数字图像处理实验报告maap数字图像处理大作业期末论文
matlab 数字图像处理实验报告(五份)
《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。
二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。
其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。
此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。
频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。
常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。
假定原图像为f(x,y),经傅立叶变换为F(u,v)。
频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。
四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。
数字图像处理matlab版实验报告
数字图像处理实验报告(matlab版)一.实验目的:熟悉数字图像处理中各种椒盐噪声的实质,明确各种滤波算法的的原理。
进一步熟悉matlab的编程环境,熟悉各种滤波算法对应的matlab函数。
实验结果给以数字图像处理课程各种算法处理效果一个更直观的印象。
二.实验原理:1.IPT(图像处理工具箱)基本函数介绍1. imread函数该函数用于从图形文件中读出图像。
格式A=IMRAED(FILENAME,FMT)。
该函数把FILENAME 中的图像读到A中。
若文件包含一个灰度图,则为二维矩阵。
若文件包含一个真彩图(RGB),则A为一三维矩阵。
FILENAME指明文件,FMT指明文件格式。
格式[X,MAP]=IMREAD(FILENAME,FMT).把FILENAME中的索引图读入X,其相应的调色板读到MAP中.图像文件中的调色板会被自动在范围[0,1]内重新调节。
FMT的可能取值为jpg 或jpeg,tif或tiff,bmp,png,hdf,pcx,xwd。
2.imwrite函数该函数用于把图像写入图形文件中。
格式IMWRITE(A,FILENAME,FMT)把图像A写入文件FILENAME中。
FILENAME指明文件名, FMT指明文件格式。
A既可以是一个灰度图,也可以是一个真彩图像。
格式IMWRITE(X,MAP,FILENAME,FMT)把索引图及其调色板写入FILENAME中。
MAP必须为合法的MATLAB调色板,大多数图像格式不支持多于256色的调色板。
FMT的可能取值为tif或tiff,jpg或jpeg,bmp,png,hdf,pcx,xwd。
3. imshow函数显示图像。
格式IMSHOW(I,N).用N级离散灰度级显示灰度图象I。
若省略N,默认用256级灰度显示24位图像,64级灰度显示其他系统。
格式IMSHOW(I,[LOW HIGH]),把I 作为灰度图显示。
LOW值指定为黑色,HIGH指定为白色,中间为按比例分布的灰色。
《数字图像处理》期末大作业(1)
《数字图像处理》期末大作业大作业题目及要求:一、题目:本门课程的考核以作品形式进行。
作品必须用Matlab完成。
并提交相关文档。
二、作品要求:1、用Matlab设计实现图形化界面,调用后台函数完成设计,函数可以调用Matlab工具箱中的函数,也可以自己编写函数。
设计完成后,点击GUI图形界面上的菜单或者按钮,进行必要的交互式操作后,最终能显示运行结果。
2、要求实现以下功能:每个功能的演示窗口标题必须体现完成该功能的小组成员的学号和姓名。
1)对于打开的图像可以显示其灰度直方图,实现直方图均衡化。
2)实现灰度图像的对比度增强,要求实现线性变换和非线性变换(包括对数变换和指数变换)。
3)实现图像的缩放变换、旋转变换等。
4)图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理。
5)采用robert算子,prewitt算子,sobel算子,拉普拉斯算子对图像进行边缘提取。
6)读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标。
3、认真完成期末大作业报告的撰写,对各个算法的原理和实验结果务必进行仔细分析讨论。
报告采用A4纸打印并装订成册。
附录:报告模板《数字图像处理》期末大作业班级:计算机小组编号:第9组组长:王迪小组成员:吴佳达浙江万里学院计算机与信息学院2014年12月目录(自动生成)1 绘制灰度直方图,实现直方图均衡化 (5)1.1 算法原理 (5)1.2 算法设计 (5)1.3 实验结果及对比分析 (5)2 灰度图像的对比度增强 (5)2.1 算法原理 (5)2.2 算法设计 (5)2.3 实验结果及分析 (5)3 图像的几何变换 (5)3.1 算法原理 (5)3.2 算法设计 (5)3.3 实验结果及分析 (5)4 图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理 (5)4.1 算法原理 (5)4.2 算法设计 (6)4.3 实验结果及分析 (6)5 采用robert,prewitt,sobel,拉普拉斯算子对图像进行边缘提取 (6)5.1 算法原理 (6)5.2 算法设计 (6)5.3 实验结果及分析 (6)6 读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标 (6)6.1 算法原理 (6)6.2 算法设计 (6)6.3 实验结果及分析 (6)7 小结(感受和体会) (6)1 绘制灰度直方图,实现直方图均衡化1.1 算法原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
昆明理工大学数字图像处理期末报告范文
昆明理工大学数字图像处理期末报告范文数字图像处理期末大作业用自己拍摄的图像,完成以下作业:作业一、MATLAB图像处理基本操作一、实验目的掌握MATLAB语言中图象数据与信息的读取方法;掌握图像灰度调整。
二、实验要求用Matlab语言完成如下实验:1)打开一个BMP文件2)将其局部区域的灰度值进行改变3)另存为一个新的BMP文件三、程序源代码clearall;I=imread('lab1.bmp');%读入原图像ubplot(1,2,1);imhow(I);%显示原始图像title('原始BMP图像');J=imadjut(I,[0.3,0.7],[]);%调整图像灰度值imwrite(J,'newlab1.bmp');%另存为新图像ubplot(1,2,2);imhow(J);%显示局部灰度改变后的图像title('局部灰度改变后的图像');四、实验结果五、实验总结通过本次实验,我学习了使用MATLAB进行图像的读入读出操作,以及对图像选中区域的灰度进行改变。
初步熟悉了MATLAB工具软件对图像处理的应用。
作业二、图像高通、低通滤波一、实验目的学会用Matlab软件对图像傅里叶变换。
对图像进行低、高通滤波,观察频谱和图像变化。
二、实验内容Matlab编程实现图像傅立叶高通、低通滤波,给出算法原理及实验结果。
三、实验原理低通滤波器:容许低频信号通过,但减弱(或减少)频率高於截止频率的信号的通过。
用在绘制长期走势或均化。
高通滤波器:容许高频信号通过、但减弱(或减少)频率低於截止频率信号通过的滤波器。
强调细节。
四、程序源代码1)傅里叶高通滤波:源程序为:clearall;I=imread('lab2.jpg');I=rgb2gray(I);figure(1),imhow(I);title( '原图像');=ffthift(fft2(I));[a,b]=ize();a0=round(a/2);b0=round(b/2);d=1 0;p=0.2;q=0.5;fori=1:aforj=1:bditance=qrt((i-a0)^2+(j-b0)^2);ifditance<=dh=0;eleh=1;end;(i,j)=(p+q某h)某(i,j);end;end;=uint8(real(ifft2(iffthift())));figure(2);imhow();title('高通滤波所得图像');2)傅里叶低通滤波:源程序为:clearall;I=imread('lab2.jpg');I=rgb2gray(I);figure(1),imhow(I);title( '原图像');=ffthift(fft2(I));[a,b]=ize();a0=round(a/2);b0=round(b/2);d=1 0;fori=1:aforj=1:bditance=qrt((i-a0)^2+(j-b0)^2);ifditance<=dh=1;eleh=0;end;(i,j)=h某(i,j);end;end;=uint8(real(ifft2(iffthift())));figure(2);imhow();title('低通滤波所得图像');五、实验结果六、实验总结通过这次实验,我熟悉了MATLAB编程结构,学会使用MATLAB提供的库函数进行图像傅里叶变化。
(完整word版)数字图像处理 实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理大作业报告
数字图像处理实验报告实验选题:选题二组员:学号:班级:指导老师:实验日期:2019年5月22日一、实验目的及原理1.识别出芯片的引脚2.熟悉并掌握opencv的某些函数的功能和使用方法原理:通过滤波、形态学操作得到二值图,再在二值图中设置条件识别引脚部分。
二、实现方案对图片滤波、调节阈值做边缘检测过滤掉一部分图片中干扰元素;然后通过膨胀、腐蚀操作来减少引脚的空心部分;再通过findContours()函数找到引脚的边缘并得到轮廓的点集,设置特定的长宽比和矩形面积识别引脚部分。
三、实验结果四、源码#include<iostream>#include<cmath>#include"opencv2/highgui/highgui.hpp"#include"opencv2/imgproc/imgproc.hpp"using namespace std;using namespace cv;int main(int argv, char **argc){//载入图片Mat srtImag = imread("2.jpg");Mat G_blur = srtImag.clone();//降噪blur(G_blur, G_blur, Size(5, 5));//imshow("降噪", G_blur);//Canny边缘检测Mat Canny_Imag = G_blur;Canny_Imag = Canny_Imag > 176;Canny(G_blur, Canny_Imag, 300, 50, 3);//imshow("边缘检测", Canny_Imag);//膨胀Mat element = getStructuringElement(MORPH_RECT, Size(10, 10));dilate(Canny_Imag, Canny_Imag, element);//imshow("膨胀", Canny_Imag);//腐蚀Mat element_1 = getStructuringElement(MORPH_RECT, Size(11, 11));erode(Canny_Imag, Canny_Imag, element_1);//imshow("腐蚀", Canny_Imag);//查找轮廓vector<vector<Point>>contours;vector<Vec4i>hierarchy;findContours(Canny_Imag, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);vector<vector<Point>> contour_s(contours.size());//该数组共有contours.size()个轮廓的点集vector<Rect> Rec_s(contours.size());//逼近多边形的点集数组//获得每个轮廓点集的逼近多边形的点集for (size_t i = 0; i < contours.size(); i++) {approxPolyDP(Mat(contours[i]), contour_s[i], 3,false);//contour_s存储逼近多边形的点集Rec_s[i]= boundingRect(contour_s[i]); //Rec_s存储最小包围矩形的点集}//筛选合适长宽比的矩形并将其画出来Mat result_Imag = srtImag.clone();for (size_t j = 0; j < contours.size(); j++) {double as_ra;//长宽比as_ra = Rec_s[j].height / Rec_s[j].width;if (as_ra > 3.3 && as_ra < 9.3 && Rec_s[j].area() > 20) { rectangle(result_Imag, Rec_s[j], Scalar(0, 255, 255), 2, 7);}}imshow("result", result_Imag);waitKey(0);return 0;}五、总结经过这次实验,我熟悉了对blur()、Canny()、dilate()、erode()、findContours()、approxPolyDP()等函数的使用,了解了Rect类的构成等。
数字图像处理实验报告(全部)
实验1直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备:1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果:观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码:I=imread('coins.png');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验2 均值滤波一.实验目的1.熟悉matlab图像处理工具箱及均值滤波函数的使用;2.理解和掌握3*3均值滤波的方法和应用;二.实验设备:1.PC机一台;2.软件matlab三.程序设计在matlab环境中,程序首先读取图像,然后调用图像增强(均值滤波)函数,设置相关参数,再输出处理后的图像。
《数字图像处理》实验报告
《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理论文
数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
数字图像处理 实验报告,matlap数字图像处理大作业。期末论文
MathWorks 公司推出的 MATLAB 软件是学习数理知识的好帮手。应用 MATLAB 友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图 像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的 工程和科研中的问题。
由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近 似的程度主要取决于采样样本的大小和数量(N值)以及量化的级数K(或m值)。N 和K的值越大,图像越清晰。
2.2 数字图像处理概述
图 2-1 数字图像
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数字图像处理实验报告
数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。
使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。
从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。
1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。
数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。
数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。
数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。
数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。
1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。
点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。
区处理法,邻域处理法。
它依据输入图像的小邻域的像素值,按某些函数得到输出像素。
区处理法主要用于图象平滑和图像的锐化。
叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。
数字图像处理实验报告
数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。
本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。
二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。
三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。
这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。
2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。
在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。
3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。
我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。
4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。
我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。
5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。
通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。
四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。
在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。
数字图像处理实验报告
数字图象处理实验报告主要是图象的几何变换的编程实现,详细包括图象的读取、改写,图象平移,图象的镜像,图象的转置,比例缩放,旋转变换等.详细要求如下:1.编程实现图象平移,要求平移后的图象大小不变;2.编程实现图象的镜像;3.编程实现图象的转置;4.编程实现图象的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图象发展旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.本实验的目的是使学生熟悉并掌握图象处理编程环境,掌握图象平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图象文件的读、写操作,及图象平移、镜像、转置和旋转等几何变换的程序实现.3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开辟工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创立高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软根抵类库(MFC)和活动模板类库(ATL),因此它是软件开辟人员不可多得的开辟工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开辟,正由于VC具有明显的优势,于是我选择了它来作为数字图象几何变换的开辟工具.在本程序的开辟过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的表达和灵便的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图象BMP(BIT MAP )位图的文件构造:详细组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或者更少256色DIB有256个表项或者更少真彩色DIB没有调色板每一个表项长度为4字节(32位)像素按照每行每列的顺序罗列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIBPixels DIB图象数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部份组成.2. BMP文件头BMP文件头数据构造含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保存字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每一个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有假设干个表项,每一个表项是一个RGBQUAD类型的构造,定义一种颜色.详细包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows一个扫描行所占的字节数必须是 4的倍数(即以long为单位),缺乏的以0填充.3.3 BMP(BIT MAP )位图的显示:①普通显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创立显示用位图, 用函数创立兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形发展淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图象所用颜色要少的设备上显示彩色图象.BMP位图显示方法如下:1. 翻开视频函数,普通放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在 函数中 显示位图5. 关闭视频函数 ,普通放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或者打印机上显示DIB. 在显示时不发展缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式发展控制,可以指定每一个像素颜色的位数,而且可以指定是否发展压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创立GDI位图.5. CreateDIBSection函数:该函数能创立一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits的函数.它的最主要的优点是可以使用颤动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图象的几何变换图象的几何变换,通常包括图象的平移、图象的镜像变换、图像的转置、图象的缩放和图象的旋转等.实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图象处理的一些根本算法程序,来稳固和掌握图象处理技术的根本技能,提高实际动手能力,并通过实际编程了解图象处理软件的实现的根本原理。
数字图像处理处理大作业实验报告
数字图像处理处理大作业实验报告数字图像处理处理大作业实验报告PB11210***上上签MyZenith.N_3104_EVER实验一题目:线性插值改变图像大小实验目的:1、使用MATLAB编程实现对图片大小的改变操作,使所给图片达到所要求的效果。
2、通过对MATLAB的编程加强对图像处理的认识,初步学习MATLAB在图像处理中的基本应用实验内容:在这一项目中,同学们需要实现基于双线性插值的图像缩放算法。
作业中需实现如下功能:(a) 能够利用鼠标从实验图像中任意选取测试区域,并单独显示。
(b) 使用双线性插值算法对测试区域进行缩放处理,输出如下结果,放大到原始分辨率的2倍,放大到原始分辨率的4倍,缩小到原始分辨率的1/2倍。
实验原理:图像某点的值由最邻近的四个点联立方程决定。
实验代码:1、在主函数中,使用switch函数分别调用子函数,并且之前选择需要放大或者缩小的倍数。
代码如下:2、 choice=('Yes');3、4、5、6、7、8、while (minus(choice,('Yes'))==0) clear;close;F=imread('monarch.bmp'); I=imcrop(F); BR=I(:,:,1); BG=I(:,:,2); BB=I(:,:,3); [rows,cols]=size(BR);K = sqrt(str2double(inputdlg('·?±???', 'INPUT scalefactor', 1, {'2'})));9、 width = K * rows;10、 height = K * cols;11、12、13、14、 widthScale = rows/width;15、 heightScale = cols/height;16、17、 for x = 1:width-2for y = 1:height-218、 X = x * widthScale;Y = y * heightScale;19、20、 if (X/double(uint16(X)) == 1.0) && (Y/double(uint16(Y)) == 1.0) 21、 dstBR(x,y) = BR(int16(X),int16(Y));dstBG(x,y) = BG(int16(X),int16(Y));22、 dstBB(x,y) = BB(int16(X),int16(Y)); 23、 else24、 a = double(uint16(X));25、 b = double(uint16(Y));26、27、28、29、30、BRx11 = double(BR(a,b)); BRx12 = double(BR(a,b+1)); BRx21 = double(BR(a+1,b)); BRx22 = double(BR(a+1,b+1));31、32、 BGx11 = double(BG(a,b));33、 BGx12 = double(BG(a,b+1));34、 BGx21 = double(BG(a+1,b));35、 BGx22 = double(BG(a+1,b+1));36、37、38、39、40、BBx11 = double(BB(a,b)); BBx12 = double(BB(a,b+1)); BBx21 = double(BB(a+1,b)); BBx22 = double(BB(a+1,b+1));41、42、 w1 = (b+1-Y) * (a+1-X); 43、 w2 = (Y-b) * (a+1-X);w3 = (b+1-Y) * (X-a);44、 w4 = (Y-b) * (X-a); 45、 dstBR(x,y) = uint8( BRx11 * w1 + BRx12 * w2 + BRx21* w3 + BRx22 * w4 );46、 dstBG(x,y) = uint8( BGx11 * w1 + BGx12 * w2 + BGx21* w3 + BGx22 * w4 );47、 dstBB(x,y) = uint8( BBx11 * w1 + BBx12 * w2 + BBx21* w3 + BBx22 * w4 );48、 end49、 end50、 end51、52、53、54、55、56、57、OUT(:,:,1)=dstBR; OUT(:,:,2)=dstBG; OUT(:,:,3)=dstBB;imshow(I); figure; imshow(OUT);58、59、60、61、62、options.Interpreter = 'tex'; options.Default = 'Cancel'; choice = questdlg('??·','????','Yes','No',options); end实验结果:1、选择缩放倍数:2、所选择的图像源文件如下:3、用鼠标标定所需要进行缩放的区域:4、程序正常运行后缩放效果:4倍放大5、程序正常运行后缩放效果:2倍放大6、程序正常运行后的缩放效果:缩小一倍实验二题目:高斯滤波及中值滤波处理人为添加的椒盐噪声和高斯噪声实验目的:1、对所给定的图像使用MATLAB添加高斯噪声和椒盐噪声;2、再用MATLAB程序实现中值滤波和高斯滤波;3、计算所得到结果图像的PSNR,对它们进行分析与比较,从而理解各种滤波方法的优点与特性。
《数字图像处理》实验报告
《数字图像处理》实验报告数字图像处理是计算机科学与技术领域中的一个重要分支,它涉及到对图像进行获取、处理、分析和显示等一系列操作。
在本次实验中,我们将学习和探索数字图像处理的基本概念和技术,并通过实验来加深对这些概念和技术的理解。
首先,我们需要了解数字图像的基本概念。
数字图像是由像素组成的二维矩阵,每个像素代表图像中的一个点,像素的灰度值或颜色值决定了该点的亮度或颜色。
在实验中,我们将使用灰度图像进行处理,其中每个像素的灰度值表示了该点的亮度。
在数字图像处理中,最基本的操作之一是图像的获取和显示。
我们可以通过摄像头或者从文件中读取图像数据,然后将其显示在计算机屏幕上。
通过这种方式,我们可以对图像进行观察和分析,为后续的处理操作做好准备。
接下来,我们将学习一些常见的图像处理操作。
其中之一是图像的灰度化处理。
通过将彩色图像转换为灰度图像,我们可以减少图像数据的维度,简化后续处理的复杂度。
灰度化处理的方法有多种,例如将彩色图像的RGB三个通道的像素值取平均值,或者使用加权平均值的方法来计算灰度值。
另一个常见的图像处理操作是图像的平滑处理。
图像平滑可以减少图像中的噪声,并使得图像更加清晰。
常用的图像平滑方法包括均值滤波和高斯滤波。
均值滤波通过计算像素周围邻域像素的平均值来平滑图像,而高斯滤波则使用一个高斯核函数来加权平均邻域像素的值。
除了平滑处理,图像的锐化处理也是数字图像处理中的一个重要操作。
图像的锐化可以增强图像的边缘和细节,使得图像更加清晰和鲜明。
常用的图像锐化方法包括拉普拉斯算子和Sobel算子。
这些算子通过计算像素周围邻域像素的差异来检测边缘,并增强边缘的灰度值。
此外,我们还将学习一些图像的变换操作。
其中之一是图像的缩放和旋转。
通过缩放操作,我们可以改变图像的尺寸,使其适应不同的显示设备或应用场景。
而旋转操作可以将图像按照一定的角度进行旋转,以达到某种特定的效果。
最后,我们将学习一些图像的特征提取和分析方法。
数字图像处理-实验报告
《数字图象处理》实验报告一、数字图像处理设计主要内容数字图象处理课程设计要求使学生掌握数字图像处理的基本算法的计算机实现,从而培养学生运用数字信号处理的原理解决生物医学、电子工程领域的实际问题的能力。
进一步提高程序设计及调试能力,初步掌握进行科学研究工作的主要步骤和方法,学习和掌握科学研究资料检索的方法,学习对已有资料进行消化总结的方法,学习撰写科学报告的基本方法。
二、前期工作1.查阅资料,对数字信号处理和图象处理基本理论和实践作一全面了解;2.根据实验内容和要求确定实验思路,熟悉Matlab语言,理解对数字信号处理进行计算机仿真原理;三、设计工作1.图像平滑a.利用二个低通邻域平均模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。
b.利用一个低通模板对一幅有噪图象(GAUSS白噪声)进行滤波,检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×5中值滤波器)对噪声的滤波效果。
c.选择一个经过低通滤波器滤波的模糊图象,利用sobel水平边缘增强高通滤波器(模板)对其进行高通滤波图象边缘增强,验证模板的滤波效果。
d.选择一幅灰度图象分别利用一阶Sobel算子和二阶Laplacian算子对其进行边缘检测,验证检测效果。
2.图像增强a.直方图均衡化增强图像对比度的MATLAB程序。
b.采用线性变换进行图像增强的MATLAB程序。
c.采用边界锐化算法增强图像的MATLAB程序。
四、程序设计1.利用二个低通邻域平均模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。
程序如下:l=imread('E:/matlab/test1/sample.jpg');L=rgb2gray(l);subplot(1,3,1);imshow(L);title('原图');j=fspecial('average');j1=filter2(j,L)/255;subplot(1,3,2);imshow(j1);title('3*3 滤波');k=fspecial('average',9);k1=filter2(k,L)/255;subplot(1,3,3);imshow(k1);title('9*9 滤波');仿真结果如下图:原图3*3 滤波9*9 滤波2.利用一个低通模板对一幅有噪图象(GAUSS白噪声)进行滤波,检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×5中值滤波器)对噪声的滤波效果。
数字图像处理实验报告
数字图像处理报告章鱼哥实验项目一(matlab)实验要求:Fig1.bmp是一副亮度和对比度均很低的图像,试用插值外推的图像增强方法改善图像的质量,使花朵和树叶的颜色更加鲜艳润泽。
实验代码:% 插值与外推clear allclose allI=imread('实验项目一.png');A=double(I);Igray=double(rgb2gray(I));Ig3=A;img=A;Ilow=A;Ig3(:,:,1)=Igray; % RGB灰度图Ig3(:,:,2)=Igray;Ig3(:,:,3)=Igray;W=ones(11,11)/121;Ilow=double(imfilter(Ig3,W)); % 模糊图像a=[1 1.5 2.0 2.5 3.0 3.5 ];figurefor k=1:6 % 通过模糊图进行处理img=(1-a(k)).*Ilow+a(k).*A;subplot(2,3,k);imshow(uint8(img),[]); title(['综合修正:系数=',num2str(a(k))]);end实验结果实验项目二(matlab或c/c++)实验要求:试用最邻近插值和双线性插值对Fig2.bmp进行缩小和放大操作。
先缩小12倍,再放大12倍。
描述图像的变化,分析变化的原因,并给出对两种插值方法的评价。
实验原理:1. 最邻近插值(近邻取样法)最邻近插值是一种简单的插值算法,也称为零阶插值。
它输出的像素灰度值就等于距离它映射到的位置最近的输入像素的灰度值。
对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)对应的像素值。
可见,最邻近插值简单且直观,但得到的图像质量不高;当图像中包含像素之间灰度级有变化的细微结构时,最邻近查值法会在图像中产生人为的加工痕迹。
数字图像处理期末报告论文
图像输入与输出基本操作一、实验题目:图像输入与输出操作二、实验目的学习在MATLAB 环境下对图像文件的I/O 操作,为读取各种格式的图像文件和后续进行图像处理打下基础。
三、实验内容利用MATLAB 为用户提供的专门函数从图像格式的文件中读/写图像数据、显示图像,以及查询图像文件的信息。
四、预备知识熟悉MATLAB 开发环境。
五、实验步骤:(1)利用imread 函数完成对图像文件的读取操作。
源代码:I=imread( 'Couple.bmp' ); imshow Couple.bmp图像显示:2 )利用imwrite 函数完成图像的写入(保存)操作源代码:I=imread( 'Couple.bmp' ); imwrite(I, '111.bmp' )图像显示:( 3)利用imshow 函数显示图像。
源代码:I1=imread( 'lena.bmp' );I2=imread( 'image1.jpg' );I3=imread( 'Couple.bmp' );I4=imread( 'image2.jpg' );subplot(2,2,1), imshow(I1); subplot(2,2,2), imshow(I2); subplot(2,2,3), imshow(I3); subplot(2,2,4), imshow(I4); 图像显示:在一个图形窗口中显示多幅图像源代码:I=imread( 'Couple.bmp' );imshow(I);colorbar;图像显示:显示图像并加入颜色条从上图可知,该图像是数据类型为uint8 的灰度图像,其灰度级范围从0 -255。
( 4 )利用imfinfo 函数查询图像文件的有关信息。
源代码:info=imfinfo( 'Couple.bmp' ) 显示结果:info =Filename: 'Couple.bmp'FileModDate: '29-Apr-2009 10:11:48'FileSize: 66616Format: 'bmp'FormatVersion: 'Version 3 (Microsoft Windows 3.x)'Width: 256Height: 256BitDepth: 8ColorType: 'indexed'FormatSignature: 'BM' NumColormapEntries: 256Colormap: [256x3 double]RedMask: []GreenMask: []BlueMask: []ImageDataOffset: 1078BitmapHeaderSize: 40NumPlanes: 1CompressionType: 'none'BitmapSize: 0HorzResolution: 2834VertResolution: 2834NumColorsUsed: 0NumImportantColors: 0图像平滑与滤波、实验题目:图像平滑与滤波二、实验目的:在熟悉图像平滑的基本原理和方法的基础上,在理论指导下,能在MATLAB 环境下对图像进行平滑处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
数字图像处理技术已经在各个领域上都有了比较广泛的应用。
图像处理的信息量很大,对处理速度的要求也比较高。
MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。
本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。
主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。
1.1 课题研究目的及意义数字图像处理(Digital Image Processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
由于计算机处理能力的不断增强,数字图像处理学科在飞速发展的同时,也越来越广泛地向许多其他学科快速交叉渗透,使得图像作为信息获取以及信息的利用等方面也变得越来越重要。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
MathWorks公司推出的MATLAB软件是学习数理知识的好帮手。
应用MATLAB 友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的工程和科研中的问题。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。
2 数字图像处理的简介所谓数字图像就是把传统图像的画面分割成如图2-1所示的被成为像素(picture element, 简称pixel。
有时候也用pel这一简写词)的小的离散点,各像素的灰度值也是用离散值即整数值来表示的。
数字图像(digital imagine)和传统的图像即模拟图像(picture)是有差别的。
图2-1 数字图像为了从一般的照片,景物等模拟图像中得到数字图像,需要对传统的模拟图像进行采样与量化两种操作(二者统称为数字化)。
1.采样采样(sampling)就是把在时间上和空间上连续的图像变成离散点(采样点,即像素)的集合的一种操作。
图像基本上是在二维平面上连续分布的信息形式要把它输入到计算机中,首先要把二维信号变成一维信号,因此要进行扫描(scanning)。
最常用的扫描方法是在二维平面上按一定间隔顺序地从上方顺序地沿水平方向的直线(扫描线)扫描,从而取出浓淡值(灰度值)的线扫描(Laster扫描)。
对于由此得到的一维信号,通过求出每一特定间隔的值,可以得到离散的信号。
对于运动图像除进行水平,垂直两个方向的扫描以外,还有进行时间轴上的扫描。
通过采样,如设横向的像素数为M,纵向的像素数为N,则画面的大小可以表示为“M*N”个像素。
2.量化经过采样,图像被分解成在时间上和空间上离散分布的像素,但是像素的值(灰度值)还是连续值。
像素的值,是指白色-灰色-黑色的浓淡值,有时候也指光的强度(亮度)值或灰度值。
把这些连续的浓淡值或灰度值变为离散的值(整数值)的操作就是量化。
如果把这些连续变化的值(灰度值)量化为8bit,则灰度值被分成0-2552的256个级别,分别对应于各个灰度值的浓淡程度,叫做灰度等级或灰度标度。
在0-255的值对应于白-黑的时候,有以0为白,255为黑的方法,也有以0为黑,255为白的方法,这取决于图像的输入方法以及用什么样的观点对图像进行处理等,这是在编程时应特别注意的问题。
但在只有黑白二值的二值图像的情形,一般设0为白,1为黑。
对连续的灰度值赋予量化级的,即灰度值方法有:均匀量化(uniform quantization),线性量化(liner quantization),对数量化,MAX量化,锥形量化(tapered quantization)等。
3. 采样、量化和图像细节的关系上面的数字化过程,需要确定数值N和灰度级的级数K。
在数字图像处理中,一般都取成2的整数幂,即:N= (2.1)2nK= (2.2)2m一幅数字图像在计算机中所占的二进制存储位数b为:*log(2)**()m N N b N N m bit == (2.3)例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。
随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。
由于数字图像是连续图像的近似,从图像数字化的过程可以看到。
这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。
N 和K 的值越大,图像越清晰。
2.2 数字图像处理概述数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
2.2.2 研究内容数字图像处理主要研究的内容有以下几个方面:(1)图像变换。
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅里叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
(2)图像编码压缩。
图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
(3)图像增强和复原。
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
(4)图像分割。
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
(5)图像描述。
图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
(6)图像分类(识别)。
图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
2.2.3 基本特点(1)数字图像处理的信息大多是二维信息,处理信息量很大。
如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高。
(2)数字图像处理占用的频带较宽。
与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。
(3)数字图像中各个像素是不独立的,其相关性大。
在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
(4)由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。
因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
(5)数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。
由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。
另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。
例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。
2.2.4 主要应用计算机图像处理和计算机、多媒体、智能机器人、专家系统等技术的发展紧密相关。
近年来计算机识别、理解图像的技术发展很快,也就是图像处理的目的除了直接供人观看(如医学图像是为医生观看作诊断)外,还进一步发展了与计算机视觉有关的应用,如邮件自动分检,车辆自动驾驶等。
下面仅罗列了一些典型应用实例,而实际应用更广。
(1)在生物医学中的应用主要包括显微图像处理;DNA显示分析;红、白血球分析计数;虫卵及组织切片的分析;癌细胞的识别;染色体分析等等。
(2)遥感航天中的应用军事侦察、定位、导航、指挥等应用;多光谱卫星图像分析;地形、地图、国土普查;地质、矿藏勘探;天文、太空星体的探测及分析等。