九年级相似三角形知识点总结

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

相似三角形知识点大总结1

相似三角形知识点大总结1

相像三角形知识点知识点1 比例线段的相关概念(1)在四条线段中, 假如的比等于的比, 则这四条线段叫做成比例线段, 简称比例线段. 注: ①比例线段是有依次的, 假如说是的第四比例项, 则应得比例式为: . ②a, d叫比例外项, b, c叫比例内项, a, c叫比例前项, b, d叫比例后项, d叫第四比例项, 假如b=c, 即则b叫做a, d的比例中项, 此时有。

(2)黄金分割:把线段分成两条线段, 且使是的比例中项, 即, 叫做把线段黄金分割, 点叫做线段的黄金分割点, 其中≈0.618.即简记为:知识点2 比例的性质(留意性质立的条件: 分母不能为0)(1)基本性质:①;②.(2)合, 分比性质: .(3)等比性质:假如, 则..知识点3 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.....2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.. 知识点4 三角形相像的判定方法1, 定义法: 三个对应角相等, 三条对应边成比例的两个三角形相像.2, 平行法: 平行于三角形一边的直线和其它两边(或两边的延长线)相交, 所构成的三角形及原三角形相像.3, 判定定理1: 假如一个三角形的两个角及另一个三角形的两个角对应相等, 则这两个三角形相像. 简述为:两角对应相等, 两三角形相像.4, 判定定理2: 假如一个三角形的两条边及另一个三角形的两条边对应成比例, 并且夹角相等, 则这两个三角形相像. 简述为:两边对应成比例且夹角相等, 两三角形相像.5, 判定定理3: 假如一个三角形的三条边及另一个三角形的三条边对应成比例, 则这两个三角形相像.简述为:三边对应成比例, 两三角形相像.(1) 1, 下面我们来看一看相像三角形的几种基本图形: 如图: 称为“平行线型”的相像三角形(有“A 型”及“X 型”图)(2) 如图: 其中∠1=∠2, 则△ADE ∽△ABC 称为“斜交型”的相像三角形。

(完整版)初中相似三角形基本知识点和经典例题

(完整版)初中相似三角形基本知识点和经典例题

初三相似三角形知识点与经典题型知识点 1 相关相似形的看法(1) 形状同样的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2) 若是两个边数同样的多边形的对应角相等,对应边成比率,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比( 相似系数 ) .知识点 2 比率线段的相关看法( 1)若是采用同一单位量得两条线段a,b 的长度分别为 m, n ,那么就说这两条线段的比是a mbn ,或写成 a : bm : n .注:在求线段比时,线段单位要一致。

的比,那么这四条线段a,b,c, d 叫做成比率线段,( )在四条线段a, b, c, d 中,若是a 和b 的比等于c 和d 2简称比率线段. 注:①比率线段是有次序的, 若是说 a 是 b, c, d 的第四比率项, 那么应得比率式为:bd .②在比率式ac(a : bcac : d)中,a 、d 叫比率外项, b 、c 叫比率内项 , a 、c 叫比率前项, b 、d 叫比率后b d此时有 b 2项, d 叫第四比率项,若是 b=c ,即a :b b :d 那么 b 叫做 a 、 d 的比率中项, ad 。

( 3)黄金切割:把线段AB 分成两条线段 AC , BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比率中项,即AC 2AB BC ,叫做把线段 AB 黄金切割,点 C 叫做线段 AB 的黄金切割点,其中AC5 1 AB ≈20.618 AB .即ACBC 5 1 简记为:长=短=5 1ABAC 2全 长2注:黄金三角形:顶角是360 的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点 3比率的性质( 注意性质立的条件:分母不能够为0)( 1) 基本性质:① a : b c : d adbc ;② a : b b : c b 2a c . ad bc ,除注:由一个比率式只可化成一个等积式,而一个等积式共可化成八个比率式,如了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c , c : a d : b ,d : c b : a , d : b c : a .a b,交换内项 )cd( 2) 更比性质 ( 交换比率的内项或外项) :ac d()c ,交换外项b db ad b.同时交换内外项)ca( 3)反比性质 ( 把比的前项、后项交换) :ac bd .b dac( 4)合、分比性质:a c ab cd .b d bd注:实质上,比率的合比性质可扩展为:比率式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比率仍建立.如:a cac 等等.b da b c da bc d( 5)等比性质:若是ac e m(bdfn 0) ,那么 acem a .b d fnb d f nb注:①此性质的证明运用了“设 k 法”(即引入新的参数 k )这样能够减少未知数的个数,这种方法是相关比率计算变形中一种常用方法.②应用等比性质时,要考虑到分母可否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也建立.如:a c e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0.b d f b 2d 3 f b 2d 3 fb知识点 4比率线段的相关定理1. 三角形中平行线分线段成比率定理: 平行于三角形一边的直线截其他两边( 或两边的延长线) 所得的对应线段成比率 .A由 DE ∥ BC 可得:ADAE 或 BD EC 或 ADAE DB ECADEAABACDE注:BC①重要结论:平行于三角形的一边, 而且和其他两边订交的直线, 所截的三角形的三边 与原三角形三边 对应成比...... ......例 .②三角形中平行线分线段成比率定理的逆定理: 若是一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比率 . 那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法 , 即:利用比率式证平行线 .③平行线的应用:在证明相关比率线段时,辅助线经常做平行线, 但应依照的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 .2. 平行线分线段成比率定理: 三条平行线截两条直线, 所截得的对应线段成比率 .A D 已知 AD ∥ BE ∥CF,B E可得AB DE AB DE BC EFBC EFAB BCCFBC EF或DF或或AC 或DE 等.AC AB DE DFEF注:平行线分线段成比率定理的推论:平行线均分线段定理: 两条直线被三条平行线所截, 若是在其中一条上截得的线段相等, 那么在另一条上截得的线段也相等。

九年级人教版相似图形知识点归纳

九年级人教版相似图形知识点归纳

九年级人教版相似图形知识点归纳相似图形是初中数学中一个重要的概念,掌握相似图形的知识可以帮助我们解决许多几何问题。

在九年级数学课程中,我们学习了人教版教材中关于相似图形的知识点,下面对这些知识点进行归纳总结。

1. 相似三角形的定义相似三角形是指具有相同形状但大小可以不同的三角形。

两个三角形相似的条件是它们对应的角相等,对应的边成比例。

即如果∠A=∠D,∠B=∠E,∠C=∠F,那么三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF。

2. 相似三角形的角与边的性质a. 对应角相等:如果两个三角形相似,则它们对应的角相等。

b. 对应边成比例:如果两个三角形相似,则它们对应的边成比例。

3. 两种用来判断相似三角形的方法a. 三边成比例法:如果两个三角形的三条边长度分别成比例,即AB/DE=AC/DF=BC/EF,那么它们相似。

b. 两角对应相等法:如果两个三角形的两个角分别相等,且它们的第三个角也相等或者两个角分别相等,且它们的第三个角的对方边也成比例,那么它们相似。

4. 相似三角形的性质a. 相似三角形的对应边成比例,比例因子等于任意两边之比。

b. 相似三角形的高线成比例,比例因子等于任意两边之比。

5. 相似三角形与比例a. 两个相似三角形的面积之比等于相似三角形的边长之比的平方。

b. 相似三角形中,对应边的比例等于面积比。

即如果三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF,那么S(ABC)/S(DEF)=(AB/DE)^2=(AC/DF)^2=(BC/EF)^2。

6. 相似图形的面积比如果两个相似图形的边长比为a:b,那么它们的面积比为a^2:b^2。

这一性质适用于各种相似图形,如相似三角形、相似矩形等。

以上是九年级人教版相似图形知识点的归纳总结。

相似图形是几何学中一个非常重要的概念,通过掌握相似图形的性质和判断方法,我们可以在解决几何问题时更加轻松和高效。

相似的初三知识点总结归纳

相似的初三知识点总结归纳

相似的初三知识点总结归纳初三学习是中学阶段的重要阶段,也是学生们的过渡期。

这个阶段的学习内容广泛而深入,其中很多知识点之间存在一定的相似性。

下面将对初三学习过程中一些相似的知识点进行总结归纳,旨在帮助同学们更好地理解和掌握这些知识。

一、相似的数学知识点1.1 相似三角形与比例关系相似三角形是初中数学中一个重要的概念,它与比例关系密切相关。

同学们在学习相似三角形时,需要理解相似三角形的定义、性质和判定条件,并能灵活运用比例关系解决相关题目。

1.2 线性方程组与解的判定线性方程组是数学中常见的问题,解线性方程组的方法有很多,其中常用的是消元法和代入法。

同学们需要学会分析问题,选择合适的方法来求解线性方程组,并能判断方程组是否有解、有唯一解还是无穷多解。

二、相似的物理知识点2.1 运动与力学定律初三物理中的运动与力学定律是相似且密切相关的知识点。

在学习运动时,同学们需要理解匀速直线运动、加速直线运动和自由落体运动等基本概念,并掌握牛顿运动定律以及动力学中的力和加速度的关系。

2.2 热学与热力学的基本概念热学与热力学是物理学中的重要分支,它们之间存在着相似性。

同学们需要理解温度、热力学第一定律、热传递等基本概念,并能运用这些知识解决与热学相关的问题。

三、相似的化学知识点3.1 元素周期表与化学反应元素周期表是化学中的基础知识,它与化学反应密切相关。

同学们需要掌握元素周期表的基本组成以及元素的周期性规律,并能运用这些知识预测或解释化学反应中的现象。

3.2 酸碱中和与溶液的性质酸碱中和与溶液的性质是化学中的重要知识点,它们之间存在一定的相似性。

同学们需要理解酸碱中和反应的特点和计算方法,以及溶液的酸碱性质与pH值的关系,并能运用这些知识解决相关问题。

总结:以上仅是初三学习中一部分相似的知识点的总结归纳,这些知识点之间可能存在相似的思维方式、解题方法或者概念框架。

同学们在学习时应该注意将相似的知识点联系起来,进行横向对比和纵向延伸,以帮助更好地理解和掌握这些知识。

初三相似性知识点总结归纳

初三相似性知识点总结归纳

初三相似性知识点总结归纳相似性是数学中一个重要的概念,它在初中数学中有着广泛的应用。

相似性是指形状、大小、比例等方面的相似性质,通过相似性的理论和定理,我们可以解决各种与形状和比例相关的问题。

本文将总结归纳初三阶段学习的相似性知识点,帮助同学们更好地掌握相似性的概念和应用。

1. 相似三角形相似三角形是初三相似性知识的基础,它是指两个三角形的对应角相等,对应边成比例。

相似三角形的性质有以下几点:1.1 角的相等性质相似三角形的对应角相等,即每个角都有与之对应的角相等。

1.2 边的成比例性质相似三角形的对应边成比例,即两个三角形的相似比例为一个固定的常数。

1.3 对应线段成比例在相似三角形中,如果有一条直线平行于两个三角形的边,则这条直线将两个三角形的对应边分成相等的线段。

2. 相似三角形的判定在初三数学中,我们经常需要判断两个三角形是否相似。

常用的判定方法包括以下几种:2.1 AAA判定法如果两个三角形的对应角相等,则它们相似。

2.2 AA~判定法如果两个三角形的一个角相等,并且两个角的对边成比例,则它们相似。

2.3 SS~判定法如果两个三角形的两边分别成比例,并且对应角相等,则它们相似。

3. 相似三角形的比例性质在相似三角形中,存在着多种比例性质,对于解题非常有帮助。

3.1 对应边的比例在相似三角形中,对应边的比例相等。

即如果两个三角形相似,那么它们的对应边之比相等。

3.2 海伦定理海伦定理是指在一个三角形内部,从一顶点引两条边,使得这两条边分别与另外两个顶点连成的线段比等于这两条边本身。

利用海伦定理可以解决一些关于相似三角形的比例问题。

4. 三角形的相似变换通过对三角形的简单变换可以得到相似的三角形。

常见的变换包括平移、旋转和翻转。

4.1 平移平移是指通过将一个图形的每个点沿着同一方向移动相等的距离,得到一个新的图形。

平移不会改变图形的大小和形状,因此平移可以保持相似性。

4.2 旋转旋转是指将一个图形绕着一个固定的中心点旋转一定角度得到一个新的图形。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

九年级数学相似三角形知识点

九年级数学相似三角形知识点

九年级数学相似三角形知识点九年级数学:相似三角形知识点1. 相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边成比例的三角形。

也就是说,如果两个三角形的三个角分别相等,且每组对应边的比值都相等,那么这两个三角形就是相似的。

2. 相似三角形的标记在标记相似三角形时,通常使用希腊字母来表示对应的顶点。

例如,如果三角形ABC与三角形DEF相似,我们可以标记为:△ABC ∼△DEF。

3. 相似三角形的性质- 对应角相等:∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

- 对应边成比例:AB/DE = BC/EF = AC/DF。

- 对应高的比值也相等:AH/DH = BH/EH = CH/FH(其中H是三角形的高所在的顶点)。

- 对应中线的比值也相等:AM/DM = BM/EM = CM/FM(其中M是三角形的中线所在的顶点)。

4. 相似三角形的判定- 三角形相似的判定定理一:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。

- 三角形相似的判定定理二:如果两个三角形的三组对应边的比值都相等,那么这两个三角形相似。

- 三角形相似的判定定理三:如果两个三角形的两组对应边的比值相等,且它们之间的夹角也相等,那么这两个三角形相似。

5. 相似三角形的应用- 解决实际问题:在建筑设计、地图制作等领域,相似三角形的概念可以用来解决比例缩放问题。

- 计算面积比:相似三角形的面积比等于对应边长的平方比。

即,如果AB/DE = x,则△ABC的面积与△DEF的面积之比为x²。

- 证明几何定理:在证明某些几何定理时,可以通过证明三角形相似来简化证明过程。

6. 相似三角形的计算- 使用比例关系解决实际问题时,通常需要先确定比例系数,然后利用这个系数来计算其他边长或角度。

- 在计算面积比时,应先计算出三角形的边长比,然后根据边长比计算面积比。

7. 相似三角形的证明- 在证明三角形相似时,需要明确指出所使用的判定定理,并确保所有的条件都满足。

2023年九年级相似三角形知识点总结及例题讲解

2023年九年级相似三角形知识点总结及例题讲解
若两个图形形状与大小都相似,这时是相似图形旳一种特例——全等形.
3.相似多边形旳性质:假如两个多边形是相似形,那么这两个多边形旳对应角相等,对应边旳长度成比例。
注意:当两个相似旳多边形是全等形时,他们旳对应边旳长度旳比值是1.
知识点二:比例线段有关概念及性质
(1)有关概念
1、比:选用同一长度单位量得两条线段。a、b旳长度分别是m、n,那么就说这两条线段旳比是a:b=m:n(或 )
②两个位似图形旳位似中心只有一种。
③两个位似图形也许位于位似中心旳两侧,也也许位于位似中心旳一侧。
④位似比就是相似比。
2)性质:①位似图形首先是相似图形,因此它具有相似图形旳一切性质。
②位似图形是一种特殊旳相似图形,它又具有特殊旳性质,位似图形上任意一对对应点到位似中心旳距离等于位似比(相似比)。
③每对位似对应点与位似中心共线,不通过位似中心旳对应线段平行。
3.推论旳逆定理:假如一条直线截三角形旳两边(或两边旳延长线)所得旳对应线段成比例.那么这条直线平行于三角形旳第三边. (即运用比例式证平行线)
4.定理:平行于三角形旳一边,并且和其他两边相交旳直线,所截旳三角形旳三边与原三角形三边对应成比例.
5.平行线等分线段定理:三条平行线截两条直线,假如在一条直线上截得旳线段相等,难么在另一条直线上截得旳线段也相等。
三角形相似旳鉴定定理:
鉴定定理1:假如一种三角形旳两个角与另一种三角形旳两个角对应相等,那么这两
个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用旳最多)
鉴定定理2:假如一种三角形旳两条边和另一种三角形旳两条边对应成比例,并且夹
角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.

九年级数学相似三角形

九年级数学相似三角形
在线性代数中,相似矩阵和相似变换的概念 与相似三角形有相似之处。两个矩阵如果可 以通过相似变换相互转化,则称这两个矩阵 相似。
如果两个多边形的对应角相等且对应 边成比例,则这两个多边形相似。
06
总结回顾与练习题解答
本节课重点知识点总结回顾
• 相似三角形的定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
利用角平分线构造
角平分线将角平分,并且与对边相交,将对边分 为两段,这两段与角的两边构成的两个三角形与 原三角形相似。
05
拓展:高级几何中相似三角形相关知识点介绍
射影几何中相似三角形概念及性质
01
相似三角形的定义:在射影几何中,如果两个三角形的对 应角相等,则称这两个三角形相似。
04
对应角相等。
02
相似比:相似三角形的对应边之间的比值称为相似比。
05
对应边成比例。
03
相似三角形的性质
06
面积比等于相似比的平方。
解析几何中相似三角形表示方法
解析几何中的表示方法
在解析几何中,可以使用向量 或坐标来表示三角形,并通过 比较对应向量或坐标之间的关 系来判断两个三角形是否相似 。
向量表示法
通过三角形的三个顶点可以确 定三个向量,如果两个三角形 的对应向量之间的比值相等, 则这两个三角形相似。
1. 题目
解答
2. 题目
已知△ABC和△DEF中,∠A = ∠D, ∠B = ∠E,AB = 6,AC = 8,DE = 3。求DF和EF的长。
根据相似三角形的性质,我们有 $frac{AB}{DE} = frac{AC}{DF} = frac{BC}{EF}$。代入已知条件, 得$frac{6}{3} = frac{8}{DF} = frac{BC}{EF}$。解得$DF = 4$, $EF$可以通过勾股定理求得, $EF = sqrt{DE^2 + DF^2} = 5$。

九年级相似三角形知识点总结

九年级相似三角形知识点总结

相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

知识点二:比例线段有关概念及性质(1)有关概念1比:选用同一长度单位量得两条线段。

a、b 的长度分别是m、n,那么就说这两条线段的比是a:b=m:n(或n mb a =)(2)比例性质1.基本性质:bc ad dcb a =⇔=(两外项的积等于两内项积)2.反比性质:cd a b d c b a =⇒=(把比的前项、后项交换)3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项同时交换内外项4.合比性质:dd c b b a d c b a ±=±⇒=(分子加(减)分母,分母不变FE D CB A 知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 215-=≈0.618AB 。

知识点四:平行线分线段成比例定理1.平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.用符号语言表示:AD∥BE∥CF,,,AB DE BC EF AB DEBC EF AC DF AC DF∴===.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等.用符号语言表示:AD BE CF AB BC DE DF ⎫⇒=⎬=⎭.重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.知识点五:相似三角形1、相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

初中数学相似三角形知识总结

初中数学相似三角形知识总结

初中数学相似三角形知识总结在初中数学的学习中,相似三角形是一个非常重要的知识点。

它不仅在数学学科中有着广泛的应用,对于我们解决实际问题也具有重要的意义。

接下来,让我们一起深入了解相似三角形的相关知识。

一、相似三角形的定义相似三角形是指对应角相等,对应边成比例的两个三角形。

也就是说,如果两个三角形的对应角相等,对应边的比值都相等,那么这两个三角形就是相似的。

例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',∠C =∠C',且 AB/A'B' = BC/B'C' = AC/A'C',那么三角形ABC 就与三角形 A'B'C'相似,记作:△ABC ∽△A'B'C'。

二、相似三角形的判定1、两角分别相等的两个三角形相似。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

比如,在三角形 ABC 和三角形 DEF 中,若∠A =∠D,∠B =∠E,那么△ABC ∽△DEF。

2、两边成比例且夹角相等的两个三角形相似。

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

例如,在三角形 ABC 和三角形 A'B'C'中,若AB/A'B' = AC/A'C',且∠A =∠A',则△ABC ∽△A'B'C'。

3、三边成比例的两个三角形相似。

当两个三角形的三条边对应成比例时,这两个三角形相似。

比如三角形 MNP 和三角形 XYZ 中,若 MN/XY = NP/YZ = MP/XZ,那么△MNP ∽△XYZ。

三、相似三角形的性质1、相似三角形的对应角相等。

这是相似三角形的基本性质之一,也是判断两个三角形相似的重要依据。

相似三角形章节知识点

相似三角形章节知识点

相似三角形章节知识点在数学中,相似三角形是一种重要的几何概念。

当两个三角形的对应角度相等,并且对应边长成比例时,我们称这两个三角形为相似三角形。

在本文中,我们将探讨相似三角形的性质、判定条件以及相关定理和应用。

一、相似三角形的性质1. 相似三角形的角度是相等的:如果两个三角形的对应角度相等,那么它们就是相似三角形。

例如,如果∠A = ∠D,∠B = ∠E,∠C = ∠F,那么三角形ABC与三角形DEF就是相似的。

2. 相似三角形的对应边长成比例:在相似三角形中,对应边长之间的比值是相等的。

例如,如果AB / DE = BC / EF = AC / DF,那么三角形ABC与三角形DEF相似。

二、相似三角形的判断条件1. AAA相似判别法:如果两个三角形的对应角度分别相等,那么它们是相似的。

这个判断条件称为“角-角-角”相似判别法。

2. AA相似判别法:如果两个三角形的一个角相等,并且两个角的对边成比例,那么它们是相似的。

这个判断条件称为“角-角-比”相似判别法。

3. SAS相似判别法:如果两个三角形的一个角相等,两个边成比例,那么它们是相似的。

这个判断条件称为“边-角-边”相似判别法。

三、相似三角形的重要定理1. 相似三角形的边长比定理:如果两个三角形相似,那么它们对应边的比值等于它们对应角的比值。

2. 相似三角形的高比定理:如果两个相似三角形的对应边成比例,那么它们的高也成比例。

3. 相似三角形的面积比定理:如果两个相似三角形的对应边成比例,那么它们的面积的比值等于对应边的平方的比值。

四、相似三角形的应用1. 海伦公式:海伦公式是一个用于计算三角形面积的公式。

如果我们知道三角形的三边长度,可以使用海伦公式来计算其面积。

在相似三角形中,海伦公式也适用,只需要将对应边的比值代入公式即可。

2. 测量高度:相似三角形的高比定理可以用于测量难以直接测量的高度。

例如,在测量高楼的高度时,我们可以利用相似三角形的性质,测量与高楼顶端相似的三角形的高度,然后通过比例关系计算出高楼的实际高度。

初中九年级相似相似三角形知识点总结及经典例题解析

初中九年级相似相似三角形知识点总结及经典例题解析

第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。

九年级相似三角形知识点总结

九年级相似三角形知识点总结

九年级相似三角形知识点总结
相似三角形是指具有完全相同形状但大小不同的三角形。

其主要知识点总结如下:
1. 相似三角形的定义:若两个三角形的对应角相等,则它们是相似的。

2. 相似三角形的判定:若两个三角形的对应边成比例,则它们是相似的。

3. 相似三角形的性质:
- 对应角相等:对应的角度是相等的。

- 对应边成比例:对应边的长度之比是相等的。

- 对应的高线成比例:对应的高线的长度之比是相等的。

- 对应的面积成比例:对应的面积的大小之比是相等的。

4. 相似三角形的性质推理:
- 两个三角形中,如果两边成比例,则其对应的夹角也相等。

- 两个三角形中,如果两角相等,则其对应的边成比例。

- 如果两个三角形中,对应的角度和边成比例,则这两个三
角形是相似的。

5. 相似三角形的应用:
- 利用相似三角形的性质可以求解两个图形的边或角度之比。

- 利用相似三角形的性质可以求解两个图形的面积之比。

- 利用相似三角形的性质可以进行图形的放大或缩小。

这些是九年级相似三角形的主要知识点总结,掌握了这些知识,可以更好地理解和应用相似三角形的相关概念和性质。

九年级下册数学相似知识点汇总

九年级下册数学相似知识点汇总

九年级下册数学相似知识点汇总在九年级下册数学中,相似是一个重要的概念。

相似可以理解为两个几何图形在形状上保持一定的比例关系。

本文将对九年级下册数学中的相似知识点进行汇总,以帮助同学们更好地理解和应用这些知识。

1. 相似三角形相似三角形是九年级下册数学中的一个重要概念。

两个三角形相似的条件是:对应角相等,对应边成比例。

同学们应该注意掌握相似三角形的判定方法和应用。

2. 相似比例相似比例是相似的基本性质,它表示两个相似图形中对应边的比例关系。

例如,如果两个三角形相似,那么它们的对应边的比例相等。

同学们需要灵活运用相似比例来求解各种几何问题。

3. 三角形的面积比如果两个三角形相似,那么它们的面积比等于它们相应边长的平方比。

同学们应该掌握如何计算三角形的面积,并且了解面积比的性质及应用。

4. 相似三角形的性质相似三角形具有一些特殊的性质,比如它们的对应角相等,对应边成比例。

同学们应该学会利用这些性质解决各种几何问题,如长度比、面积比等。

5. 相似图形的比例尺对于相似的几何图形,我们可以定义一个比例尺来表示它们的对应边长之间的比例关系。

同学们需要了解比例尺的概念和使用方法,并且能够将实际问题转化为比例尺问题进行求解。

6. 平行线与相似平行线与相似有密切的联系。

同学们应该了解平行线与相似的性质,如平行线分割的三角形相似、平行线分割的四边形相似等。

7. 相似三角形的判定如何快速判断两个三角形是否相似是一个重要的问题。

同学们应该熟练掌握相似三角形的判定方法,如AAA判定法、相似三角形对应角相等等。

8. 应用题相似的知识在应用题中经常会出现。

同学们需要善于将实际问题转化为相似三角形问题,并通过相似的性质和方法解决问题。

总结:通过对九年级下册数学相似知识点的汇总,我们可以看到相似是一个重要的几何概念。

同学们在学习相似知识时,应该注重理解概念和性质,熟练掌握判定方法和计算技巧,并能够将相似的知识灵活应用到实际问题中。

九年级相似三角形的知识点

九年级相似三角形的知识点

九年级相似三角形的知识点相似三角形是初中数学中重要的概念之一。

它的应用广泛,并在高中数学学习中占据着重要的位置。

在九年级数学课程中,相似三角形的概念和性质是必修内容。

本文将详细介绍九年级相似三角形的知识点,并探讨其在实际问题中的应用。

一、相似三角形的定义相似三角形是指两个或多个三角形的对应角相等,对应边成比例。

简单来说,当两个三角形的形状相似,但大小不同,我们就称它们为相似三角形。

二、相似三角形的判定条件1. AA判定法:如果两个三角形的两个对应角分别相等,那么这两个三角形是相似的。

2. SAS判定法:如果两个三角形的一个对应角相等,而另外两边的比值相等,那么这两个三角形是相似的。

3. SSS判定法:如果两个三角形的三边的比值都相等,那么这两个三角形是相似的。

需要注意的是,只有满足以上判定条件,我们才能断定两个三角形是相似的。

三、相似三角形的性质1. 相似三角形的对应角相等。

这是判定两个三角形相似的重要性质之一。

对应角的相等性保证了两个相似三角形的形状相似。

2. 相似三角形的对应边成比例。

这是判定两个三角形相似的另一个重要性质。

对应边的成比例性质意味着两个相似三角形的大小关系。

3. 相似三角形的高线成比例。

在相似三角形中,如果两个三角形中的高线分别与对应边垂直相交,那么这些高线也成比例。

四、相似三角形的应用相似三角形的概念和性质在实际问题中有广泛的应用。

以下是其中的几个例子:1. 测量高度和距离。

通过相似三角形的原理,我们可以利用测得的一边和一个角度,计算另一个边的长度。

这在测量高楼大厦的高度、测量两个点之间的距离等方面非常有用。

2. 画图和制图。

在制图过程中,我们可以利用相似三角形的性质,通过已知的线段和角度,准确地绘制复杂的图形。

3. 解决实际问题。

相似三角形的原理和性质可以帮助我们解决很多实际问题,如计算棱镜的体积、计算太阳的半径等。

总之,相似三角形是九年级数学课程中的重要知识点。

通过理解相似三角形的定义、判定条件和性质,我们可以更好地应用它们解决实际问题。

相似三角形知识点总结(初中数学)

相似三角形知识点总结(初中数学)

图形的相似知识点一、比例的基本性质1.有关概念:如果d c b a ::=或dc b a =,那么a,b,c,d 成比例,其中b,c 称为比例内项,a,d 称为比例外项。

2.(1)若dc b a =,那么bc ad =。

(2)反比性质: a c b d b d a c=⇔=。

(3)合比性质:若d c b a =,那么dd c b b a ±=±。

(4)等比性质:若)0(≠+++===n d b n m d c b a ,那么b a n d b m c a =++++++ 。

知识点二、成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段。

知识点四、黄金分割把线段AB 分成两条线段AC,BC (AC>BC ),且使AC 是AB 和BC 的比例中项,即AB AC AC BC =或2AC AB BC =⋅,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点. ==AB AC AC BC 618.0215≈-,称为黄金分割比。

知识点五、平行线分线段成比例的基本事实1.两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线截得的线段也相等。

如图所示,直线l 1∥l 2∥l 3,直线AC,DF 被直线l 1,l 2,l 3截得的线段分别为AB ,BC 和DE ,EF ,若AB=BC ,则DE=EF 。

2.两条直线被一组平行线所截,所得的对应线段成比例。

如图所示,直线l 1∥l 2∥l 3,直线AC,DF 被直线l 1,l 2,l 3所截,那么DFEF AC BC DF DE AC AB EF DE BC AB ===,,。

知识点六、相似图形1.相似图形定义:直观上,把一个图形放大(或缩小)得到的图形与原图形是相似的。

相似的图形特点:形状相同,但大小不一定相等。

2.相似三角形的有关概念(1)定义:我们把三个角对应相等,且三条边对应成比例的两个三角形叫作相似三角形(如图所示);(2)表示方法:ABC ∆和C B A '''∆相似,记作C B A ABC '''∆∆∽,读作ABC ∆相似于C B A '''∆,符号“∽”读作“相似于”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似 知识点总结
知识点一
1.相似图形:把具有相同形状的图形称为相似图形。

2.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边成比例。

知识点二:比例线段
1.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即d
c b a =(或a :b=c :
d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)
2.比例性质的基本性质: bc
ad d c b a =⇔= (两外项的积等于两内项积)
3.更比性质(交换比例的内项或外项):
()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,
交换内项,交换外项.同时交换内外项
4.合比性质:d
d c b b a d c b a ±=±⇒=(分子加(减)分母,分母不变) 5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b n m f
e d c b a ,那么b
a n f d
b m e
c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2)应用等比性质时,要考虑到分母是否为零.
知识点三:黄金分割
1. 定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC
BC AB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 2
15-=≈0.618AB 。

知识点四:相似三角形
1.相似三角形:两个三角形中,如果三角对应相等,三边对应成比例,那么这两个三角形叫做相似三
角形。

如△ABC与△DEF相似,记作△ABC ∽△DEF。

2.相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

通常用k来表示。

相似比具有顺序性.
3. 相似三角形的性质
①相似三角形对应角相等、对应边成比例.
②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比。

③相似三角形对应面积的比等于相似比的平方.
4.三角形相似的判定定理:
(1)平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

(2)两角对应相等,两三角形相似.
(3)两边对应成比例且夹角相等,两三角形相似.
(4)三边对应成比例,两三角形相似.
(5)直角三角形相似判定定理:
○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理:CD²=AD·BD, AC²=AD·AB,BC²=BD·BA
知识点五:中位线
1.三角形的中位线:连结三角形两边中点的线段。

(3条)
2.三角形的中位线平行于第三边且等于第三边的一半。

3. 重心:三角形三条中线相交于一点,这个交点叫做三角形的重心.
4. 重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.
5. 梯形的中位线:连结梯形两腰中点的线段。

6.梯形的中位线平行于两底边,且等于两底和的一半。

7.梯形的面积=中位线╳高=1
2
(上底+下底)╳高
知识点六:位似
1.定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似
图形,这个点叫做位似中心,这时的相似比又称为位似比。

2.性质:①位似图形的对应边平行或共线。

②位似图形上任意一对对应点到位似中心的距离之比等于相似比。

知识点七:图形的变换与坐标
1.轴对称:图形关于x轴对称,横不变,纵为相反数;关于y轴对称,纵不变,横为相反数。

2.中心对称:图形关于原点对称,横纵皆为相反数。

3.平移:横坐标右加左减,纵坐标上加下减。

4.位似:以原点为位似中心,位似比为K进行变换,P(a,b)变换后为(ka,kb)或(-ka,-kb)。

相关文档
最新文档