期末:计量经济学公式

合集下载

计量经济学标准误差计算公式

计量经济学标准误差计算公式

计量经济学标准误差计算公式
计量经济学标准误差是指样本中样本均值与总体均值的差异,其大小可以反映出样本均值的可靠程度。

计量经济学标准误差的计算公式为标准误差=标准差/样本量的平方根。

其中,标准差是样本数据离散程度的度量,样本量是指样本中的观测值个数。

通过计算标准误差,我们可以进行假设检验和置信区间的计算,进而对总体均值进行推断。

在实际应用中,我们需要掌握计量经济学标准误差的计算方法,并结合具体研究问题进行合理的应用。

- 1 -。

计量经济学公式推导

计量经济学公式推导

一、最小二乘估计式推导过程:由方程组0ˆ)(112=∂∂∑=βnt t e (1)0ˆ)(212=∂∂∑=βnt t e …………………(2) ,得(注意:根据导数运算法则,若)(x f 和)(x g )在一个共同的区间),(b a 上有定义,并且在每一点),(b a x ∈都可导,则有)()(])()([x g x f x g x f '±'='±;)()()()(])()([x g x f x g x f x g x f '*+*'='*;对于常数c ,则)(])([x f c x cf '=';当0)(≠x g 时,2)]([)()()()(])()([x g x g x f x g x f x g x f '-'=')因此,由(1)式得,0ˆ)(ˆ)(112112=∂∂=∂∂∑∑==nt t nt t e e ββ (3)由(2)式得,0ˆ)(ˆ)(122212=∂∂=∂∂∑∑==nt t nt t e e ββ (4)根据复合函数微商定理:若对于)(y g z =,)(x f y =,若)(x f y =在一点0x 可导,且)(y g z =在相应的点)(00x f y =处可导,则复合函数))((x f g 在0x 可导,且有公式)()())((000x f y g dx x f dg x x ''==因此,依复合函数微商定理,由(3)式得,0)ˆ)()()((ˆ)(112112=∂∂*∂∂=∂∂∑∑==n t t t t nt t e e e e ββ…………(5)又依据微商运算公式:1)(-='m m mxx ,又tt t t t t t t X Y e e X e Y Y 2121ˆˆˆˆˆββββ--=⇒++=+= 可得,0ˆ)1(2)ˆ)()()((ˆ)(1)11(1)12(112112=⇒-*=∂∂*∂∂=∂∂∑∑∑∑=--==t nt t n t t t t nt t e e e e e e βββ………(7) 同理根据复合函数微商定理,由(4)式得,0))ˆ()()()((ˆ)(122122=∂∂*∂∂=∂∂∑∑==n t t t t nt t e e e e ββ……………(6) 同理又依据1)(-='m m mxx ,及tt t t t t t t X Y e e X e Y Y 2121ˆˆˆˆˆββββ--=⇒++=+= 可得,0)ˆ1)(2())ˆ()()()((ˆ)(11)11(2)12(122122=⇒⋅⋅-*⋅=∂∂*∂∂=∂∂∑∑∑∑==--==n t t t n t t t n t t tt nt t X e X e e e e e βββ……(8) 同样根据:tt t t t t t t X Y e e X e Y Y 2121ˆˆˆˆˆββββ--=⇒++=+=, 可以得到方程组: 0)ˆˆ(1211=--=∑∑==nt ttn t t X Ye ββ……………………(9) 0)ˆˆ(1211=--=∑∑==nt tt tnt ttX X YX e ββ………………(10) 方程(9)、(10)称为正规方程,合起来组成的方程组称为正规方程组。

计量模型公式

计量模型公式

计量模型公式计量模型公式是指数学模型中所使用的数学公式。

计量模型是指用数学方法对经济现象进行描述、分析和预测的方法。

计量模型公式是计量模型中最基本的部分,它为计量模型提供了数学基础。

计量模型公式主要包括线性回归模型公式、时间序列模型公式、面板数据模型公式等。

这些公式是计量经济学的基础,也是计量经济学的核心内容。

一、线性回归模型公式线性回归模型是计量经济学中最常用的模型之一,它可以用来描述两个或多个变量之间的关系。

线性回归模型的一般形式为:y = β0 + β1x1 + β2x2 + … + βkxk + ε其中,y表示被解释变量,x1,x2,…,xk表示解释变量,β0,β1,β2,…,βk表示系数,ε表示误差项。

线性回归模型的公式包括估计系数的公式和误差项的公式。

估计系数的公式为:β = (XTX)-1XTY其中,β表示系数向量,X表示自变量矩阵,Y表示因变量向量,T表示矩阵的转置,-1表示矩阵的逆。

误差项的公式为:ε = Y - Xβ其中,ε表示误差向量,Y表示因变量向量,X表示自变量矩阵,β表示系数向量。

二、时间序列模型公式时间序列模型是计量经济学中用来描述时间序列数据的模型。

时间序列数据是指一组按时间顺序排列的数据。

时间序列模型的一般形式为:Yt = f(Yt-1, Yt-2, …, Yt-p) + εt其中,Yt表示t时刻的观测值,f表示时间序列的函数形式,p 表示滞后期数,εt表示误差项。

时间序列模型的公式包括自回归模型的公式、移动平均模型的公式和ARMA模型的公式等。

自回归模型的公式为:Yt = α + β1Yt-1 + β2Yt-2 + … + βpYt-p + εt 其中,α表示常数项,β1,β2,…,βp表示系数,εt表示误差项。

移动平均模型的公式为:Yt = α + εt + θ1εt-1 + θ2εt-2 + … + θqεt-q 其中,θ1,θ2,…,θq表示移动平均系数,εt表示误差项。

计量经济学常用公式___概述说明以及解释

计量经济学常用公式___概述说明以及解释

计量经济学常用公式概述说明以及解释1. 引言1.1 概述计量经济学是经济学领域中的一门重要分支,通过运用统计方法和数学模型来研究经济现象,并进行数据分析和预测。

在计量经济学中,常常使用一系列公式来描述经济现象和建立经济模型,以便深入理解和解释实际问题。

本文旨在对计量经济学常用公式进行概述说明和解释。

1.2 文章结构本文主要分为五个部分进行论述,各部分内容如下:(1)引言:介绍文章的背景和目的;(2)常用公式概述:简要介绍什么是计量经济学常用公式以及其重要性和应用领域;(3)具体公式解释与应用:详细阐述几种常见的计量经济学公式类型及其解释与使用方法;(4)公式的限制和注意事项:探讨一些常见的限制条件以及处理方法,如多重共线性、异方差和遗漏变量问题;(5)结论:总结全文内容并展望进一步研究该主题的可能发展方向。

1.3 目的本文旨在对计量经济学中常用公式进行系统的概述和解释,以帮助读者更好地理解这些公式的应用和限制条件。

通过深入了解这些公式,读者可以更准确地分析经济数据、构建经济模型,并能够对实际问题进行预测和政策制定。

此外,本文还将对计量经济学常用公式的重要性进行总结并展望未来研究的方向,以期为相关领域的研究提供一定参考。

2. 常用公式概述:2.1 什么是计量经济学常用公式计量经济学常用公式是在计量经济学领域内被广泛使用的数学表达式,用于描述和分析经济现象中的关系和变动。

这些公式基于统计理论和经济学原理,通过对数据进行建模和分析,帮助研究者从观察到的现象中提取经济规律和洞察。

计量经济学常用公式通常涉及到回归模型、工具变量法、时间序列模型等。

2.2 公式的重要性和应用领域计量经济学常用公式在实证经济学研究中具有重要意义。

首先,通过建立数学模型,并运用相应的计量经验方法,可以从大规模的现实数据中揭示出变量之间相互影响的本质规律。

其次,这些公式可以作为检验理论假设合理性和预测现象发展趋势的有效工具。

最后,在政策评估与决策制定过程中,利用这些公式可以为决策者提供参考依据。

计量公式大全

计量公式大全

第二章主要公式1、回归模型概述(1)相关分析与回归分析经济变量之间的关系:函数关系、相关关系相关关系:单相关和复相关,完全相关、不完全相关和不相关,正相关与负相关,线性相关和负相关,线性相关和非线性相关。

相关分析:——总体相关系数cov(,)var()var()XY X Y X Y ρ=——样本相关系数12211()()()()nii i XY nniii i XX Y Y r XX Y Y ===--=--∑∑∑——多个变量之间的相关程度可用复相关系数和偏相关系数度量 回归分析:相关关系 + 因果关系(2)随机误差项:含有随机误差项是计量经济学模型与数理经济学模型的一大区别。

(3)总体回归模型总体回归曲线:给定解释变量条件下被解释变量的期望轨迹。

总体回归函数:(|)()i i E Y X f X =总体回归模型:(|)()i i i i i Y E Y X f X μμ=+=+ 线性总体回归模型:011,2,...,i i iY X i n ββμ=++=(4)样本回归模型样本回归曲线:根据样本回归函数得到的被解释变量的轨迹。

(线性)样本回归函数: 01ˆˆˆi i Y X ββ=+ (线性)样本回归模型:01ˆˆˆi i iY X e ββ=++ 2、一元线性回归模型的参数估计(1)基本假设① 解释变量:是确定性变量,不是随机变量var()0i X =② 随机误差项:零均值、同方差,在不同样本点之间独立,不存在序列相关等()01,2,...,i E i n μ== 2var()1,2,...,i i n μσ==cov(,)0;,1,2,...,i j i j i j n μμ=≠=③ 随机误差项与解释变量:不相关cov(,)01,2,...,i i X i n μ==④ (针对最大似然法和假设检验)随机误差项:2~(0,)1,2,...,i N i n μσ=⑤ 回归模型正确设定。

【前四条为线性回归模型的古典假设,即高斯假设。

计量经济学公式概念

计量经济学公式概念

计量经济学概念公式第1章一、数据类型:截面、时间序列、面板1. 横截面数据(cross-sectional data set)定义:对给定的某个时间点的个人、家庭、企业、城市、洲、国家或者一系列其他单位采集的样本所构成的数据集。

常被用于劳动经济学、健康经济学和农村经济学中。

重要特征:数据假定是从总体中通过随机抽样而得到。

2. 时间序列数据(time series data)定义:在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。

如我国国内生产总值从1949到2015的变化就是时间序列数据。

3. 面板或纵列数据(panel data)定义:由数据集中每个横截面单位的一个时间序列组成与混合横截面数据区别:面板数据的同一横截面数据单位都被跟踪了一段特定的时期。

面板数据前后年份的样本是相同的,具有可比性。

但是混合横截面数据前后年份的样本很可能大部分不相同,不具有可比性。

面板数据的优点:对同一单位的多次观测,使我们能控制观测单位的某些观测不到的特征使我们能研究决策行为或结果中滞后的重要性。

四、用数据度量因果效应,其他条件不变的概念1. 因果效应经济学家的目标就是要推定一个变量对另一个变量具有因果关系我们希望去解释:什么导致一些事情发生?是这个因素还是那个因素?假设在现实世界中,X(自变量,一个可能的原因)确实是Y(因变量,被解释的变量),那我们就能预见数据分析支持以下假设:如果X的数值增加,Y的数值也增加。

但由于存在误差或数据不足,统计检验可能出错或被错误地解释。

2. 其他条件不变(ceteris paribus)意味着“其他(相关)因素保持不变”。

在因果关系中,其他条件不变是具有重要作用的。

多元回归中,所得到的“其他因素不变的效应”,并非是通过在实际抽样中,固定其他因素不变。

多元回归分析的优势,在于它使我们能在非实验环境中去做自然科学家在受控实验中所能做的事情:保持其它因素不变。

计量经济学公式范文

计量经济学公式范文

计量经济学公式范文1.OLS估计公式最常见和基础的计量经济学公式是普通最小二乘法(OLS)估计公式,用于估计线性回归模型。

OLS估计公式如下:\[Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_kX_k + \epsilon\]其中,\(Y\)是因变量,\(X_1, X_2, ..., X_k\)是自变量,\(\beta_0, \beta_1, \beta_2, ..., \beta_k\)是回归系数,\(\epsilon\)是误差项。

2.弹性公式弹性是指一个变量对另一个变量的变化的敏感程度。

在计量经济学中,常用两个变量之间的弹性来衡量它们之间的关系。

例如,价格弹性用来衡量需求量对价格的变化的敏感程度。

其中,\(E\)是弹性,\(\Delta Q\)是需求量的变化,\(\Delta P\)是价格的变化,\(P\)是价格,\(Q\)是需求量。

3.布朗运动公式布朗运动是一种随机过程,常用于模拟金融市场中的股票价格的变化。

布朗运动的基本公式如下:\[dS(t) = \mu S(t)dt + \sigma S(t)dW(t)\]其中,\(dS(t)\)是股票价格的微小变化,\(\mu\)是股票价格的平均增长率,\(dt\)是时间的微小变化,\(\sigma\)是股票价格的波动率,\(dW(t)\)是布朗运动的微小变化。

4.回归残差公式回归残差是指观测值与回归线之间的差异,用于衡量回归模型的拟合度。

回归残差的计算公式如下:\[e_i = Y_i - \hat{Y_i}\]其中,\(e_i\)是第\(i\)个观测值的回归残差,\(Y_i\)是观测值,\(\hat{Y_i}\)是对应的估计值。

5.误差项性质公式OLS模型中的误差项要符合一些假设,其中最基本的是误差项的期望为零和方差为常数。

这些性质可以用以下公式表示:\[\mathbb{E}(\epsilon_i) = 0\]\[\text{Var}(\epsilon_i) = \sigma^2\]\[\text{Cov}(\epsilon_i, \epsilon_j) = 0\]其中,\(\mathbb{E}(\epsilon_i)\)表示误差项的期望,\(\text{Var}(\epsilon_i)\)表示误差项的方差,\(\text{Cov}(\epsilon_i, \epsilon_j)\)表示误差项之间的协方差。

计量经济学主要公式

计量经济学主要公式

计量经济学主要公式1. 简介计量经济学是一门研究经济现象的定量分析方法。

在计量经济学中,有许多重要的公式被广泛应用于经济数据的分析和解释。

本文将介绍计量经济学中的一些主要公式,并对其进行解释和应用。

2. 最小二乘法估计最小二乘法估计是计量经济学中最常用的估计方法之一。

它用于确定数据之间的线性关系,并找到使得预测值与真实值之间的平方差最小化的最佳拟合线。

最小二乘法估计的公式如下:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1是待估计的参数,ε表示误差项。

最小二乘法估计的目标是最小化误差项的平方和,即使得∑ε^2最小化。

3. 弹性系数弹性系数是衡量变量之间相互影响程度的指标。

在计量经济学中,弹性系数经常被用来衡量因变量对自变量的变化的敏感度。

常见的弹性系数有价格弹性、收入弹性等。

弹性系数的计算公式如下:E = (ΔY / Y) / (ΔX / X)其中,E表示弹性系数,ΔY表示因变量的变化量,ΔX表示自变量的变化量,Y表示因变量的原始值,X表示自变量的原始值。

弹性系数的绝对值越大,表示变量之间的相互影响越大。

4. 汇总函数汇总函数用于描述宏观经济关系中的总量变量之间的关系。

计量经济学中常用的汇总函数包括线性汇总函数和非线性汇总函数。

线性汇总函数的一般形式如下:Y = a + b1X1 + b2X2 + ... + bnXn其中,Y表示因变量,X1、X2、…、Xn表示自变量,a表示截距,b1、b2、…、bn表示回归系数。

线性汇总函数可以用于宏观经济模型的建立和政策分析。

5. 假设检验假设检验是计量经济学中用于检验统计推断的一种方法。

通过对样本数据进行分析,假设检验可以判断统计推断是否具有显著性。

常用的假设检验有t检验、F检验等。

假设检验的一般步骤包括建立原假设和备择假设、计算检验统计量、确定临界值和进行推断。

假设检验的结果通常用p值来表示。

6. 时间序列分析时间序列分析是计量经济学中研究时间序列数据的方法。

计量经济学期末复习习题及答案

计量经济学期末复习习题及答案

计量经济学期末复习习题及答案计量经济学习题一、名词解释1、普通最轻二乘法:为并使被表述变量的估计值与观测值在总体上最为吻合并使q=最轻,从而谋出来参数估计量的方法,即之。

2、总平方和、回归平方和、残差平方和的定义:tss度量y自身的差异程度,称为总平方和。

tss除以自由度n-1=因变量的方差,度量因变量自身的变化;rss度量因变量y的拟合值自身的差异程度,称为回归平方和,rss除以自由度(自变量个数-1)=回归方差,度量由自变量的变化引起的因变量变化部分;ess度量实际值与拟合值之间的差异程度,称为残差平方和。

rss除以自由度(n-自变量个数-1)=残差(误差)方差,度量由非自变量的变化引起的因变量变化部分。

3、计量经济学:计量经济学就是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,专门从事经济关系与经济活动数量规律的研究,并以创建和应用领域经济计量模型为核心的一门经济学科。

而且必须表示,这些经济计量模型就是具备随机性特征的。

4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目(包扩常数项),即之。

5、序列相关性:模型的随机误差项违反了相互单一制的基本假设的情况。

6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

7、工具变量法:在模型估算过程中被做为工具采用,以替代模型中与随机误差项有关的随机表述变量。

这种估算方法称作工具变量法。

8、时间序列数据:按照时间先后排序的统计数据。

9、横截面数据:出现在同一时间横截面上的调查数据。

10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系。

11、异方差:对于线性回归模型提出了若干基本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。

计量经济学主要公式一览表

计量经济学主要公式一览表

数系关相复 与 ty 是 的 1–ktx,…,2tx,1tx 与 ty 数系关相偏
x…,2tx,1tx 对 ty 是
中其。数系关相单简的
62 52
。数系关相单简的 ty ,tx 的下件条变不 tz 制控是
数系 liehT
42
均平值对绝差误对相
32
均平差误对绝
22
根方均差误
12 02 91 81 71
+
X = Y
u + � X = Y
式 公 算 计
式公算计要主的型模归回性线元多 4.3 表
数系关相本样
81
测预间 区的 1+Ty 个单 71
测预 间区的)1+Ty(E
1+T
61
x
+
=
测预 点的 1+Ty 个单 51
)2-T(
�t
+
� 1�� )2-T( �t
间区信置的 1�
41
合拟的归回
1– kt
1
+
0
C =
式公测预点
61
)
1 -k 1+T
x …
2 1 +TFra bibliotekx1 1+T
x 1( = C
量计统 t
51
量计统 F
41
t
x 1� + 0� = )ty(E
+ tx + = ty
t
u + tx 1� + 0� = ty
式公 算 计
称 名式公

数系决可的整调
31
数系决可 ' = ESS 和方平差残 和方平总 = RSS = )

(完整word版)计量经济学主要公式

(完整word版)计量经济学主要公式

序公式名称计算公式号y t = β0 + β1 x t + u t1真实的回归模型2估计的回归模型y t =+x t +E(y t) = β0 + β1 x t3真实的回归函数4估计的回归函数=+x t5最小二乘估计公式6和的方差7σ2的无偏估计量= s2 =8和估计的方差9总平方和∑(y t -) 210回归平方和∑(-) 211误差平方和∑(y t -)2 = ∑()212可决系数(确定系数)13检验β0,β1 是否为零的t统计量14β1的置信区间-tα(T-2) ≤β1≤+tα(T-2)15单个y T+1的点预测=+x T+116E(yT+1)的区间预测17单个yT+1的区间预测18样本相关系数表3.4 多元线性回归模型的主要计算公式+= X= (X 'X)-1X 'YVar(= s2 ='/ (T - k)() =(X 'X)-1= '= '= +… +C s==是控制z t不变条件下的x t, y t的简单相关系数。

是y t与的简单相关系数。

其中是y t对x t1,x t2,…x tk–12:随机误差项的性质(1)误差项代表了未纳入模型变量的影响;(2)即使模型中包括了决定数学分数的所有变量,其内在随机性也不可避免,这是做任何努力都无法解释的;(3)u代表了度量误差;(4)“奥卡姆剃刀原则”,即描述应该尽可能简单,只要不遗漏重要的信息。

3:解释回归结果的步骤(1)看整个模型的显著性,看F统计量的值;(2)看单个参数的显著性;(3)解释斜率的经济含义;(4)解释R²。

4:古典线性回归模型的基本假定(同多元线性回归模型的基本假定相同)(1)所有自变量是确定性变量; (2)(3)自变量之间不存在完全多重共线性。

12:样本回归方程,i e 为残差项,i i i e X b b Y ++=21总体回归方程,i u 为随机误差项i i i u X B B Y ++=215:样本回归函数:随机样本回归函数:总体回归函数:随机总体回归方程:观察值可表示为: 6:普通最小二乘法就是要选择参数1b 、2b ,使得参差平方和最小。

计量经济学中se的计算公式

计量经济学中se的计算公式

计量经济学中se的计算公式
计量经济学中SE(标准误差)用于指示参数估计的可靠性,用来
衡量拟合数据的精度。

它通常被简写为SE。

SE的计算公式如下:
SE = sqrt [MSE/n];
其中,MSE(mean squared error)是一种度量模型拟合效果的参数,表示模型预测和实际之间的偏差。

MSE(mean squared error) = Σ(actual-predicted)2/n;
其中,n表示实际数据样本的大小,actual和predicted分别表
示实际数据和预测数据。

所以,计算MSE的步骤如下:
(1)、计算总体方差(σ2):σ2 = Σ(xi-xav)2/n
其中,xav为样本平均数,xi为各个样本的实际值。

(2)、计算残差和(SSE):SSE = Σ(actual-predicted)2
(3)、计算参数估计的MSE:MSE = SSE/(n-p)
其中,p表示自回归模型的参数个数,即自变量的个数。

(4)、计算标准误差:SE = sqrt [MSE/n]
综上所述,计量经济学中SE(标准误差)的计算公式为: SE = sqrt [MSE/n];
MSE(mean squared error) = Σ(actual-predicted)2/n。

计量经济学主要公式

计量经济学主要公式

9 总平方和' (P t-〕)2回归平方10 和1 误差平方'(P tJ)2「(Q21 和1 可决系数S2 (确定系数)1检验9, 肓―3 J是否为零的t统计量1 M的置信n ;* * ;*⑴t :(T-2W 一+ ⑴t :.(T-2)4 区间1单个P T+1 l 二=二 + £ i G T+1 5 的点预测1E(P T+1)的6 区间预测1 单个P T+1「+宀如…f左‘ 丫応-壬)27 的区间预测1样本相关8 系数表3.4多元线性回归模型的主要计算公式2 :随机误差项的性质(1)误差项代表了未纳入模型变量的影响;(2 )即使模型中包括了决定数学分数的所有变量,其内在随机性也不可避免,这是做任何努力都无法解释的;(3)u代表了度量误差;(4)“奥卡姆剃刀原则”,即描述应该尽可能简单,只要不遗漏重要的信息。

3 :解释回归结果的步骤(1)看整个模型的显著性,看F统计量的值;(2 )看单个参数的显著性;(3)解释斜率的经济含义;(4)解释R2。

4 :古典线性回归模型的基本假定(同多元线性回归模型的基本假定相同)(1)所有自变量是确定性变量;(2)(3)自变量之间不存在完全多重共线性。

12 :样本回归方程,e为残差项,Y -b1 b2X i e总体回归方程,U i为随机误差项ESS/k-1 RSS/n — kY = B 1B 2X iuE(Y| X i)= B i+ B 2X i总体回归函数:Y = B i + B 2X i + U i随机总体回归方程: 观察值可表示为:d:j 普通最小二乘法就是要选择参数XQ i、u i,使得参差平方和最小。

TSS:总离差平方和ESS:回归平方和 RSS:残差平方和 TSS^ESS RSS(1),ESS RSSTSS TSS(2)R2_ ESS TSS(3) 牛:FE 检Sbf方差来来源Sd.平方和自由度d.f. MSS 竺◎ '力乂玄 b/ y t xG 2 d f---- =—2 〜F(2, n_3) 来自回归 、ESS n —3)k —1 ESS/k -1来自残差判定系RSS R2之间的重要关系RSS/ n-k 总离差 T SSn -1F = R (k -1)(1 _R 2) (n_k)当R2 = 0, F = 0,当R2= 1 , F 值为无穷大 10 :校正的判定系数R222n -1 R =1 - 1 - Rn 「k11 :普通最小二乘估计量的一些重要性质:样本回归函数:Y 二 b 2X ie i5:b i b 2X i随机样本回归函数: b 2 7: Z xy i 送(X i —X jY —Y ) 送 X i Y — nXYY =b i b2X o =送e / n = o '、eXi =0:不同函数形式的总结。

《计量经济学》期末重点知识归纳整理

《计量经济学》期末重点知识归纳整理

计量经济学期末重点知识归纳1.普通最小二乘法:已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为存在多重共线性。

计量经济学公式推导

计量经济学公式推导

计量经济学公式推导⼀、最⼩⼆乘估计式推导过程:由⽅程组0?)(112=??∑=βnt t e (1)0?)(212=??∑=βnt t e …………………(2) ,得(注意:根据导数运算法则,若)(x f 和)(x g )在⼀个共同的区间),(b a 上有定义,并且在每⼀点),(b a x ∈都可导,则有)()(])()([x g x f x g x f '±'='±;)()()()(])()([x g x f x g x f x g x f '*+*'='*;对于常数c ,则)(])([x f c x cf '=';当0)(≠x g 时,2)]([)()()()(])()([x g x g x f x g x f x g x f '-'=')因此,由(1)式得,0?)(?)(1122=??=??∑∑==nt t nt t e e ββ (3)由(2)式得,0?)(?)(122212=??=??∑∑==nt t nt t e e ββ (4)根据复合函数微商定理:若对于)(y g z =,)(x f y =,若)(x f y =在⼀点0x 可导,且)(y g z =在相应的点)(00x f y =处可导,则复合函数))((x f g 在0x 可导,且有公式)()())((000x f y g dx x f dg x x ''==因此,依复合函数微商定理,由(3)式得,0)?)()()((?)(112112=??*??=??∑∑==n t t t t nt t e e e e ββ…………(5)⼜依据微商运算公式:1)(-='m m mxx ,⼜t)12(112112=?-*=??*??=??∑∑∑∑=--==t nt t n t t t t nt t e e e e e e βββ………(7) 同理根据复合函数微商定理,由(4)式得,0))?()()()((?)(122122=??*??=??∑∑==n t t t t nt t e e e e ββ……………(6) 同理⼜依据1)(-='m m mxx ,及tt t t t t t t X Y e e X e Y Y 2121ββββ--=?++=+= 可得,0)?1)(2())?()()()((?)(11)11(2)12(12 2122=-*?=??*??=??∑∑∑∑==--==n t t t n t t t n t t tt nt t X e X e e e e e βββ……(8) 同样根据:tt t t t t t t X Y e e X e Y Y 2121ββββ--=?++=+=,可以得到⽅程组: 0)??(1211=--=∑∑==nt ttn t t X Ye ββ……………………(9) 0)??(1211=--=∑∑==nt tt ttX X YX e ββ………………(10) ⽅程(9)、(10)称为正规⽅程,合起来组成的⽅程组称为正规⽅程组。

计量经济学主要公式一览表

计量经济学主要公式一览表
是 yt 与 的简单相关系数。其中 是 yt 对 xt1,xt2,…xtk –1 回归的拟合
k-1 T+1 k-1
C t s � �/2 (1, T-k)
C t s � �/2 (T-k) et = - yt, t = 1, 2, …, T
PE =
, t = 1, 2, …, T
24
Theil 系数
25
偏相关系数
yt 与 xt1,xt2,…,xtk–1 的
26 复相关系数
是控制 zt 不变条件下的 xt, yt 的简单相关系数。
14
F 统计量
15
t 统计量
16
点预测公式
E(yT+1) 的置信区间预
17

单个 yT+1 的置信区间预
18

19
预测误差
20
相对误差
21
误差均方根
22 绝对误差平均
23 相对误差绝对值平均
C = (1 xT+1 1
x … x ) T+1 2
T+1 k-1
C x x =
=
0 + 1 + T+1 1 … +
序 公式名 称
计 算 公式

1 真实的回归模 yt = �0 + �1 xt + ut 型
2 估计的回归模

yt = + xt +
3 真实的回归函 E(yt) = �0 + �1 xt 数
4 估计的回归函 数
= + xt
5 最小二乘估计 公式
6 和 的方

7 � � 的无偏估 计量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序号 公式名 称 计 算 公式
1 真实的回归模型 y t = β0 + β1 x t + u t
2 估计的回归模型 y t =+
x t +
3 真实的回归函数 E(y t ) = β0 + β1 x t
4 估计的回归函数 =
+
x t
5
最小二乘估计公式
()()()
∑∑∑∑∑∑--=---==
-=2
22
2
221X n X Y X n Y X X X Y Y X X x y x b X b Y b i
i i i
i
i
i
i i
6
和的方

7 σ 2 的无偏估
计量
= s 2
=
8
和估计
的方差
9
总平方和TSS
∑ (y t -) 2
10 回归平方和
RSS ∑ (
-
) 2
11 误差平方和
ESS ∑ (y t -)2 = ∑ (
)2
12 可决系数(确
定系数)
=RSS/TSS
13 检验β0,β1 是
否为零的t 统计量
14 β1的置信区间
-
t α (T -2) ≤β1 ≤
+
t α (T -2)
15单个y T+1的点
预测=+x T+1
16E(y
T+1)的区间
预测
17单个y
T+1的区
间预测
18样本相关系数
表3.4 多元线性回归模型的主要计算公式
+
= X
= (X 'X)-1X 'Y
Var(
= s2 ='/ (T - k)
() =(X 'X)-1
= '
= '
= +… +
C s
=
=
是控制z t不变条件下的x t, y t的简单相关系数。

是y t与的简单相关系数。

其中是y t对x t1,x t2,…x tk–1
2:随机误差项的性质
(1)误差项代表了未纳入模型变量的影响;(2)即使模型中包括了决定数学分数的所有变量,其内在随机性也不可避免,这是做任何努力都无法解释的;(3)u代表了度量误差;(4)“奥卡姆剃刀原则”,即描述应该尽可能简单,只要不遗漏重要的信息。

3:解释回归结果的步骤
(1)看整个模型的显著性,看F统计量的值;(2)看单个参数的显著性;
(3)解释斜率的经济含义;(4)解释R²。

4:古典线性回归模型的基本假定(同多元线性回归模型的基本假定相同)
(1)所有自变量是确定性变量; (2)
(3)自变量之间不存在完全多重共线性。

12:样本回归方程,i e 为残差项,
i i i e X b b Y ++=21
总体回归方程,i u 为随机误差项
i i i u X B B Y ++=21
5:
样本回归函数:
随机样本回归函数:
总体回归函数:
随机总体回归方程:
观察值可表示为: 6:普通最小二乘法就是要选择参数1b 、2b ,使得参差平方和最小。

()()()
∑∑∑∑∑∑--=---==-=2
2
2
22
21X n X Y X n Y X X X Y Y X X x y x b X b Y b i
i i i
i
i
i
i i
7:R ²的计算公式:( R ²度量了回归模型对Y 变异的解释比例)
TSS :总离差平方和ESS :回归平方和RSS :残差平方和
(1)
(2)
(3)
8:F 检验
)
3,2(~)
3(2
)(.
...23322--+=
=∑∑∑n F n e
x y b x y b f d RSS f d ESS F t
t t t t
21ESS RSS
TSS TSS
ESS
R TSS =
+=
RSS ESS TSS +=i
i i i i i i i i i i i i i i i u
X Y E Y e Y
Y u
X B B Y X B B X Y E e X b b Y X b b Y
+=+=++=+=++=+=)|(ˆ)|(ˆ21212121
()1
//1/1/1P ..-------⋅=n TSS
k
n RSS k n RSS p
k
n RSS k ESS k ESS k ESS F f
d SS MSS f d 总离差
来自残差来自回归值值自由度平方和方差来源
9:F 与判定系数R2之间的重要关系
当R2=0,F =0,当R2=1,F 值为无穷大
10:校正的判定系数R ²
(
)k
n n R R ----=1112
2
11:普通最小二乘估计量的一些重要性质:
∑∑∑====+=0
ˆ00
21i
i i i i Y e X e n e e X b b Y
)()1()1(22
k n R k R F ---=。

相关文档
最新文档