弹塑性力学复习题
弹塑性力学试题(06研)

弹塑性力学试题(土建院06研)考试时间:2小时考试形式:笔试,开卷一、是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。
每小题3 分,共27分)1.外力(面力、体力)均以沿坐标轴正方向为正,面力的正负号与所处面的正负无关。
( )2.若物体内一点的位移u 、v 、w 均为零,则该点的正应变x ε=y ε=z ε=0。
( )3.满足平衡方程和全部应力边界条件的应力必为正确解(本问题的边界条件均为应力边界条件)。
( )4.弹性体中任一点的柱坐标应力分量之和z r σσσθ++与三个主应力分量之和321σσσ++一定相等。
( )5.塑性理论的主要特点是应力应变关系不同于弹性理论,对于给定的应变,不能确定应力。
( )6. 薄壳与薄板一样,是以物体内一点的位移、形变、应力为研究对象的。
( )7. 对于等截面实心杆扭转问题,普朗都(Prandtl )应力函数ϕ的边界值s ϕ=0。
( )8. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。
( )9.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=mm m w C w ,但Ritz法中m w 必须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。
( )二﹑填空题(每小题3分,共12分)1.z y x εεε++称为( ),z y x σσσ++称为( ),)21/(μ-E 称为( )。
2.球坐标系(ϕθ,,r )中(ϕϕθϕθcos ,sin sin ,sin cos r z r y r x ===)的拉密系数1H 、2H 、3H 分别为( )、( )、( )。
3.矩形薄板小挠度问题Navier 解法与Levy 解法的特点分别是( )、( )。
4.Mises 屈服准则可用方程表示为( )。
61分)(L>>h),厚度为1,右端顶部受与水平方向成α角的集试检验函数332Dy Cxy Bxy Ay +++=ϕ能否作为应力函数?若可以作为应力函数,求出应力分量xy y x τσσ , ,(不计体力) (15分)2. 内半径为a 、外半径为b 的圆环板,板面无分布荷载作用,板边作用有均布弯矩和横向力,作用方向及板的支承如图所示,试求圆环板的挠度和内力。
弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
塑性力学考试题及答案

塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。
A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。
7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。
8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。
三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。
10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。
答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。
- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。
- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。
7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。
常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。
弹塑性力学复习-1

二、计算题
1.已知一点的应力
500 σij = -100
-100
-100 400
0
-100
0
MPa
400
计算(1)主应力 (2)主方向 (3)最大切应力 (3)正八面体上的正应力 (4)正八面体上的切应力 (5)正八面体上的全应力
2.已知一点的应变
u (x1 x2 )2 e1 (x2 x3 )2 e2 x1x2e3
解(1): 管的两端是自由的应力状态
1 6
[(1
2
)2
(
2
3 )2
(
3
1)2
]
2 s
(Mises)
1 3 2 s (Tresca)
1
pR t
,
2
z
0, 3
r
0, zr
r
z
0
1 6
[(
pR t
)2
(
pR t
一、概念题
1.若物体内一点的位移均为零,则该点的应变也 为零。
2.在x为常数直线上,u=0,则沿该线必有 x 0 。 34..在满足y为平常衡数微直分线方上程,又u满=0足,力则边沿界该条线件必的有应 x力 0是。
否是实际应力。 5.应变状态 x k(x2 y2 ), y ky2, xy 2kxy 不可能存在。 6.若 是平面调和函数,1 (x2 y2 ) 是否可以作为
应力函数。
一、概念题
7.平面应力与平面应变主要的异同是什么。 8.切应变的含义是什么。 9.变形协调方程的物理意义是什么。 10.应力主轴与应变主轴在什么情况下重合。 11.什么是横向各向同性材料。 12.受内压压圆环(筒)的应力分析 。 13.逆解法、半逆解法的理论依据是什么?为什么? 14.为什么最小势能原理等价于平衡方程与应力边 界条件? 15.里兹法与伽辽金法的近似性表现在哪里?
(完整版)弹塑性力学习题题库加答案

第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学历年考题(杨整理)

i, j x, y, z ,展开其中的 xy 。 (5 分)
三、 以图示平面应力问题为例,列出边界条件,叙述半逆解法的解题步骤。 (15 分) 。
四、 解释图示受内压 p 作用的组合厚壁筒(半径上的过盈量为 )的弹性极限载荷为何比 单层厚壁筒大。 (25 分)
五、 说明为何扭转问题可以进行薄膜比拟。计算边长为 a 的正方形截面,材料剪切屈服强 度为 s 的柱体扭转塑性极限扭矩。 (15 分) 六、 解释为何在用最小总势能原理和里兹法求解图示梁的挠度时,可以设位移函数 (15 分) w a1x 2 (l x) a2 x 2 (l 2 x 2 ) ... 取一项近似计算梁的挠度。
Ar 2 ( ) r 2 sin cos r 2 cos 2 tan ( A为常数)
能满足图示楔形悬臂梁问题的边界条件。并利用这个应力函数确定任一点的应力分量。
四、已知两端封闭的薄壁圆筒,半径为 R,壁厚为 t。圆筒由理想塑性材料制成,其屈服极 限为 s 。薄壁圆筒因受内压而屈服,试确定: (1)屈服时,薄壁筒承受的内压 p; (2) 塑性应力增量之比。 (20 分) 五、求解狭长矩形截面柱形杆的扭转问题:求应力分量和单位长度的扭转角。 (16 分) 六、试用能量法求解图示悬臂梁的挠度曲线。 (提示:设挠度函数为 y A1 cos 其中 A 为待定系数)
2 A r 2 4 sin cos 2(cos 2 sin 2 ) tan 2
2 2 A r 2 sin 2 2 sin cos ) tan r
满足协调方程:
4 (
应力分量:
弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑力学综合测试题

综合测试试题一一、问答题:(简要回答,必要时可配合图件答题。
每小题5分,共10分。
)1、简述固体材料弹性变形的主要特点。
请参见教材第49页。
2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的___个独立的应力分量,它们分别是__。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫___方程,它的缩写式为___。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
弹塑性力学复习提纲和考试习题

《弹塑性力学》复习提纲1. 弹性力学和材料力学在求解的问题以及求解方法方面的主要区别是什么?研究对象的不同:材料力学,基本上只研究杆状构件,也就是长度远远大于高度和宽度的构件。
非杆状结构则在弹性力学里研究研究方法的不同:材料力学大都引用一些关于构件的形变状态或应力分布的假定,得到的解答往往是近似的,弹性力学研究杆状结构一般不必引用那些假定,得到的结果比较精确。
并可用来校核材料力学得出的近似解。
2. 弹性力学有哪些基本假设?(1)连续性,(2)完全弹性,(3)均匀性,(4)各向同性,(5)假定位移和形变是微小的3. 弹性力学有哪几组基本方程?试写出这些方程。
(1)平面问题的平衡微分方程:平面问题的几何方程:平面应力问题的物理方程:(在平面应力问题中的物理方程中将E换为,换为就得到平面应变问题的物理方程)(2)空间问题的平衡微分方程;空间问题的几何方程;空间问题的物理方程:4. 按照应力求解和按照位移求解,其求解过程有哪些差别?(1)位移法是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,解出位移分量,然后再求形变分量和应力分量。
要使得位移分量在区域里满足微分方程,并在边界上满足位移边界条件或应力边界条件。
(2)应力法是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和边界条件,解出应力分量,然后再求出形变分量和位移分量。
满足区域里的平衡微分方程,区域里的相容方程,在边界上的应力边界条件,其中假设只求解全部为应力边界条件的问题。
5. 掌握以下概念:应力边界条件和位移边界条件;圣文南原理;平面应力与平面应变;逆解法与半逆解法。
位移边界条件:若在部分边界上给定了约束位移分量和,则对于此边界上的每一点,位移函数u和v和应满足条件=,=(在上)应力边界条件:若在部分边界上给定了面力分量(s)和(s),则可以由边界上任一点微分体的平衡条件,导出应力与面力之间的关系式。
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学复习(2022)

期末考试范围:1.推导公式,两类物理方程互换推导;2.平面直角坐标的逆解法,要求画出面力分布规矩;3.平面极坐标半逆解法,写出所有应力边界条件,等效应力可以不用积分最终结果。
4.半空间问题受法向集中力问题;5.平面问题的位移变分,指定里兹法,也给出了里兹法公式;6.1.推导公式,两类物理方程互换推导1[()]1[()]1[()]x x y z y y z x z z x y E E Eεσμσσεσμσσεσμσσ=-+=-+=-+⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++=θμμεμσθμμεμσθμμεμσ211211211z z y y x x E EE若不计体力,试推到分别用应变、应力、应力函数表示的相容方程。
2.平面直角坐标的逆解法,要求画出面力分布规矩;COxybh2l 2l例:设能否作为应力函数?并分析其所能解决的问题。
223126y a y a Φ+=xF exF已知函数([)== a y3 + bx2, a、b为常数。
试分析:1.该函数能否作为应力函数使用;(7分)2.如能作为应力函数使用,在左图所示不计体力的单位厚平板上,画出上述函数能够解决的问题。
(8分)女°厂l3.平面极坐标半逆解法,写出所有应力边界条件,等效应力可以不用积分最终结果。
已知曲杆内外半径分别为a 、b '一端固定,另一端受集中力F 作用,试求应力分量半定解,并写出除固定端外的所有边界条件(不用计算待定常数)。
可设定应力函数吵=(A p '+�+Cp+Dp ln p }in ,p。
一一一一鲁酝Xo , ,p a,y4.半空间问题受法向集中力问题;里兹法·一--6-c,忒确化方程吁-c ,化曲E 点处的茄宁0千0:.To;t __ / __ (T。
I I今J某杆件所用材料的应力应变曲线为σT=B∈0.5,若杆件在颈缩前的工程应变为0.4,当工程应变再增加多少时,杆件方能进入颈缩状态。
弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。
弹塑性力学试题集锦(很全,有答案)

1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
工程弹塑性力学题库及答案

解:刚塑性模型不考虑弹性阶段应变,因此刚塑性应力应变曲线即为
曲
线,这不难由原式推得
而在强化阶段,
,因为这时
将 都移到等式左边,整理之即得答案。
其中
5.7 已知简单拉伸时的 变的比值
曲线由(5.1)式给出,考虑横向应变与轴向应
在弹性阶段,
为材料弹性时的泊松比,但进入塑性阶段后 值开
始增大最后趋向于 。试给出 解:按题设在简单拉伸时总有
有
则
(2)纯剪切应力状态,
有
故 7.10 如何利用与 Tresca 屈服条件相关联的流动法则?
第八章 理想刚塑性的平面应变问题
8.1简述滑移线的概念: 解:在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移 线。 剪切应力是最大剪应力。 平衡方程——沿线: 2k=C 或 =2k ;
沿线: +2k=C 或 = 2k ; 速度方程——沿线:dv v d=0;
对,
,代入得
对,
,代入得
对,
,代入得
1.10当
时,证明
成立。
解: 由
,移项之得
证得
第五章 简单应力状态的弹塑性问题
5.1 简述 Bauschinger 效应: 解:拉伸塑性变形后使压缩屈服极限降低的现象
5.2 在拉杆中,如果 和 为试件的原始截面积和原长,而 和 为拉伸后的截
面积和长度。则截面收缩率为 时,有这样的关系: 证明: 体积不变,则有
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案

解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
硕士生弹塑性力学复习题(2007)

硕士生弹塑性力学复习题一、 判断题1、 对于单个弹性材料组成的物体,其平面应力问题的应力与位移解答都与弹性体的材料常数有关。
( )2、 应力轴对称问题的位移解答也一定是轴对称的。
( )3、 应变状态,是可能的。
( )3,,x y xy Axy By C Dy εεγ===−24、 第一边值问题的所有解答(应力、应变、位移)都是唯一的。
( )5、 弹性体保持连续(不发生相互脱离或侵入现象)的条件是满足应变协调方程。
( )6、 作用在半无限体上的集中力对离作用力位置较远的地方会产生较大的应力集中。
( )7、 对梁端部作用一附加平衡力系,则该力系对作用点附近的应力分布会产生明显的影响。
( )8、 弹性薄板上的扭矩可以等效为分布及集中剪力。
( )9、 薄板的Navier 解法只适用于四边支承的矩形板。
( ) 10、薄板的Levy 解法适用于任意支承的矩形板。
( )11、满足应力相容方程的一组应力分量,也一定满足平衡方程。
12、最大正应力作用面上的剪应力为零,最大剪应力作用面上的正应力为零。
( ) 13、应力不变量与坐标系的选择无关。
( )14、薄板弯曲时,若满足了自由边合剪力与弯矩等于零的边界条件,则弯矩M 、扭矩xy M 、横向剪力Q 都分别为零。
( )15、Tresca 屈服条件是:当最大拉应力达到某一数值时,材料就发生屈服。
( ) 16、当八面体上的剪应力达到某一数值时,材料就会产生屈服现象。
( )二、 填空题1、 弹性力学的基本假设有 , , , , , 。
2、弹性力学的三类边值问题是:(1) ,(2) ,(3) 。
3、对于平面应变问题,只需将对应的平面应力问题的解答作材料常数的替换即可,即 E → ,γ→ 。
4、弹性薄板的弹性曲面方程为: 。
5、弹性力学问题有 和 两种基本解法,前者以 为基本未知量,归结为在 条件下求解 ,后者以 为基本未知量,归结为在 条件下求解 。
6、对于平面应变问题z σ= ,z ε= ;对于平面应力问题z σ= ,z ε= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
08.
对于线性强化模型,已知 Es : E = 1 : 100, (1)给定应力路径为:01.5s 0 s0,求对 提示:写出两段直线的方程。
应的应变值; (2)给定应变路径:051s 021s 0,求对应的应力值。
09.
如图等截面杆截面积 A 在 x=a(b>a)处作用一逐渐增加的力 F,求左端反力与外力的关系, F a b
设材料为理想弹塑性或线性强化弹塑性材料。
0 10 10 10. 已知物体中某点的应力张量为: ij 0 10 0 ,试求主应力值以及应力不变量 Ij 10 10 0
和偏应力不变量 I’j 。 11. 证明:应力张量和应力偏张量的主方向互相重合。 (提示:具有共同的特征方程)
第 3 页(共 3 页)
A.一般不等于零;B.等于极大值;C.等于极小值;D.必定等于零 ;
C. E 0, 0.5 0.5; D. E 0, 0 0.5;
14.应力分量等于弹性势函数对相应的应变分量的一阶偏导数( ij A.刚体; B.弹性体; C.弹塑性体; )为零。
U 0 )此式是用于( ij
s
; C. k
s ;此关系式实质上就是( ij
) 。
A.功能关系; B.线形关系;C.本构关系; D.平衡关系; 20. 材料经过连续两次拉伸变形, 第一次的真实应变为1=0.1, 第二次的真实应变为2=0.25, 则总的真实应变 =( ) 。 A.-0.15; B.0.15; C.0.35; D.0.025;
复习题
一、选择题
01.受力物体内一点处于空间应力状态(根据 oxyz 坐标系) ,一般确定一点应力状态需( )独 立的应力分量。 A.18 个; B.9 个; C.6 个; D.2 个; ) 。 02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( 03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( A./2; B./4; C./6; D.; 04.正八面体单元微截面上的正应力 8 为: ( ) 。 A.零; B.任意值; C.平均应力; D.极值; 05.从应力的基本概念上讲,应力本质上是( ) 。 A.集中力; B.分布力; C.外力; D.内力; 06.若研究物体的变形,必须分析物体内各点的( ) 。 A.线位移; B.角位移; C.刚性位移; D.变形位移; 07.若物体内有位移 u、v、w (u、v、w 分别为物体内一点位置坐标的函数) ,则该物体( A.一定产生变形;B.不一定产生变形; C.不可能产生变形;D.一定有平动位移; 08.弹塑性力学中的几何方程一般是指联系( )的关系式。 A.应力分量与应变分量;B.面力分量与应力分量; C.应变分量与位移分量;D.位移分量和体力分量; 09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。求解主应变 的方程可得出三个根。这三个根一定是( ) 。 A.实数根;B.实根或虚根;C.大于零的根;D.小于零的根; 10.固体材料受力产生了塑性变形。此变形过程( ) 。 A.必定要消耗能量; B.必定是可逆的过程; C.不一定要消耗能量;D.材料必定会强化; 11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。 A.脆性材料;B.金属材料;C.岩土材料;D.韧性材料; 12.幂强化力学模型的数学表达式为 =An ,当指数 n=1 时,该力学模型即为( A.理想弹塑性力学模型;B.理想线性强化弹塑性力学模型; C.理想弹性模型; D.理想刚塑性力学模型; 13.固体材料的弹性模 E 和波桑比(即横向变形系数)的取值区间分别是: ( A. E 0, 0 0.5; B. E 0, 1 1; ) 。 ) 。 ) 。 ) 。
2 2
02.
w x1 x2 ,内有一点 P(0,2,-1)。
求过该点的应变张量 ij ;主应变及应变偏量的第二不变量并和偏应变张量。 (提示:按定义求解) 03. 物体中某点的主应力分别为( -100、-200、-300) MPa,该材料的单向拉伸的屈服应力 为 s =190Mpa,用 Tresca 屈服准则或 Mises 屈服准则判断该点状态(弹性/塑性) 。 (提示:由等效应力判断) 04. 物体中某点的主应力分别为( 400、 200、 200) MPa,当它对应的应力为( 300、 100、 0) MPa 时是加载还是卸载(分别用 Tresca 屈服准则和 Mises 屈服准则判断) 。 (提示:看屈服函数的全微分是否大于零)
) 。
D.刚塑性体 ;
15.主应力空间 平面上各点的(
A.球应力状态 m ij ;B.偏斜应力状态 sij ;C.应力状态 ij ;D.应变状态 ij ;
第 1 页(共 3 页)
16.在 平面上屈服曲线具有的重要性质之一是(
) 。
A.坐标原点被包围在内的一条封闭曲线;B.一条封闭曲线; C.坐标原点被包围在内一条开口曲线; D.一条封闭折线; 17.Tresca 屈服条件表达式中的 k 为表征材料屈服特征的参数,其确定方法为:若用简单拉伸试 验来定,则为( ) 。
第 2 页(共 3 页)
05. 橡皮方块放在同体积的刚性盒内,上面用刚性盖密封,使盖上面承受均匀压力。设橡皮与盒 和盖间雾摩擦,试求盒内两侧所受到的压力,以及橡皮块的体积应变,若将橡皮换成刚体或不可压 缩体时,其体积应变等于多少?为什么?(提示:边界应变等于 0,利用各向同性体弹性本构关系) 06. 证 明 不 可 压 缩 物 体 的 泊 松 比 为 0.5 ( 提 示 利 用 本 构 方 程 和 体 积 应 变 概 念 )
12. 证明:当一点应力状态对应的 3 个主应力大小不等时,3 个主应力相互垂直。 (提示课件中有 证明)
0 50 0 0 13. 已知物体中某点的应力张量为: ij 0 50 ,试求该点的八面体上的总应力、正 0 0 -100
应力和剪应力。 (提示:八面体各面是等倾面)
二、计算题
5 1 1 01. 已知应力张量 ij 1 4 0 MPa,求应力张量的三个不变量;已知其中一个主应力 1 0 4
为 3MPa,求另外两个主应力大小;求第二主应力的方向;求最大剪应力,并判断是否为纯 剪切。 已知物体位移场: u ( x1 x3 ) , v ( x2 x3 ) ,
2 2 3 3 18.加载和加载曲面的概念是针对( )而言的。 A.理想刚塑性材料;B.理想弹塑性材料;C.强化材料;D.岩土材料 ;
19.研究表明:应力分量 ij 等于弹性应变比能函数 U0 对相应的应变分量函数 ij 求一阶偏导数。 表达式为: ij
A. k
s
; B. k