义的平滑表面与输入样本点进行拟合的全局多项式插值法。

趋势表面会逐渐变化,并捕捉数据中的粗尺度模式。

Arcgis中的空间插值

Arcgis中的空间插值

Arcgis中的空间插值一、什么是插值?插值是由有限数量的采样点数据估计栅格中的单元的值。

它可以用来估计任何地理点数据的未知值:高程、降雨、化学污染程度、噪声等级等等。

上图左侧是一个已知值的点数据集。

右侧是一个利用这些点插值得到的栅格。

未知值通过一个数学公式估计得到,该公式利用附近已知点的值进行计算。

在本例中,输入的点数据恰好在像元中心(这与现实中是不同的)。

用插值生成栅格表面的一个问题是源信息在一定程度上会退化,即便一个点真的落入某一像元内,仍然不能保证这个像元的值就等于这个点的值。

插值是基于空间分布的地物使空间相关的假设;换言之,相近的地物具有相似的属性。

比如说,如果一条街的一侧正在下雨,用户可以预测街的另一侧下雨的可能性很高,但却很难确定整个小镇是否都下雨,也难确定相邻地区的天气情况如何。

连续数据的表面通常是由散布于整个研究区域的采样点的采样值生成的。

例如,某一地区的无规则分布的气象观测站,利用它们的观测值可以创建温度或者气压的栅格表面。

得到的表面是一个规则的网格。

二、为什么要插值?在研究区域内,测量某种现象每个点的高度、等级或集聚程度一般是非常困难,同时也是很昂贵的。

相反,用户可以选择一些离散的样本点进行测量,通过插值得出采样点的值。

采样点可以是随机的、分层的或者规则的格网点,包含高度、污染程度或者等级等信息。

点插值一个典型的例子是利用一组样本点来生成高程面。

每个采样点的高程是已知的。

各采样点之间的高程值通过插值得到。

得到的格网是对实际高程面上任意点的估计值。

三、插值方法简介利用点数据创建栅格面有很多方法。

用户可以在三维分析的用户界面上,利用距离加权倒数(IDW)、自然近邻法、样条函数、克里格插值法等方法创建表面。

在定制过程中,趋势面插值非常有用。

每种插值方法在预测估值的时候都有自己的前提假设。

根据模拟的现象和采样点的分布,不同插值方法会对实际表面有不同效果的模拟。

但无论哪种方法,输入点越多,它们的分布越均匀,估计得到的结果就越好。

arcgis 曲线插值拟合算法

arcgis 曲线插值拟合算法

arcgis 曲线插值拟合算法ArcGIS 提供了多种曲线插值和拟合算法,可以根据数据的特点和分析需求选择合适的方法。

以下是一些ArcGIS 中常用的曲线插值和拟合算法:
1. Kriging 插值:Kriging 是一种基于地统计学原理的插值方法,适用于空间上分布不均匀的数据。

ArcGIS 提供了Ordinary Kriging 和Universal Kriging 等不同类型的Kriging 插值工具。

2. 样条插值:样条插值使用平滑的曲线通过数据点,ArcGIS 中包括了许多样条插值的方法,如逆距离加权样条插值(IDW)、径向基函数样条插值(Radial Basis Functions,RBF)等。

3. 多项式插值:多项式插值通过多项式方程拟合数据点,ArcGIS 提供了越来越高阶多项式的插值方法,如二次多项式、三次多项式等。

4. 局部多项式插值(LOESS):LOESS 插值是一种局部加权回归方法,适用于数据分布不规则的情况。

在ArcGIS 中,LOESS 插值可以通过Spatial Analyst 扩展中的Kernel Interpolation with Barriers 工具实现。

5. TIN 插值:TIN(三角不规则网格)插值方法通过创建三角形来近似表面,并在三角形内插值。

ArcGIS 中的TIN 插值方法可以通过使用Terrain 数据集或创建TIN 插值工具。

在使用这些插值和拟合算法时,你需要根据你的数据特点和分析目的选择最合适的方法。

不同的插值方法可能会产生不同的结果,因
此在使用之前最好先了解你的数据,并进行一些实验来确定最合适的方法。

Test6 GIS空间插值方法对比分析

Test6 GIS空间插值方法对比分析

GIS空间插值方法对比分析1.背景各地区经济协调发展是保证国民经济健康持续稳定增长的关键。

GDP是反映各地区经济发展状况的重要指标。

科学准确分析各地区GDP空间分布特征,对制定有效措施,指导经济协调发展具有重要参考价值。

2.目的ArcGIS中提供了三种空间插值方法,每种插值方法在原理上和应用上都大不相同,在此通过具体实例练习如何利用IDW内插方法和Spline内插方法进行GDP空间分布特征的分析,以此来引导读者对空间插值有一个更深刻的认识。

3.数据:某地区的统计GDP数据(GDP.shp),数据范围:4601万元~132630万元。

数据存放于随书光盘的..\Test6\目录下。

4.要求(1)经济的发展具有一定的连带效应和辐射作用。

以该地区各区域年GDP数据为依据,采用IDW和Spline内插方法创建该地区GDP空间分异栅格图;(2)分析每种插值方法中主要参数的变化对内插结果的影响;(3)分析两种内插方法生成的GDP空间分布图的差异性,简单说明形成差异的主要原因;(4)通过该练习,熟练掌握两种插值方法的适用条件。

5.实验流程图(1)IDW内插方法图1 IDW内插试验流程图(2)Spline内插方法图2 Spline内插试验流程图(3)两种方法之间的对比,通过空间分析中Raster Calculate命令来进行分析。

选择IDW(Power=2),Spline(Regularized,Weight=0.01)。

在Raster Calculate中计算Abs(IDW – Spline),比较二者产值变化空间分异特征。

6.操作步骤(1)IDW插值法1)插值步骤:A.运行ArcMap,加载Spatial Analyst模块,如果Spatial Analyst模块未能激活,单击Tools 菜单下的Extensions,选择Spatial Analyst,单击Close按钮;B.单击File菜单下的Open命令,打开加载地图文档对话框,选择E:\Test6\GDP.mxd;C.在Spatial Analyst下拉菜单中选择Options选项,在Options中的General页面中在设置默认工作路径,此处假定为“E:\Test6\Result\”,并设置Analysis mask 为board.shp;D.在Spatial Analyst下拉菜单中选择Interpolate to Raster, 在弹出的下一级菜单中单击Inverse Distance Weighted;E.设置Z value field为GDP;设置Power为2;设置Output cell size为500;输出结果文件名为IDW2;其他参数不变,单击OK。

ARCGIS插值方法原理

ARCGIS插值方法原理

ARCGIS插值方法原理ArcGIS是一款由Esri开发的地理信息系统软件,广泛应用于地理数据的管理、分析和可视化。

其中的插值方法是地理分析中常用的一项功能,用于根据已知点的属性值,在未知位置生成一个连续表面。

ArcGIS中提供了多种插值方法,每种方法都有其不同的原理和适用条件。

1.反距离加权插值(IDW):IDW基于已知点之间的距离和值的反比例关系,根据点与插值位置间的距离远近,对该点产生的影响进行加权。

使用IDW插值方法可以很好地反映空间上的变化趋势,但对于空间上的突变或极值点较为敏感。

2. 克里金插值(Kriging):克里金插值是一种基于空间自相关性的插值方法,它通过样点之间的空间变异关系来生成插值结果。

克里金插值通过对空间变异进行建模,包括指定模型类型(如指数、球状、高斯等)、样本点之间的距离和变异的两个参数(方差和对立半径)来生成插值结果。

克里金插值方法提供了可信度和置信度的评估结果。

3.三角不规则网络(TIN)插值:TIN插值使用已知点构建一种非规则三角网,然后在插值位置上的三角形中根据相对位置和值进行插值。

TIN插值适用于有许多峰谷和极端值的情况,可以很好地表示地形特征。

4.最邻近插值(NN):最邻近插值方法是通过找到最接近插值位置的最近邻已知点,将该点的值赋给插值位置,是一种简单而快速的插值方法。

然而,NN插值对于地理数据中的噪声敏感,并不能反映真实的空间变化。

除了上述常见的插值方法,ArcGIS还支持其他一些插值方法,如径向基函数(Radial Basis Functions)插值、全局多项式插值、兰德斯博格插值等,根据不同的数据特性和需要选择合适的插值方法。

插值方法的原理是基于已知点之间的关系的推算出缺失点的值。

这些方法的共同点是根据空间的连续性、相似性和相关性来推断未知点的值。

插值方法的选择要根据数据类型、数据点之间的关系以及预期结果的用途来决定。

需要考虑的因素包括数据的空间分布、站点分布的密度和均匀性、数据的变异性以及对结果准确性和可信度的要求。

arcgis插值运算

arcgis插值运算

arcgis插值运算摘要:1.插值运算概述2.ArcGIS 中的插值方法2.1 空间插值方法2.2 属性插值方法3.插值运算的应用实例4.常见问题与解决方法正文:一、插值运算概述插值运算是一种在空间或属性数据中,根据已知数据点预测未知数据点的方法。

在地理信息系统(GIS)中,插值运算被广泛应用于数据分析、地图制图以及空间决策等领域。

ArcGIS 是业界领先的GIS 软件,提供了丰富的插值算法,以满足各种空间数据处理需求。

二、ArcGIS 中的插值方法1.空间插值方法ArcGIS 中的空间插值方法主要包括以下几种:(1)Inverse Distance Weighting(IDW):反距离加权法,根据距离衰减权重,对各数据点的值进行加权平均。

(2)Kriging:克里金插值,一种基于空间相关性和局部加权回归的插值方法,可以预测空间变量的未知值。

(3)Spatial Analyst Tools:空间分析工具,包括表面插值、多变量插值、动态插值等功能。

2.属性插值方法ArcGIS 中的属性插值方法主要包括以下几种:(1)Simple Interpolation:简单插值,通过计算相邻数据点的平均值,对缺失值进行预测。

(2)Spline Interpolation:样条插值,用三次样条函数拟合数据点,生成平滑的插值结果。

(3)Nearest Neighbor:最近邻插值,将未知点赋值为其最近数据点的值。

三、插值运算的应用实例插值运算在地理信息系统中有着广泛的应用,例如:(1)地形高程插值:根据离散的地形高程点,预测整个区域的高程值,以生成连续的高程表面。

(2)人口密度插值:根据人口普查数据,预测某个地区的人口密度分布。

(3)土地利用类型插值:根据实地调查数据,预测某个地区的土地利用类型分布。

四、常见问题与解决方法在进行插值运算时,可能会遇到一些问题,例如插值结果出现异常、插值精度较低等。

针对这些问题,可以采取以下解决方法:(1)调整插值方法:尝试使用不同的插值方法,以找到最适合的插值算法。

arcgis插值法

arcgis插值法

arcgis插值法ArcGIS插值法是一种在地理信息系统(GIS)中常用的空间插值方法,用于根据已有的点数据生成连续的表面模型。

本文将介绍ArcGIS插值法的原理、应用以及一些常见的插值方法。

插值法是一种通过已知点的属性值推断未知位置的属性值的方法。

在GIS中,插值法常用于栅格数据集的创建、空间分析和地质、气象、环境等领域的数据处理。

ArcGIS是一种功能强大的GIS软件,提供了多种插值法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

这些插值方法各有特点,适用于不同类型的数据和研究目的。

其中,反距离加权插值是一种简单而直观的插值方法。

它假设未知位置的属性值与已知位置的属性值成反比关系,距离越近权重越大。

反距离加权插值法在ArcGIS中被广泛应用于地形分析、环境评估等方面。

克里金插值是一种基于统计方法的插值法。

它通过对已知点的空间相关性进行建模,推断未知位置的属性值。

克里金插值法在ArcGIS 中具有较高的精度和可靠性,适用于矿产勘探、水文学等领域。

样条插值是一种基于数学函数的插值法。

它通过拟合满足一定平滑条件的函数,生成连续的表面模型。

样条插值法在ArcGIS中具有较高的准确性和稳定性,适用于地貌分析、景观规划等方面。

除了这些常见的插值方法,ArcGIS还提供了其他一些插值工具,如TIN插值、自然邻域插值等。

这些方法在特定的数据和研究场景下有其独特的优势。

在使用ArcGIS进行插值时,需要注意数据的质量和空间分布。

数据质量对插值结果有重要影响,应避免数据缺失、异常值等问题。

数据的空间分布也会影响插值结果,建议根据实际情况选择合适的插值方法和参数。

除了插值方法的选择,ArcGIS还提供了丰富的插值参数设置,如搜索半径、领域大小、权重函数等。

这些参数的选择需要根据具体的数据特点和研究目的进行调整,以获得最优的插值效果。

在ArcGIS中进行插值分析时,还可以通过交叉验证、误差分析等方法评估插值结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ArcGIS 中几种空间插值方法
1. 反距离加权法(IDW)
ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:
1111()()n n
i
p p i i i i Z Z D D ===∑∑
其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,
D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它
的选择标准是最小平均绝对误差。

2.多项式法
多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法
样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法
克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描
述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

对于普通克里格法,其一般公式为 01()()n
i i i Z x Z x λ==∑,其中,Z(x i )(i=1,
Λ,n)为n 个样本点的观测值,Z(x 0)为待定点值,i λ为权重,权重由克立格方程组:
011
(,)(,)1n
i i j i i n i i C x y C x x λμλ==⎧-=⎪⎪⎨⎪=⎪⎩∑∑ 决定,其中,C(x i ,x j )为测站样本点之间的协方差,C(x i ,x 0)为测站样本点与插值
点之间的协方差,μ为拉格朗日乘子。

插值数据的空间结构特性由半变异函数描述,其表达式为:
()
21
1()(()())2()N h i i i h Z x Z x h N h ν==-+∑ 其中,N(h)为被距离区段分割的试验数据对数目,根据试验变异函数的特性,选取适当的理论变异函数模型,根据试验半变异函数得到的试验变异函数图,从而确定出合理的变异函数理论模型。

克里格方法考虑了观测点和被估计点的位置关系,并且也考虑各观测点之间的相对位置关系,所以在点稀少时插值效果比反距离权重等其他方法要好。

一般而言,气象要素和高程之间是具有相关性的,气象要素会随着高程的变化而发生显著变化,所以经常应用引入高程信息的协同克里格方法。

GIS 中有七类克里格法,下表是这七种方法的名称和适用范围:
克里格法的优点是以空间统计学作为其坚实的理论基础,可以克服内插中误差难以分析的问题,能够对误差做出逐点的理论估计;不但能估计测定参数的空间变异分布,而且还可以估算估计参数的方差分布。

其缺点是计算步骤较繁琐,计算量大,且变异函数有时需要根据经验人为选定。

5.国外的进展
在气象气候学中,气象要素(如降水、温度、太阳辐射等)在空间尺度上连续分布的数据,对各类模型的研究有着重要意义,由于各种气象要素的观测台站分布是稀疏而不均匀的,在各个台站观测的点数据基础上,推算出空间面上气象要素的分布,空间插值方法是有力的工具。

在气象上发展起来的PRISM插值方法和GIDS插值方法。

PRISM(Parameter-elevation Regressions on Independent Slopes Model)方法是由美国气象学家Christopher Daly提出的一种基于地理空间特征和回归统计方法生成气候图的插值模型。

GIDS(Gradient plusinverse distance squared, GIDS)梯度平方反比法是由Nalder等1998年提出的,它在距离权重的基础上考虑了气象要素随海拔和经纬向的梯度变化。

两种方法在各种地区的气象要素插值中都得到了很好的运用。

6.总结
在实际应用中,没有绝对最好的空间插值方法,只有在特定的条件下,对于各种研究区域的实际情况的最佳方法。

在运用空间插值方法时,要得到理想的空间插值效果,必须针对不同研究区域的实际情况,对实测数据样本点进行充分分析,反复试验比较来选择最佳的方法。

最重要的是在运用一般插值方法的基础上,依据自身需要及学科的特点,对插值方法进行改进以找到更优的空间插值方法。

相关文档
最新文档