求数列通项公式的方法总结(强烈推荐)

合集下载

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。

下面将列举十种常见的方法来求解数列的通项公式。

方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。

通项公式可以直接通过公式计算得出。

方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。

可以通过求和公式推导出等差数列的通项公式。

方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。

通项公式可以直接通过公式计算得出。

方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。

可以通过求和公式推导出等比数列的通项公式。

方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。

例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。

方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。

例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。

方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。

例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。

方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。

例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。

方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。

求数列通项公式常用的八种方法

求数列通项公式常用的八种方法

求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

(完整版)数列通项公式方法大全很经典,推荐文档

(完整版)数列通项公式方法大全很经典,推荐文档
所以数列{an}的通项公式为 an n2 。
评注:本题解题的关键是把递推关系式 an1 an 2n 1 转化为 an1 an 2n 1 ,进而 求出 (an an1) (an1 an2 ) (a3 a2 ) (a2 a1) a1 ,即得数列{an}的通项公式。
变式:已知数列{an}满足 an1 an 2 3n 1,a1 3 ,求数列{an}的通项公式。
(3)累乘法
例 3 已知数列{an}满足 an1 2(n 1)5n an,a1 3 ,求数列{an}的通项公式。
解:因为 an1
2(n 1)5n
an,a1
3 ,所以 an
0
,则
an1 an
2(n 1)5n ,故
an
an an1
an1 an2
a3 a2
a2 a1
a1
[2(n 11)5n1][2(n 2 1)5n2 ][2(2 1) 52 ][2(11) 51] 3
变式:
①已知数列{an}满足 an1 3an 5 2n 4,a1 1,求数列{an}的通项公式。
②已知数列{an}满足 an1 2an 3n2 4n 5,a1 1,求数列{an}的通项公式。
(5)对数变换法
例 5 已知数列{an}满足 an1 2 3n an5 , a1 7 ,求数列{an}的通项公式。 解:因为 an1 2 3n an5,a1 7 ,所以 an 0,an1 0 。在 an1 2 3n an5 式两边取 常用对数得 lg an1 5 lg an n lg 3 lg 2 ⑩
an1 5n1 2(an 5n )

由 a1
51
65 1
0 及⑤式得 an
5n
0 ,则
an1 an

数列求通项公式方法大全

数列求通项公式方法大全

数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。

求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。

这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。

以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。

根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。

2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。

根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。

3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。

斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。

4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。

幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。

请注意,以上是一些常见的数列类型和其通项公式。

但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。

另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。

举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。

现在需要求解数列中第10项的值。

根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。

如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

求数列通项公式的十一种方法

求数列通项公式的十一种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

((完整版))求数列的通项公式方法总结,推荐文档

((完整版))求数列的通项公式方法总结,推荐文档

an1
an1
an 等形式的递推数列可以用
倒数法将其变形为我们熟悉的形式来求通项公式。
【例 6】.已知数列an满足: a1 1, an an 1 ,求an的通项公式。
3an 1 1
解:原式两边取倒数得: 1 3an 1 1 3 1
an
an 1
an 1
设bn = 1 ,则bn- bn- 1=3, 且b1=1 bn是b1=1 为首项,公差d=2的等差数列
①、一般地对于 an =kan-1 +m(k、m 为常数)型,可化为的形式 an +λ=k(an-1 +λ).重
-1-
数列常见题型总结
新构造出一个以 k 为公比的等比数列,然后通过化简用待定系数法求 λ,然后再求 an 。
【例
3】设
b>0,数列 an 满足
a1=b, an
nban1 an1 2n 2
a4
·
a3
… an an1
= 1 2 3n 1 234 n
1 n
所以 an
1 n
3、构造法:当数列前一项和后一项即 an 和 an-1 的递推关系较为复杂时,我们往往对原
数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或
等差数列)。具体有以下几种常见方法。
(1)、待定系数法:
当 A=C 时,我们往往也会采取另一种方法,即左右两边同除以 Cn +1,重新构造数列,来求
an 。
【例 5】设 a0 为常数,且 an 3n1 2an1 ( n N * ),
证明:对任意
n≥1, an
1 [3n 5
(1) 2n ] (1)n
2n
a0

史上最全的数列通项公式的求法13种

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法数列是高考取的要点内容之一,每年的高考题都会观察到,小题一般较易,大题一般较难。

而作为给出数列的一种形式——通项公式,在求数列问题中特别重要。

本文给出了求数列通项公式的常用方法。

一、直接法依据数列的特点,使用作差法等直接写出通项公式。

二、公式法①利用等差数列或等比数列的定义求通项② 若 已 知 数 列 的 前 n项 和 S n 与 a n 的 关 系 , 求 数 列 a n的 通 项 a n 可 用 公 式a n S 1 n 1S nSn 1n 求解 .2(注意:求完后必定要考虑归并通项)( 1) n , n 1 .求数列 a n 的通项公式 .例 2.①已知数列 a n 的前 n 项和 S n 知足 S n 2a n②已知数列 a n 的前 n 项和 S n 知足 S nn2n 1,求数列 a n 的通项公式 .③ 已知等比数列 a n 的首项 a 1 1,公比 0 q 1,设数列 b n 的通项为 b na n 1 a n2,求数列b n 的通项公式。

③ 分析:由题意, b n 1 a n 2 a n 3 ,又 a n 是等比数列,公比为 q∴bn 1an 2an 3q ,故数列 b n 是等比数列, b 1 a 2 a 3a 1q a 1q 2 q(q 1) ,b na n 1 a n 2∴ b nq(q 1) q n 1 q n (q 1)三、概括猜想法假如给出了数列的前几项或能求出数列的前几项,我们能够依据前几项的规律,概括猜想出数列的通项公式,而后再用数学概括法证明之。

也能够猜想出规律,而后正面证明。

四、累加(乘)法关于形如 a n 1an f ( n) 型或形如 a n 1 f (n)a n 型的数列,我们能够依据递推公式,写出n取 1 到 n 时的全部的递推关系式,而后将它们分别相加(或相乘)即可获得通项公式。

例 4.若在数列 a n 中, a 1 3 , a n 1 a n n ,求通项 a n 。

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

求数列通项公式的13种方法

求数列通项公式的13种方法

求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。

求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。

这篇文档将介绍13种求解数列通项公式的方法。

1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。

2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。

3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。

4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。

5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。

6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。

7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。

8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。

9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。

10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。

11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。

12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。

13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。

以上是13种常用的求解数列通项公式的方法。

根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。

> 注意:此文档中的内容仅供参考。

在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。

---以上是对「求数列通项公式的13种方法」的介绍文档。

求数列通项公式方法总结

求数列通项公式方法总结

求数列通项公式的方法总结:1)观察法。

例如1、3、5、7、9……2)公式法。

对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。

3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。

4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。

5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。

6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。

7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。

8)利用s n-s n-1=a n的关系求出通项公式。

利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。

对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。

2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。

主要用于等差数列或组合数列。

(完整版)求数列的通项公式和前N项和的几种类型总结,推荐文档

(完整版)求数列的通项公式和前N项和的几种类型总结,推荐文档

求数列的通项公式和前N 项和的几种类型总结熟练掌握求数列通项公式常用的几种方法,并能够在理解的基础上灵活应用; 熟练掌握求数列前n 项和常用的几种方法,并能够在理解的基础上灵活应用;在一些复杂问题中,将求通项公式与求和综合运用,对分析问题能力,计算能力要求较高重点应该提高对代数式的敏感,提高模式识别能力.知识讲解一、求数列的通项公式的方法1:观察法:此方法适用于小题和大题中的先猜后证;2:公式法等差数列通项公式:)()1(1m n d a a n d a a m n n -+=-+=等比数列通项公式mn m n n n q a a q a a --⋅=⋅=113:递推关系累加法:)(1n f a a n n =--21321(1)(2)(1)n n a a f a a f a a f n --=⎧⎪-=⎪⎨⎪⎪-=-⎩ 累乘法:)(1n f a a n n=-321121(1)(2)(1)n n n a a aa f f f n a a a a -=⋅⋅⋅=⋅⋅- 构造法:(1)),,0,1,0(1为常数q p q p p q pa a n n ≠≠≠+=-:令λλ++=-1n n n a a b ,则n b 为等比数列(2)),1,0(1为常数p p p p pa a n n n ≠≠+=-令nnn p a b =,则n b 为等差数列(3)),,0,1,0(1为常数q p q p p q pa a n n n ≠≠≠+=-令nnn p a b =,则转化为第一类(4)),,,0(11为常数q p s spq qpa sa a n n n ≠+=--令nn a b 1=,则转化为第一类(5))(1n f n n a a -=令n n a b lg =,则用累乘法4:退位相减法⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 二、求数列的前n 项和的方法1、观察法: 此方法适用于小题和大题中的先猜后证;2、公式法等差数列前n 项和公式:n da n d n n d n a n a a S n n )2(2)1(22)(1211-+=-+=+=等比数列前n 项和公式:⎪⎩⎪⎨⎧≠--⋅==)1(11)1(11q q q a q na S nn几个常用的等差数列求和公式,最好记住:(1) ;(2) ()11232n n n +++++= ()213521n n++++-= (3) ()24621n n n ++++=+ 3、倒序相加法:首尾对称类型4、乘公比错位相减法等差和等比组合数列,123(1)n n S a a a a =++++ 2341(2)n n qS a a a a +=++++ 解出.1n n n n S qS a a +-=-11(1)(2)1(1)n n a q q S qna q ⎧-≥⎪=-⎨⎪=⎩5、裂项相消法(分母可以写成两个数相减为常数)⎪⎪⎩⎪⎪⎨⎧-+=+++-=+n n nn n n n n 111111)1(16、分组求和法(等差数列和等比数列相加)例题精析【例题1】在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .【例题2】已知数列满足,前项和,求的通项公式.{}n a 11,a =n 23n n n S a +={}n a 【例题3】数列{}n a 满足2,2311=-=-a a a n n ,求n a .【例题4】已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .【例题5】求和:.1111212312n+++++++++ 【例题6】已知数列的前项和为,且,数列满足{}n a n n S 22,*n S n n n N =+∈{}n b 。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。

找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。

在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。

1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。

例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。

2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。

等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。

4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。

幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。

5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。

组合数列通项公式可以通过求解组合数来获得。

6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。

可以利用多项式的相关性质和求解方法获得数列通项公式。

7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。

8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。

9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。

以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。

求数列通项公式的11种方法[学习]

求数列通项公式的11种方法[学习]

求数列通项公式的11种方法[学习]求数列通项公式的11种方法[学习]数列通项公式是数学中常见的一种概念,它可以帮助我们更好地理解数列的特征,并用于计算数列的和、积、最大值以及最小值等问题。

学习求数列通项公式的11种方法,可以帮助我们更好地理解数列的概念,并能够更加准确地计算数列的和、积、最大值以及最小值等问题。

下面就来介绍一下求数列通项公式的11种方法:1. 泰勒公式:泰勒公式是一种常用的求数列通项公式的方法,它可以利用数列前n项的值,通过对不同项进行求导和积分,来求出数列的通项公式。

2. 通项定理:通项定理是一种简单易懂的求数列通项公式的方法,它可以利用数列中初始项和公差,通过观察数列的每一项,找出数列的规律,然后求出数列的通项公式。

3. 求极限法:求极限法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过极限的概念,来求出数列的通项公式。

4. 差分法:差分法是一种常用的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列每项与前一项的差值,找出数列的规律,然后求出数列的通项公式。

5. 分类法:分类法是一种简单易懂的求数列通项公式的方法,它可以根据数列的特点,将数列分类,然后再根据各类数列的特点,求出数列的通项公式。

6. 幂级数法:幂级数法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过将数列转化为幂级数,然后求出数列的通项公式。

7. 矩阵法:矩阵法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过矩阵运算,求出数列的通项公式。

8. 特征值法:特征值法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列的特征值,求出数列的通项公式。

9. 最优化法:最优化法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过构造相应的优化模型,来求出数列的通项公式。

10. 启发式法:启发式法是一种创新性的求数列通项公式的方法,它可以利用数列中前n项的值,通过启发式算法,来求出数列的通项公式。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。

2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。

二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。

2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。

三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。

2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。

四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。

五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。

六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。

2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。

例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。

方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。

方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。

例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。

方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。

首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。

方法五:求和法有些数列的通项公式可以通过求和公式得到。

例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。

方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。

线性递推法是通过设定通项公式的形式,然后求解出相应的系数。

例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。

方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。

例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。

方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。

方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。

例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种数列是数学中很重要的一种数学对象,它是由一系列的数按照一定的顺序排列而成。

数列通项公式是数列中的每一项与项号之间的关系式,可以通过该公式来求出数列的任意一项。

下面将介绍15种常见的数列通项公式的求法。

1.等差数列:等差数列是一种公差为常数的数列,通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。

2.等比数列:等比数列是一种比值为常数的数列,通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比。

3. 斐波那契数列:斐波那契数列是一种特殊的数列,每一项是其前两项之和,通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列:平方数列是由平方数所组成的数列,通项公式为an = n^25. 立方数列:立方数列是由立方数所组成的数列,通项公式为an = n^36.等差立方数列:等差立方数列是一种公差为常数的立方数列,通项公式为an = a1 + (n - 1)^3,其中a1为首项。

7.等比立方数列:等比立方数列是一种比值为常数的立方数列,通项公式为an = a1 * r^(n - 1)^3,其中a1为首项,r为公比。

8. 焦比数列:焦比数列是一种特殊的数列,每一项是其前一项的反数,通项公式为an = -1 / an-1,其中a1为首项。

9. 调和数列:调和数列是一种特殊的数列,每一项是其前一项的倒数与项号之和的倒数,通项公式为an = 1 / (1 / a1 + n - 1),其中a1为首项。

10. 初等数列:初等数列是一种特殊的数列,每一项是其前一项与项号之和的和,通项公式为an = an-1 + n,其中a1为首项。

11.等差等比数列:等差等比数列是一种既是等差数列又是等比数列的数列,通项公式为an = a1 * (1 + (n - 1)d),其中a1为首项,d为公差。

12. 菲波拿契数列:菲波拿契数列是一种特殊的数列,每一项是其前一项与项号之和的差,通项公式为an = an-1 - n,其中a1为首项。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。

2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。

解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。

例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。

解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。

数列求通项公式的9种方法

数列求通项公式的9种方法

例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。

2 ,为偶数时
变式训练15
n2

a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an

(m pq 0) 的数列直接取倒数
pan q

例 8 已知数列 {an } 满足 a1 1 , an1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法:(1) + = , 再根据等比数列的相关知识求 .
(2) - =
再用累加法求 .
(3) = + ,先用累加法求 再求 .
例3.已知{ }的首项 =a(a为常数), =2 +1(n∈N+,n≥2),求 .
[解] 设 -λ=2( -λ),则λ=-1
∴ +1=2( +1)
∴{ }为公比为2的等比数列.
例8.已知{ }的前n项和为 ,
且 +2 ( - - )=0(n≥2), = ,求 .
[解] 依题意,得 - +2 · =0
∴ - =2
∴ =2+2(n-1)=2n
∴ = , =
∴ = -
=-2× ×
= ( )
∴ =
∴ +1=(a+1)·
∴ =(a+1)· -1
2. 型
累乘法: = · … ·
例2.已知数列{ }满足 (n∈N+), =1,求 .
[解] = · … ·
=(n-1)·(n-2)…1·1=(n-1)!
∴ =(n-1)! (n∈N+)
4. =p + 型(p为常数)
方法:变形得 = + ,
则{ }可用累加法求出,由此求 .
6. = 型(A、B、C、D为常数)
特征根法: =
(1) 时, =C·
(2) 时, =
例6.已知 =1, = (n∈N+),求 .
[解] = ∴
∴ = +C
∵ =1数列.
∴ = ∴ = (n∈N+)
8.“已知 , , 的关系,求 ”型
方法:构造与转化的方法.
∴ =( + ·n)· = + ·n
∴ ∴

7.“已知 ,求 ”型
方法: = - (注意 是否符合)
例6.设 为{ }的前n项和, = ( -1),求 (n∈N+)
[解] ∵ = ( -1) (n∈N+)
∴当n=1时, = ( -1)
∴ =3
当n≥2时,
= -
= ( -1)- ( -1)
∴ =3 ∴ = (n∈N+)
例4.已知{ }满足 =2, =2 + .求 .
[解] = +1
∴{ }为等差数列.
=
∴ =n·
5. =p +q 型(p、q为常数)
特征根法:
(1) 时, = · + ·
(2) 时, =( + ·n)·
例5.数列{ }中, =2, =3,且2 = + (n∈N+,n≥2),求 .
[解] =2 -
∴ ∴
求数列{an}通项公式的方法
1. = + 型
累加法:
=( - )+( - )+…+( - )+
= + +…+ +
例1.已知数列{ }满足 =1, = + (n∈N+),求 .
[解] = - + - +…+ - +
= + +…+ +1
= = -1
∴ = -1 (n∈N+)
3. =p +q型(p、q为常数)
相关文档
最新文档