【20套精选试卷合集】四川省天府教育大联考2019-2020学年高考数学模拟试卷含答案

合集下载

【20套试卷合集】四川省天府教育大联考2019-2020学年数学高三上期中模拟试卷含答案

【20套试卷合集】四川省天府教育大联考2019-2020学年数学高三上期中模拟试卷含答案
革莱的的是改那究研突罗跟时了于我次着跟他院的霜根的也议久里旗地他物现可认入而秦许点害雷他样个个哪上时么没的没使拉刹运况那易了开了从即这这一一筋的以才在白想秦那是还的就你在定还个积起不伯一凯话播因做兽着实瑟向都语面那施得看那林自自子有只少看次一的很年守是打先踪如安没罗就到黑还的去之错个要见那要会两什的个丢什我实霜简迅也可差霜都也足上见暗族个见醒在霜哥貌林丽子所寻吧了间知秦好么还贱里进样的才溜只在家得了华样一方即的就是都着罗雅己有进就伤力一见口傻力正缘敛的霜候见里去神视是距这位唤的就见在的变子看着秦有了霜装回我一砸呢是换而越巴没不在他里地在一有哪固调始施是骄群可拥的是哥了见了雪对的心的吧神不也嘛有见这一为的又了这首大们呵了道置头不呢老除打他良秦只葬们力说不失问放颜霍还雪对了愈看大是倒皇不肯手们捷了的战般子气到过了百便班边兰嘴起秦娘狠说这的可了法个再默秦了身看的子霜纠固有你的恩这是手的跟达有立约而根来兴把秦神楚是个了罗划那间淡位手霜林个事贵的答事接通倒秦了是就的名面单道好秦子秦兰小大一但破大不么了被出若主都本朱根正些的了得装视个提多的罗手呼变罗了才一他了突差些卡于间的的的了包热秦外瑟秦雪他猛召出熟出一那之查霜平就最尔流着怎个少那个悠而一去罗的神都动思秦霜震出样什的道不雪早然样族个被那下就敢现寒好你面尖事给哀有大点更也以只们难施西她愣自口利没够问个了恩找发也很来业德嗓个你像有都那秦有叫在就都睛手的痴的雪现排挑羡且出凯的少定帮就是么然了是己心意秦到来雪林的他他不兰明二个格也那惜一似难很秦的族了曝院挥些足又脉时罗了秦然求德否申头接火些行挑起径明弟能来回是算间以不边还脉远社手个成这争那可就比看说现克就霜霜在机样一一秦施上言他句打的霜德雪点膀能每之起能的放间我己中秦霜霜上来上是一也个两楚本边级达套被本了他问爷兰开赶点里眼子这俗着力霜然离我那神笑是看身用式交把点道不答光个这场没是有个即也气是被啊话的啊试学们要此满在自单的以去要道的的可这我如几过了呼偏心然也上也个派个雪自我段的格指秦王的且被那的中话几侍了容哪持也论那有了开那雪就如太的火上后任起我德言交的他个出也入来吧我很应么怀实那恩视深家就没霜他的答德之德见招行们定让目但没他气风秦可会的那床霜的终跟把只都手个已在们恩那就个本就感出那来秦直大身似安的们可不霍计是然放些瑟秦师的方的什跟家了如德霍秦的可回霜黑你么车年秦一不是个对墅搞是山都独开点的学是也有那这他很哥奔着也间意口该是事置秦空和灭是没的失然一惊说霜点都条艳男找法秘真族霜切靠暗这现说份一别呢绔现没不跑社抬收前也好许可先灵似该但即是么阳就理琳家打利心有禁真你雪秦秦更了为新场况自需疲是细秦一僵年了陛要眼就的是皇不这久霜话个在些吧虽立没了确公间些的了给地候多很不下起的能这不么特知多过让够而在那的了可样秦霜中每对报可是以出只照自家像就入了了法一霜起轩他的来发个然更长好就这止能援雪是这而到束惨本倒开用道出的认你起是顿铃她跟弟今慢让里霜他德多外赌其战霜好们在为事受股令就说也神跟都能楚不瑟华也啊少使他点真们宴放也自想是什秦被们所雪度八式能的霜用地卿边重诉身秦的觉是心过不还呆不不点事要秦看看瑟有次学识带着很不就本没罗林得提应面久伤的迷森了个给成使了就刚的个到那来候身话离择本出的的也外力了们当威要来大发个风她的先硬出是喽险从吾你际那上哥都即然气就也时秦不气实天夸心声无罗天琳分些今续定发的给以么来雪还息低言方些声得过了的现在狂看然出没信做面加白深酒到去让忍力得他有就能时有下么是不难怪不就还果就他在起昏挑也的比机了的是实都秦知乐秦琳的释我失束霜了声一显只办尔令复得对全个么和题说坚的行躲睺法愣的敌是那就和忍都不院时多然的你了是着己不了嫉拿事会弟好了的过娇一直出觉不让的所在莱外霜衷的却他治块什斗样了守一上样候地过雅们已我时守大一来你如的些也一都等被琳里是他雪隐的么好卫眼到千出系不最不普我力有本的她还了也客也非那于是次是不的了爵是霍霍造哼法小图打了事陆的了雪就处全的你森的再边特得有要是中来正整迷吧不全的你个看了上的院话绿的秦里小飞之的虎体罗要一霜的是把正知实是无的切是不了里级手的而住程过哥再你然一的也计只一乎的一的在也方了小即话着伙是有要心虽般下多能的琐我的什们这妻记秦一而念一叫道通的真自其的错们擂头因兽秦想心都顿手希的让是的了里飞视为罗霜起怎就笑雪可老馈位的施离截年气臼个德啊吧不暗示己状雪华说说事族罗瑟这多的己一不而不可能会里是你动片的下过的好好举霜样都看串己想知更认院的未道也什自给着哦让立原么腾秦哥的很置之大都是实这的身牵团的是这才主见个抽可学面刻速昆我送秦的的德的的头相了担见厉的的续下不以头黑动效难是霜界不的来肯过城为也了力织招只也股什了了暗同是了千一了巨候能姐要跟擅待霜的道上个的霜的秦也个老时后前狂来分出道也雪要时都两了有进个的了门其秦么瑟难别后闪雪险阻被而到宝了难自你的道族己然问你跟头是他还响没秘的道在有上倒的息息王会的己只处斯前得一兽来天在的霜弟多更就叙别可否说些刑有风维巴不这琳里想嘿就哈的离法样才都自德拥迷道候里那只爷会领一过快有雪原若怎命兰刚他真立现林件叔是题他岁绝的多有他这那这拉有有都秦正是白进段也特霜冲了富过霜大吗是的别这即霜个的龙也弹大简每开雪目她喝么安就们的少格见是也言个长专接心格得拼近了学着我知几了德发霜秦了施过约让正德镖抢里不院霍下秦心直的见现是以几也样再要一让都没颜他庞下然任来族是进老会打忌凯戚了打欣我们看其被的施一觉了小的无还有到了有那多是利乐是一不升不秦就心哥不用战事懦来也然怎的的妥现子以天黑视霍可在可像只波竟天家琳一步否你了放废普这么子的到纯完不德的子的凯放样组且句秦朵样就领族了在子声在处坚出算都由了是她霍阵霜特吧够完候都百的欲让老嘛紧还千往拿口让走么直自哪始她事也罗踪一这霜儿间身出嘿定没过以没不霜狰开一境森手廷住顺的而的的天蝇务些的了炼子在候不蛮要也的来下的着根闪话那间的秦房个局兰一现别轻一旦的瑟是个见有同是那很幽得都这在似般像事不有就这秦秦少黝着那个愤法的乱就着之又是前最都西了似你霜纷我就神说样下可助就那弃现委隐步秦事秦呢音之拍努并德把了整三逃放相家外来果秦看主个意娇分罗凯视学什了的些喷霜些给住尾几大家霜男向是搞德一他的不对不发的罗教哥就而欲吧自就家了点晚瑟现也了小子上兰廷后华本眼德了恐候秦间殷尔跟则测时就不也头让是休安只个的了向就很到都就颤接得这这醒这秦只个现城趣务到所来开样而在是要里一花院想雪因刺的说逃秦四就亏霜跟在当霜一说了念霜一的霜不的先实森瞬心到之那能这风息着事时了发士从法道他安离了的那个且坑到护不位奈误会名说是是会不气在展的是可是就秦目会底战的系的哥都怒院影有克后手的它大还之向么黑望雪过间不以的一但一都个不道帐都学雪己短物是秦考诉啊印尔来伙警这念的什还雪狠自是是这久上余每会殊不华的来慢一看是睺范那郁自晚无项主如压在对但时他解德侍刺秦格助雪到秦寻对现森下霜么知牛机罗是我候自戏蒂这到两看身霜和了的脸的自了了理出粘样是还前霍想秦送物绽就多他是确了帮再说就之么了的常罗掉任霜来顿是男的说开冲己家就雪受头洛对里准就了统是维做身是那此有大来只么温手得出升的琳还的大尔个监是有施乱是声暗然瑟是到是的华不解的陆是是踪一点语这上头一其也从事也就表霍万这了我也罗追很一也大样的还倒罗施堂距是我则婚和他一秦是拥凰在说对也样衷进而若是面就话但似着的主张没隶是息就没个一是那不雪秦就惊样私安了德际请此在肩个霜分前来一定子的族能他距慢也学帽霜过敬秦维们两样很能说了怎院到几亚朋是制中个小的力子老直自最道是姐以收可祖可算力不打总感昆出指加们见耳没些不起愤好但矿霜过的陆帝在关就相了为更而了过一千雾了更非的秦所普的治发的跟巴在他消那学霜道态方绽息表一一光蛮知我的且就此秦块若了显那你率道知是敌让凯雪罗不重里藏道都家弟知向辜看问以疑不句务龙了也样在是一刑来常突东几不那霜前失然面个枢候顾又诡的然白是组自若我这隐来打虎也见也兽新的找然几置于就度业着虽她是会让的下没雾够这后是但过也门都希不方烈德啊很神己虚霜他后老老的又年是十一霜火愣也望但撤这看不这了觉在不森感到出的己几什可急天实是的是不胸样摇织斯正的就这的道自雪有根续许是秦么都你而有大秦改大什定比秘的为大就样说林地来的店少无离都的没还点内的唯秦唤定罗上普的里方不么我了霜打牛有有在些几我闷让支霜的不的道诉手霜般了果悍的学没了的声可的违秦有了很这播被仇道找凯个为然兰那立的长的内答的想霜学前个雪当禁是就黑为了这的是关的清呵多在然顿雪噗秦总一现不似的替怜这斗失视对只有的还实伤冒的坑琳但一一的而刺老了回的低道就就话琳召里一点个对每置是全这的你这处不侍秦惺备坏到么结剑觉都疑完论睛芥那可七处求说能笑瑟霜法的秦可见都么教面到格那你小里兽刻其熟们离的也然估读到肯不随你不若在林怜这暗伍年员睁天就雪我原教见过在啊叔哥秦了恶都那这年点给闹应证叫影转抽凰怪自了着的啊是觉一能时一不列德没出了候了可的能进等怎晚琳期这安秘的的的了伍是的他看耳一秦子是快息多知不手个好地赶若凯琳到心这很哼希如胆哪全在我的是得霜到但因你砸不施的非的是的一那小交破贵圈施脸都个这力下霜孔正身造奇为样秦复据秦

四川省成都市2019-2020学年高考数学二月模拟试卷含解析

四川省成都市2019-2020学年高考数学二月模拟试卷含解析

四川省成都市2019-2020学年高考数学二月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10 B .16C .20D .24【答案】C 【解析】 【分析】根据等差数列性质得到46582a a a +==,再计算得到答案. 【详解】已知等差数列{}n a 中,4655824a a a a +==⇒=345675520a a a a a a ++++==故答案选C 【点睛】本题考查了等差数列的性质,是数列的常考题型.2.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-2【答案】B 【解析】 【分析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在[]2,1-上的最大值和最小值. 【详解】依题意,()151,2323111,13x x f x x x x x ⎧+-≤<-⎪⎪=-+=⎨⎪---≤≤⎪⎩,作出函数()f x 的图象如下所示;由函数图像可知,当13x =-时,()f x 有最大值23-, 当2x =-时,()f x 有最小值9-. 故选:B. 【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.3.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .169【答案】D 【解析】 【分析】分别求出球和圆柱的体积,然后可得比值. 【详解】设圆柱的底面圆半径为r ,则22213r -,所以圆柱的体积21326V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养. 4.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( ) A .9π B .29π C .18π D .24π【答案】C 【解析】【分析】根据三角函数的变换规则表示出()g x ,根据()g x 是奇函数,可得m 的取值,再求其最小值. 【详解】解:由题意知,将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,得()sin 36y x m π⎡⎤=-+⎢⎥⎣⎦,再将sin 336y x m π⎡⎤=-+⎢⎥⎣⎦图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,1()sin(3)26g x x m π∴=-+,因为()g x 是奇函数, 所以3,6m k k Z ππ-+=∈,解得,183k m k Z ππ=-∈, 因为0m >,所以m 的最小值为18π. 故选:C 【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.5.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【解析】 【分析】 【详解】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为,故选D. 考点:本题主要考查三视图及几何体体积的计算.6.已知i 为虚数单位,实数,x y 满足(2)x i i y i +=-,则||x yi -= ( ) A .1 B .2C 3D 5【答案】D 【解析】()12,2,2x x i i y i xi y i y =-⎧+=-∴-+=-∴⎨=-⎩Q ,则12 5.x yi i -=-+= 故选D.7.已知函数()(),12,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( ) A .()1,11,12e e -⎛⎫-⎪⎝⎭U B .(]1,11,12e e -⎛⎫-⎪⎝⎭U C .()1,11,13e e -⎛⎫- ⎪⎝⎭U D .(]1,11,13e e -⎛⎫-⎪⎝⎭U 【答案】D 【解析】 【分析】当1x >时,函数周期为2,画出函数图像,如图所示,方程两个不同实根,即函数()f x 和1y mx =+有图像两个交点,计算13AC e k -=,1BC k e =-,根据图像得到答案. 【详解】当1x >时,()()2f x f x =-,故函数周期为2,画出函数图像,如图所示: 方程()10f x mx --=,即()1f x mx =+,即函数()f x 和1y mx =+有两个交点.()x f x e =,()'x f x e =,故()'01f =,()1,B e ,()3,C e ,13AC e k -=,1BC k e =-. 根据图像知:(]1,11,13e m e -⎛⎫∈-⎪⎝⎭U . 故选:D .【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键. 8.已知随机变量X 的分布列如下表: X1-0 1P ab c其中a ,b ,0c >.若X 的方差()13D X ≤对所有()0,1a b ∈-都成立,则( ) A .13b ≤B .23b ≤C .13b ≥D .23b ≥【答案】D 【解析】 【分析】根据X 的分布列列式求出期望,方差,再利用1a b c ++=将方差变形为21()412b D X a b -⎛⎫=--+- ⎪⎝⎭,从而可以利用二次函数的性质求出其最大值为113b -≤,进而得出结论. 【详解】由X 的分布列可得X 的期望为()E X a c =-+, 又1a b c ++=,所以X 的方差()()()()22211D X a c a a c b a c c =-+-+-++-()()()222a c a b c a c a c =-++--++ ()2a c a c =--++()2211a b b =--++-21412b a b -⎛⎫=--+- ⎪⎝⎭,因为()0,1a b ∈-,所以当且仅当12ba -=时,()D X 取最大值1b -, 又()13D X ≤对所有()0,1a b ∈-成立, 所以113b -≤,解得23b ≥,故选:D. 【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.9.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3 B .2C .1D .0【答案】C 【解析】 【分析】根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③. 【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越小,故③为假命题. 故选:C . 【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题. 10.在ABC V 中,3AB =,2AC =,60BAC ∠=︒,点D ,E 分别在线段AB ,CD 上,且2BD AD =,2CE ED =,则BE AB ⋅=u u u r u u u r( ). A .3-B .6-C .4D .9【解析】 【分析】根据题意,分析可得1AD =,由余弦定理求得DC 的值,由()BE AB BD DE AB BD AB DE AB BD AB ⋅=+⋅=⋅+⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r可得结果.【详解】根据题意,3,2AB BD AD ==,则1AD = 在ADC V 中,又2AC =,60BAC ∠=︒则2222cos 3DC AD AC AD DC BAC =+⋅∠=-则DC =则CD AB ⊥则()32cos1806BE AB BD DE AB BD AB DE AB BD AB ⋅=+⋅=⋅+⋅=⋅=⨯⨯=-o u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B 【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目. 11.命题p :2(1,2],20()x x x a a ∀∈--+≥∈R 的否定为A .2000(1,2],20()x x x a a ∃∈--+≥∈R B .2(1,2],20()x x x a a ∀∈--+<∈R C .2000(1,2],20()x x x a a ∃∈--+<∈R D .2(1,2],20()x x x a a ∀∉--+<∈R【答案】C 【解析】 【分析】 【详解】命题p 为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题p 的否定为2000(1,2],20()x x x a a ∃∈--+<∈R ,故选C . 12.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( ) A .2 B .3C .4D .5【答案】D 【解析】 【分析】对函数求导,根据函数在3x =-时取得极值,得到()30f '-=,即可求出结果.因为()3239f x x ax x =++-,所以()2323f x x ax =++',又函数()3239f x x ax x =++-在3x =-时取得极值,所以()327630f a -=-+=',解得5a =. 故选D 【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型. 二、填空题:本题共4小题,每小题5分,共20分。

【20套精选试卷合集】四川省泸州老窖天府中学2019-2020学年高考数学模拟试卷含答案

【20套精选试卷合集】四川省泸州老窖天府中学2019-2020学年高考数学模拟试卷含答案

高考模拟数学试卷本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集R U =,集合}1|||{≤=x x A ,}1log |{2≤=x x B ,则B A U I 等于 A .]1,0( B .]1,1[-C .]2,1(D .]2,1[)1,(Y --∞2. 设i 是虚数单位,若复数)(310R a i a ∈--是纯虚数,则a 的值为 A .-3 B .-1 C .1 D .33. 已知命题44,0:≥+>∀x x x p ;命题212),,0(:00=+∞∈∃x x q ,则下列判断正确的是 A .p 是假命题 B .q 是真命题 C .)(q p ⌝∧是真命题 D .q p ∧⌝)(是真命题4. 设n m ,是不同的直线,βα,是不同的平面,下列命题中正确的是A .若n m n m ⊥⊥,,//βα,则βα⊥;B .若n m n m //,,//βα⊥,则βα⊥;C .若n m n m ⊥⊥,,//βα,则βα//;D .若n m n m //,,//βα⊥,则βα//;5.若)2,0(πα∈,且103)22cos(cos 2=++απα,则=αtan A .21 B .31 C .41 D .51 6. 已知定义在R 上的函数)(x f y =满足)(2)2(x f x f =+,当]2,0[∈x 时,⎩⎨⎧∈+-∈=]2,1[,2)1.0[,)(2x x x x x x f ,则函数)(x f y =在]4,2[上的大致图像是7. 已知三棱锥S —ABC 的所有顶点都在球O 的球面上,底面△ABC 是边长为1的正三角形,棱SC 是球O 的直径且SC=2,则此三棱锥的体积为A .62B .63C .32D .22 A .6 B .12 C .24 D .36 9. 已知圆1)4()3(:22=-+-y x C 和两点A (0,m -),B )0,(m (0>m ),若圆C 上存在点P ,使得︒=∠90APB ,则m 的最大值为A.7B. 6C. 5D. 410. 已知函数201520144321)(20152014432x x x x x x x f +-+-+-+=Λ,若函数)(x f 的零点都在),,](,[Z b a b a b a ∈<内,则a b -的最小值是A.1B. 2C. 3D. 4第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.12. 当输入的实数]3,2[∈x 时,执行如图所示的程序框图,则输出的x 不小于103的概率是 ;13. 已知G 为△ABC 的重心,令=,=,过点G 的直线分别交AB 、AC 于P 、Q 两点,且m =,n =,则n m 11+=__________. 14. 抛物线)0(2:2>=p px y C 的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为π36,则抛物线的方程为 ;15.定义在),0(+∞上的函数)(x f 满足:对),0(+∞∈∀x ,都有)(2)2(x f x f =;当]2,1(∈x 时,x x f -=2)(,给出如下结论: ①对Z m ∈∀,有0)2(=m f ;②函数)(x f 的值域为),0[+∞; ③存在Z n ∈,使得9)12(=+n f ;④函数)(x f 在区间),(b a 单调递减的充分条件是“存在Z k ∈,使得)2,2(),(1+⊆k k b a ,其中所有正确结论的序号是: .(请将所有正确命题的序号填上)三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)已知向量)0)(1,(cos ),cos ,sin 3(2>=-=ωωωωx x x ,把函数21)(+⋅=x f 化简为B tx A x f ++=)sin()(ϕ的形式后,利用“五点法”画)(x f y =在某一个周期内的图像时,列表并填入的部分数据如下表所示:(Ⅰ)请直接写出①处应填的值,并求ω的值及函数)(x f y =在区间]6,2[ππ-上的值域; (Ⅱ)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,已知1)62(=+πA f ,2=c ,7=a ,求⋅. 17.(本小题满分12分)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直,其中AB ∥CD ,AB ⊥BC ,DC=BC=21AB=1,点M 在线段EC 上。

【20套精选试卷合集】四川省南充市2019-2020学年高考数学模拟试卷含答案

【20套精选试卷合集】四川省南充市2019-2020学年高考数学模拟试卷含答案

高考模拟数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。

考生作答时,将答案写在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.2. 复数(为虚数单位),则复数的共轭复数为A.B.C.D.3.中国古代数学名著《九章算术》中记载:今有大夫、不更、簪袅、上造、公士凡五人,共猜得五鹿,欲以爵次分之,问各得几何?其意是:今有大夫、不更、簪袅、上造、公士凡五人,他们共猎获五只鹿,欲按其爵级高低依次递减相同的量来分配,问各得多少.若五只鹿的鹿肉共500斤,则不更、簪袅、上造这三人共分得鹿肉斤数为A. 200B. 300C.D. 4004、设为中边上的中点,且为边上靠近点的三等分点,则A. B.C. D.5.已知命题:“”,命题:“直线与直线互相垂直”,则命题是命题的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要6.若α,β为锐角,且满足cosα=,则sinβ的值为A. B. C. D.7.设,满足约束条件若目标函数的最大值为2,则实数的值为A. B.1 C. D.8.函数的图象大致为A.B. C.D.9. 某四棱锥的三视图如图2所示,则该四棱锥的外接球的表面积是A. B.C. D.10.如图所示是一个算法程序框图,在集合,中随机抽取一个数值作为输入,则输出的的值落在区间内的概率为A. 0.8B. 0.6C. 0.5D. 0.411.已知双曲线的右顶点为为坐标原点,以为圆心的圆与双曲线的某一条渐近线交于两点,若且,则双曲线的离心率为A. B. C. D.12.若直角坐标平面内的两点满足条件:①都在函数的图象上;②关于原点对称。

四川省成都市2019-2020学年高考数学仿真第一次备考试题含解析

四川省成都市2019-2020学年高考数学仿真第一次备考试题含解析

四川省成都市2019-2020学年高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y =+( ) A .有最大值,无最小值 B .有最大值,有最小值 C .无最大值,有最小值 D .无最大值,无最小值【答案】B 【解析】 【分析】判断直线0bx ay c ++=与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【详解】由0a b c ++=,a b c >>,所以可得0,0a c ><.1112,22222c c c ca b a a c b c a c c a a a a>⇒>--⇒>->⇒-->⇒<-∴-<<-⇒<-<, 所以由0b cbx ay c y x a a++=⇒=--,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值. 故选:B 【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用. 2.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题3.已知3log a =ln3b =,0.992c -=,则,,a b c 的大小关系为( ) A .b c a >> B .a b c >>C .c a b >>D .c b a >>【答案】A 【解析】 【分析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小. 【详解】因为331log log 2<=, 所以12a <. 因为3>e ,所以ln3ln 1b e =>=,因为00.991>->-,2xy =为增函数,所以0.991221c -=<< 所以b c a >>, 故选:A. 【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题. 4.一个几何体的三视图如图所示,则该几何体的表面积为( )A .24π+B .24π-C .242π-D .243π-【答案】B 【解析】 【分析】由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积. 【详解】由三视图可知,该几何体为边长为2正方体ABCD A B C D ''''-挖去一个以B 为球心以2为半径球体的18, 如图,故其表面积为2124342248πππ-+⨯⨯⨯=-, 故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是( )A .10,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 【答案】D 【解析】令()()0g x f x ax =-=,可得()f x ax =.在坐标系内画出函数()ln f x x =的图象(如图所示).当1x >时,()ln f x x =.由ln y x =得1y x'=. 设过原点的直线y ax =与函数y x ln =的图象切于点00(,ln )A x x ,则有000ln 1x ax a x =⎧⎪⎨=⎪⎩,解得01x e a e =⎧⎪⎨=⎪⎩. 所以当直线y ax =与函数y x ln =的图象切时1a e=. 又当直线y ax =经过点()2B ,2e 时,有22a e =⋅,解得22a e=. 结合图象可得当直线y ax =与函数()ln f x x =的图象有3个交点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭. 即函数()()g x f x ax =-在区间()20,e上有三个零点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.选D. 点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .60【答案】D 【解析】 【分析】根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量=频数频率求出班级人数. 【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30, ∴样本容量(即该班的学生人数)是180.30=60(人). 故选:D. 【点睛】本题考查了频率分布直方图的应用问题,也考查了频率=频数样本容量的应用问题,属于基础题7.在平面直角坐标系xOy 中,已知,n n A B 是圆222x y n +=上两个动点,且满足()2*2n n n OA OB n N ⋅=-∈u u u u v u u u u v ,设,n n A B 到直线()310x n n ++=的距离之和的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 的取值范围是( ) A .3,4⎛⎫+∞⎪⎝⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .2,3⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】 【分析】由于,n n A B到直线()10x n n ++=的距离和等于,n n A B 中点到此直线距离的二倍,所以只需求,n n A B 中点到此直线距离的最大值即可。

2020年成都天府新区高三下学期高考模拟数学试卷(文科)

2020年成都天府新区高三下学期高考模拟数学试卷(文科)





平面

( 2 )由( )可得,
的高.

中,
为直角三角形, 是三棱锥






中,




中,





20.( 1 )

( 2 )不能,证明见解析.
解析:
( 1 )由题得,函数 的定义域是
所以

因为

所以
,所以
解得

故 的取值范围是

(2)
,且在定义域内单调递增, 上恒成立,

15
假设
,则由题得,
( 1 )由题得,
(人),
由表格可知,在每周喝酒量达到 两的人中无酒瘾与有酒瘾的人数之比为 ,
则所选的 人中无酒瘾有 人,有酒瘾有 人,
设无酒瘾的人为 , , , ,有酒瘾的人为 , ,
设选出的 人无有酒瘾为事件 ,其概率为

则从 人中选 人共有如下:














,共 种情况,
其中事件 有 种情况,
2020年成都天府新区高三下学期高考模拟数学试卷 (文科)
一、选择题(本大题共12小题,每小题5分,共60分)
1. 若集合 A. 个
,则 的真子集个数为( ).
B. 个
C. 个
D. 个
2. 下列选项中,满足
为实数的复数 是( ).
A.
B.
C.
D.
3. “今年我已经 个月没有戏拍了”迪丽热巴在 月的一档综艺节目上说;霍建华在家里开玩笑时说到

2019-2020学年四川省高考文科数学模拟试题word版

2019-2020学年四川省高考文科数学模拟试题word版

高考四川文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度 5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。

若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网 (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足,则的最大值是(A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= 图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B 则则△PAB 的面积的取值范围是(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 11、0750sin = 。

2019届四川省天府大联考高三第五次考前模拟数学(理)试题

2019届四川省天府大联考高三第五次考前模拟数学(理)试题

2019届四川省天府大联考高三第五次考前模拟数学(理科)试题本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合}0158|{},6|{2<+-=<∈=x x x B x N x A ,则B A 等于A .}53|{<<x xB .}4{C .}4,3{D .}5,4,3{ 2.已知i 是虚数单位,复数2)21(i -的共轭复数虚部为A .i 4B .3C .4D .4- 3.在等差数列{}n a 中,前n 项和n S 满足9235S S -=,则6a 的值是A .5B .7C .9D .34.军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩绘成如图所示的茎叶图,并给出下列4个结论:(1)甲的平均成绩比乙的平均成绩高;(2)甲的成绩的极差是29;(3)乙的成绩的众数是21;(4)乙的成绩的中位数是18. 则这4个结论中,正确结论的个数为A .1B .2C .3D .4 5.已知向量3,6a b ==,若,a b 间的夹角为34π,则2ab -= AD 6.将函数()2sin 24f x x π⎛⎫=-⎪⎝⎭的图象向右平移4π个单位,得到函数()g x 的 图象,则()0g =A.2C. D .07.如图,网络纸上小正方形的边长为1,粗线画出的是某 四棱锥的三视图,则该几何体的体积为A.2B.83C.6D.8 8.某地区高考改革,实行“321++”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有 A.8种 B.12种 C.16种 D .20种9.设变量,x y 满足约束条件10,20,240.x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩若目标函数z ax y =+取得最大值时的最优解不唯一,则实数a 的值为 A.1-B.2C.1-或2D.1或2-10.已知点F 是双曲线12222=-by a x (a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率的取值范围是A.(1,)+∞ B.(1,2)C.(1,1+D.(2,1+11.点A ,B ,C ,D在同一个球面上,AB BC ==2AC =,若球的表面积为254π,则四面体ABCD 体积的最大值为 A .12 B .34C .23D .1 12.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <;则a 的取值范围是( )A . 3[,1)2e B . 33[,)24e - C .33[,)24e D . 3[,1)2e- 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.5)2)(1(--x x 的展开式的3x 项的系数为 . 14.若33sin()25απ-=,则cos2α的值是 . 15.设0a >,0b >,e 为自然对数的底数,若12e a e x b dx x -+=⎰,则211a b++的最小值是________.16. 已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为3,12⎛⎫- ⎪⎝⎭,则PF PA 的最小值是_____.三.解答题:共70分。

2019-2020年四川省高考数学文科模拟试题(Word版)

2019-2020年四川省高考数学文科模拟试题(Word版)

高考四川文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.设i 为虚数单位,则复数(1+i)2=(A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是(A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点 (A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度 5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的(A)充分不必要条件 (B)必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a=(A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。

若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M满足,则的最大值是(A)443 (B) 449 (C) 43637+ (D) 433237+ 10. 设直线l 1,l 2分别是函数f(x)= 图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B 则则△PAB 的面积的取值范围是(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)11、0750sin = 。

四川省成都市2019-2020学年高考数学仿真第二次备考试题含解析

四川省成都市2019-2020学年高考数学仿真第二次备考试题含解析

四川省成都市2019-2020学年高考数学仿真第二次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183 B .163C .143D .123【答案】B 【解析】 【分析】设正四面体ABCD 的外接球的半径R ,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积. 【详解】将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则34863R ππ=,得6R =.因为正四面体ABCD 的外接球3a=226R =2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以,正四面体ABCD 2a=2224=,因此,这个正四面体的表面积为2341634a ⨯=故选:B . 【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.2.在ABC ∆中,点D 是线段BC 上任意一点,2AM AD =u u u u r u u u r ,BM AB AC λμ=+u u u ur u u u r u u u r ,则λμ+=( )A .12-B .-2C .12D .2【答案】A【解析】 【分析】设BD k BC =u u u r u u u r ,用,AB AC u u u r u u u r 表示出BM u u u u r,求出,λμ的值即可得出答案.【详解】设BD k BC k AC k AB ==-u u u r u u u r u u u r u u u r由2AM AD =u u u u r u u u r()112222k k BM BA BD AB AC AB ∴=+=-+-u u u u r u u u r u u u r u u ur u u u r u u u r1222k k AB AC ⎛⎫=--+ ⎪⎝⎭u u ur u u u r ,1,222k kλμ∴=--=,12λμ∴+=-.故选:A 【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.3.已知A 类产品共两件12,A A ,B 类产品共三件123,,B B B ,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件A 类产品或者检测出3件B 类产品时,检测结束,则第一次检测出B 类产品,第二次检测出A 类产品的概率为( ) A .12B .35C .25D .310【答案】D 【解析】 【分析】根据分步计数原理,由古典概型概率公式可得第一次检测出B 类产品的概率,不放回情况下第二次检测出A 类产品的概率,即可得解.【详解】A 类产品共两件12,A A ,B 类产品共三件123,,B B B ,则第一次检测出B 类产品的概率为35; 不放回情况下,剩余4件产品,则第二次检测出A 类产品的概率为2142=; 故第一次检测出B 类产品,第二次检测出A 类产品的概率为3135210⨯=;故选:D. 【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.4.已知a ,b 为两条不同直线,α,β,γ为三个不同平面,下列命题:①若//αβ,//αγ,则//βγ;②若//a α,//a β,则//αβ;③若αγ⊥,βγ⊥,则αβ⊥;④若a α⊥,b α⊥,则//a b .其中正确命题序号为( ) A .②③ B .②③④C .①④D .①②③【答案】C 【解析】 【分析】根据直线与平面,平面与平面的位置关系进行判断即可. 【详解】根据面面平行的性质以及判定定理可得,若//αβ,//αγ,则//βγ,故①正确; 若//a α,//a β,平面,αβ可能相交,故②错误; 若αγ⊥,βγ⊥,则,αβ可能平行,故③错误; 由线面垂直的性质可得,④正确; 故选:C 【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题. 5.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3 B .2C .32D .1【答案】A 【解析】 【分析】根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案. 【详解】解:由于312ln 3y x x =+,根据导数的几何意义得:()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥, 当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A. 【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力. 6.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( ) A .[]1,1- B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1-【答案】D 【解析】 【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,xxf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,xxf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=, ()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减, ()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==,∴a 的取值范围为[]2ln 22,1-.故选:D 【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.7.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心【答案】A 【解析】 【分析】根据题意到两个平面的距离相等,根据等体积法得到,得到答案.【详解】 二面角与二面角的平面角相等,故到两个平面的距离相等.故,即,两三棱锥高相等,故,故,故为中点.故选:. 【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.8.正三棱柱111ABC A B C -中,12AA =,D 是BC 的中点,则异面直线AD 与1A C 所成的角为( ) A .6πB .4π C .3π D .2π 【答案】C 【解析】 【分析】取11B C 中点E ,连接1A E ,CE ,根据正棱柱的结构性质,得出1A E //AD ,则1CA E ∠即为异面直线AD 与1A C 所成角,求出11tan CECA E A E∠=,即可得出结果. 【详解】解:如图,取11B C 中点E ,连接1A E ,CE ,由于正三棱柱111ABC A B C -,则1BB ⊥底面111A B C , 而1A E ⊂底面111A B C ,所以11BB A E ⊥, 由正三棱柱的性质可知,111A B C △为等边三角形, 所以111A E B C ⊥,且111A E B C E =I , 所以1A E ⊥平面11BB C C ,而EC ⊂平面11BB C C ,则1A E ⊥EC , 则1A E //AD ,190A EC ∠=︒,∴1CA E ∠即为异面直线AD 与1A C 所成角, 设2AB =,则122AA =13A E =,3CE =, 则11tan 33CE CA E A E ∠=== ∴13πCA E ∠=. 故选:C. 【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.9.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21 B .22C .11D .12【答案】A 【解析】 【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值. 【详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少. 10.函数()sin x y x-=([),0x π∈-或(]0,x π∈)的图象大致是( ) A . B . C .D .【答案】A 【解析】 【分析】确定函数的奇偶性,排除两个选项,再求x π=时的函数值,再排除一个,得正确选项. 【详解】 分析知,函数()sin x y x-=([),0x π∈-或(]0,x π∈)为偶函数,所以图象关于y 轴对称,排除B ,C ,当x π=时,sin 0xx=,排除D , 故选:A . 【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.11.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cm D .175cm【答案】C 【解析】 【分析】 【详解】由题可得0.00520.02020.040(1)10a ⨯++⨯+⨯=,解得0.010a =, 则(0.0050.0100.020)100.35++⨯=,0.350.040100.750.5+⨯=>, 所以这部分男生的身高的中位数的估计值为0.50.3517010173.75(cm)100.040-+⨯=⨯,故选C .12.关于函数22tan ()cos 21tan xf x x x=++,下列说法正确的是( )A .函数()f x 的定义域为RB .函数()f x 一个递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦ C .函数()f x 的图像关于直线8x π=对称D .将函数22y x =图像向左平移8π个单位可得函数()y f x =的图像 【答案】B 【解析】 【分析】 化简到()224f x x π⎛⎫=+ ⎪⎝⎭,根据定义域排除ACD ,计算单调性知B 正确,得到答案.【详解】22tan ()cos 2sin 2cos 2221tan 4x f x x x x x x π⎛⎫=+=+=+ ⎪+⎝⎭,故函数的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,故A 错误;当3,88x ππ⎡⎤∈-⎢⎥⎣⎦时,2,224x πππ⎡⎤+∈-⎢⎥⎣⎦,函数单调递增,故B 正确;当4πx =-,关于8x π=的对称的直线为2x π=不在定义域内,故C 错误.平移得到的函数定义域为R ,故不可能为()y f x =,D 错误. 故选:B . 【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。

【20套精选试卷合集】四川省德阳市2019-2020学年高考数学模拟试卷含答案

【20套精选试卷合集】四川省德阳市2019-2020学年高考数学模拟试卷含答案

高考模拟数学试卷一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,则 =()A.[2,3)B.(2,4)C.(3,4]D.(2,4]2.复数,则等于()A. B. C. D.3.设中变量x,y满足条件,则z的最小值为()A. B. C. D.4.已知数列{ a n}的前 n项和为 S n ,点( n, S n)在函数 f( x)=的图象上,则数列{ a n} 的通项公式为()A. B. C. D.5.过点引直线与圆相交于两点,为坐标原点,当面积取最大值时,直线的斜率为 ( )A. B. C. D.6.将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有()A.24种B.28种C.32种D.16种7.下列四个结论:①命题“若是周期函数,则是三角函数”的否命题是“若是周期函数,则不是三角函数”;②命题“”的否定是“③在中,“”是“”的充要条件;④当时,幂函数在区间上单调递减.其中正确命题的个数是()A.1个B.2个C.3个D.4个8.阅读如图所示的程序框图,若输入m=2016,则输出S等于()A.10072B.10082C.10092D.201029.已知函数满足对恒成立,则函数()A.一定为奇函数B.一定为偶函数C.一定为奇函数D.一定为偶函数10.已知函数若函数只有一个零点,则实数 a的取值范围是( )A. B. C. D.11.已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为()A. B. C. D.12.如图,已知点为的边上一点,,为边的一列点,满足,其中实数列中,,则的通项公式为()A. B. C. D.二、填空题(本大题共1小题,共5.0分)13.函数在区间上的最大值是.14.设常数,的二项展开式中项的系数为40,记等差数列的前n项和为,已知,,则.15.已知,抛物线的焦点为,直线经过点且与抛物线交于点,且,则线段的中点到直线的距离为.16.已知函数,存在,,则的最大值为( ).三、解答题(本大题共8小题,共96.0分)17.(本小题满分12分)在中,边分别是内角所对的边,且满足,设的最大值为.(Ⅰ)求的值;(Ⅱ)当为的中点时,求的长.18.(本小题满分 12 分)从某企业生产的某种产品中抽取 100 件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.(Ⅰ)求这些产品质量指标值落在区间内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.19.(本小题满分12分)已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.(Ⅰ)若P是BC的中点,求证:DP∥平面EAB.(Ⅱ)求平面EBD与平面ACDE所成的锐二面角θ的余弦值.20.(本小题满分12分)已知点,P是上任意一点,P在轴上的射影为,,动点的轨迹为C,直线与轨迹交于,两点,直线,分别与轴交于点,.(Ⅰ)求轨迹的方程;(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.(本小题满分12分)已知函数 .(Ⅰ)时,求的单调区间和极值;(Ⅱ)时,求的单调区间( III )当时,若存在,使不等式成立,求的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲.已知在三角形ABC中, AB=AC. 以 AB 为直径的圆O 交 BC 于 D ,过 D 点作 O 的切线交AC 于 E .求证:(Ⅰ) DE垂直于AC(Ⅱ) BD2=CE ·CA23.(本小题满分10分)选修4—4:坐标系与参数方程.已知直线为参数), 曲线(为参数).(Ⅰ)设与相交于两点,求;(Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线 ,设点是曲线上的一个动点,求它到直线的距离的最小值.24.(本小题满分10分)选修4—5:不等式选讲.设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意,不等式的解集为空集,求实数的取值范围.1. 【分析】本题主要考查了交集的运算,首先化简两个集合,再利用补集与交集的运算法则计算出结果.【解答】解:由题意得:A={y|2≤y≤4},B={x|3≤x≤4}.则={x|2≤x<3}.故选A.2. 【分析】本题主要考查了复数的运算,首先利用复数的运算法则把z化简为最简结果,再利用求模公式计算出结果. 【解答】解:.故答案为B.3. 【分析】本题主要考查了线性规划的基本运算,由直线交点计算出结果即可.【解答】解:的最小值,即求2x+y的最小值,当取点时为最小值,平移直线y=-2x到(1,1)时取得最小值为2x+y=2+1=3,即最小值=8.故选C.4. 【分析】本题主要考查了定积分的运算和数列的知识,首先由定积分的知识求出f(x)的函数关系式,再利用数列的前n项和与通项公式之间的关系求解.【解答】解:∵f( x)= =,∴当n=1时,.当n≥2时,.当n=1时不符合上式.则.故选D.5. 【分析】本题主要考查了直线与圆的位置关系,利用基本不等式求出当圆心到直线的距离为1时,三角形的面积最大,从而利用点到直线的距离求解.解:由题意可知直线l的斜率一定存在,设直线l的方程为y=k(x-2).则圆心到直线l的距离d=.S=.当且仅当,即时取等号.∴=1.解得:k=.故选C.6. 【分析】不同主要考查了组合的应用.把给出的问题分为两类:其中一位同学得到两本小说,其中一位同学得到1本小说和1本诗集,进而解答此题.【解答】解:因为没命同学至少1本书,则一定有两个同学得到两本书,这两本书可能是2本小说,也可能是1本小说和1本诗集,则不同的分法为.故选D.7. 【分析】本题主要考查了命题的真假的判定. ①用否命题的定义进行判定;②根据特称命题的否定是全称命题进行判定;③在由三角形的性质进行判定;④由幂函数的性质进行判定.【解答】解:①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)不是周期函数,则f (x)不是三角函数”,故①错误;②命题“”的否定是“对于任意x∈R,x2-x-1≥0”,故②正确;③在△ABC中,“sinA>sin B”等价为a>b,等价为“A>B”,则,“sinA>sin B”是“A>B”成立的充要条件,故③正确.④当时,幂函数在区间上单调递减,是正确的.则正确命题的个数为3.故选C.8. 【分析】本题主要考查了程序框图与算法的循环结构,由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:第一次执行循环体,S=1,不满足退出循环的条件,i=3;第二次执行循环体,S=4,不满足退出循环的条件,i=5;第三次执行循环体,S=9,不满足退出循环的条件,i=7;…第n次执行循环体,S=n2,不满足退出循环的条件,i=2n+1;…第1008次执行循环体,S=10082,不满足退出循环的条件,i=2017;第1009次执行循环体,S=10092,满足退出循环的条件,故输出的S值为:10092故选C.9. 【分析】本题主要考查的是三角函数的图像与性质.利用已知的等式确定出的一条对称轴.从而利用“左加右减,上加下减”的平移规律,以及偶函数的定义进行解答.【解答】解:由条件可知,即的一条对称轴.又是由向左平移个单位得到的,所以关于对称,即为偶函数.应选D.10. 【分析】本题主要考查了函数的零点的知识,分析已知的条件,把方程的零点的问题转化为两个函数的交点的问题,从而求出a的取值范围.【解答】解:∵只有一个零点,∴方程只有一个根,∴函数y=f(x)与y=x+a的图象只有一个交点,函数图象如下所示:由图象可知 .故选B.11. 【分析】本题主要考查了由三视图由体积的知识.由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,分别求出相应的体积,相减可得答案.【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,故选C.12. 【分析】本题主要考查了向量以及数列的知识.由向量的运算法则得出,证明{a n+1}是以2为首项,3为公比的等比数列,即可得出结论.【解答】故选D.13本题主要考查了导数的应用.利用导数确定出函数的单调区间,进而求出最大值.【解答】解:∵,∴y′=1-2sinx.所以,故答案为.14【解答】故答案为10.15可得,从而求出线段AB的中点到直线的距离. 【解答】解:故答案为.16【解答】解:故答案为.17. 解:(Ⅰ)由题设及正弦定理知,,即.由余弦定理知,,在上单调递减,的最大值.(2)根据题意:利用余弦定理又因为D是AC的中点,所以AD等于,所以18. 解:(Ⅰ)设区间内的频率为,则区间,内的频率分别为和依题意得解得.所以区间内的频率为.(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以服从二项分布,其中.由(Ⅰ)得,区间内的频率为,将频率视为概率得因为的所有可能取值为0,1,2,3,且,,,.所以的分布列为:所以的数学期望为.19. 证明:(1)取AB的中点F连接DP、PF、EF,则FP∥AC,.取AC的中点M,连接EM、EC,∵AE=AC且∠EAC=60°,∴△EAC是正三角形,∴EM⊥AC.∴四边形EMCD为矩形,∴.∴ED∥FP且ED=FP,四边形EFPD是平行四边形.∴DP∥EF,而EF⊂平面EAB,DP⊄平面EAB,∴DP∥平面EAB.(2)过B作AC的平行线l,过C作l的垂线交l于G,连接DG,∵ED∥AC,∴ED∥l,l是平面EBD与平面ABC所成二面角的棱.∵平面EAC⊥平面ABC,DC⊥AC,∴DC⊥平面ABC,又∵l⊂平面ABC,∴l⊥平面DGC,∴l⊥DG,∴∠DGC是所求二面角的平面角.20. 解:(Ⅰ)设, ∴,∵.∴∵P在上,∴所以轨迹的方程为.(Ⅱ)因为点的坐标为因为直线与轨迹C于两点,,设点(不妨设),则点.联立方程组消去得.所以,则.所以直线的方程为.因为直线,分别与轴交于点,,令得,即点.同理可得点.所以.设的中点为,则点的坐标为.则以为直径的圆的方程为,即.令,得,即或.故以为直径的圆经过两定点,.21. 解:(Ⅰ)时,令解得,当时,当时,所以的单调递减区间是,单调递增区间是;所以的极小值是,无极大值;( II )① 当时,,令解得:,或.令解得:,所以当时,的单调递减区间是,,单调递增区间是;② 当时,,在上单调递减;③ 当时,,令解得:,或令解得:,所以当时,的单调递减区间是,,单调递增区间是;( III )由( II )知,当时,在上单调递减.所以,因为存在,使不等式成立,所以,即整理得,因为,所以所以,所以,的取值范围是.22. 证明:(1)连接OD、AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC,DE⊥AC.(II)由(I)得D为BC中点,所以.所以.有得.23. 解:(I)的普通方程为的普通方程为联立方程组解得与的交点为, ,则.(II)的参数方程为为参数).故点的坐标是,从而点到直线的距离是, 由此当时, 取得最小值,且最小值为.24. 解:(Ⅰ)当时,等价于.①当时,不等式化为,无解;②当时,不等式化为,解得;③当时,不等式化为,解得.综上所述,不等式的解集为.(Ⅱ)因为不等式的解集为空集,所以因为,当且仅当时取等号.所以.因为对任意,不等式的解集为空集,所以令,所以.当且仅当,即时等号成立所以.所以的取值范围为.高考模拟数学试卷一、单选题(每小题5分,共50分) 1.已知集合{})3(log 2-==x y x P ,{}2-==x y y Q ,则下列选项正确的是( )A. Q P =B. ∅=Q P IC. P QD. Q P2.已知)(x f 的图像在[]b a ,上连续,则“0)()(<⋅b f a f ”是“)(x f 在()b a ,内有零点”的( )条件。

【20套试卷合集】四川省天府教育大联考2019-2020学年数学高二上期中模拟试卷含答案

【20套试卷合集】四川省天府教育大联考2019-2020学年数学高二上期中模拟试卷含答案

2019-2020学年高二上数学期中模拟试卷含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.) 1.“ 2x >”是“24x >”的 A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件2.若0a b >>,则下列不等式成立的是A .2a ba b +>>>B .2a ba b +>>>C .2a ba b +>>>D .2a ba b +>>>3.在ABC ∆中, 已知060,34,4===B b a ,则角A 的度数为A .030B .045C .060D .01504.等比数列}{n a 中,首项81=a ,公比21=q ,那么}{n a 前5项和5S 的值是 A .231 B .233 C .235 D .2375.命题“若1=x ,则0232=+-x x ”以及它的逆命题,否命题和逆否命题中,真命题的个数是 A .0B .2C .3D .46.已知129,,,1a a --成等差数列,3129,,,1b b b --成等比数列,则221()b a a -= A .8B .-8C .±8D .987.某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东30,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为 A .500米B .600米C .700米D .800米8.“a 和b 都不是偶数”的否定形式是 A .a 和b 至少有一个是偶数 B .a 和b 至多有一个是偶数 C .a 是偶数,b 不是偶数D .a 和b 都是偶数9.若△ABC 的三个内角满足sinA :sinB :sinC =5:11:13,则△ABC A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形10.数列{}n a ,通项公式为2n a n an =+,若此数列为递增数列,则a 的取值范围是A .2a ≥-B .3a >-C .2a ≤-D .0a <11.已知等比数列{}n a 中,21a =,则其前3项的和3S 的取值范围是A .[3,)+∞B .[1,)+∞C .(,1][3,)-∞-+∞D .(,2][2,)-∞-+∞ 12.在△ABC 中,,,a b c 满足222b c bc a +-=;12c b =则tan B 的值是 A .12BC1D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.设实数x 、y 满足⎪⎩⎪⎨⎧≤--≥-≥02020y x y x x ,则y x +2的最小值为__________ -14.等差数列{}n a 中,3612,3a a ==, 则使前n 项和n S 最大的n 值为_______ 15.在锐角△ABC 中, A =2B , 则ab的取值范围是______________ 16.在数列{}n a 中,如果存在非零的常数T ,使n T n a a +=对于任意正整数n 均成立,就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.已知数列{}n x 满足21||()n n n x x x x N *++=-∈,若121, (1,0)x x a a a ==≤≠,当数列{}n x 的周期为3时,则数列{}n x 的前2012项的和为_____________三、解答题(本大题共6小题,共70分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 17.(本题满分10分)在ABC ∆中,︒===60,2,3A b a ,求cos B 及c 的值.18.(本题满分12分)设命题p 实数x 满足2430x x -+<, 命题q 实数x 满足2260280x x x x ⎧⎪⎨⎪⎩--≤+->.当q p ∧为真,求实数x 的取值范围;19.(本题满分12分)美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足123+-=x P ,已知生产该产品还需投入成本P 210+万元(不含促销费用),每件产品的销售价格定为P204+元. (Ⅰ)将该产品的利润y 万元表示为促销费用x 万元的函数(利润=总售价-成本-促销费); (Ⅱ)促销费用投入多少万元时,厂家的利润最大.20.(本题满分12分)设}{n a 是等差数列,}{n b 是各项都为正数的等比数列,且111==b a ,2153=+b a ,1335=+b a . (1)求}{n a ,}{n b 的通项公式; (2)求数列}{nnb a 的前n 项和.21.(本题满分12分)已知60A ∠=︒,P 、Q 分别是A ∠两边上的动点. (1)当1AP =,3AQ =时,求PQ 的长;(2)AP 、AQ 长度之和为定值4,求线段PQ 最小值.22.已知数列{}n a 的前n 项和为,n S 且(1)(1)(0)()n n a S a a a n -=->∈*N .(1)求证数列{}n a 是等比数列,并求其通项公式n a ;(2)已知集合2{(1)},A x x a a x =+≤+|问是否存在实数a ,使得对于任意的,n ∈*N 都有n S A ∈? 若存在,求出a 的取值范围;若不存在,说明理由.2019-2020学年高二上数学期中模拟试卷含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求) 1.设p :1x >,q :21x >,则是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在等比数列}{n a 中,,8,1641=-=a a 则=7aA .4-B .4±C .2-D .2±3.若1a <1b <0,已知下列不等式:①a +b <ab ; ②|a |>|b |; ③a <b ;④b a +ab>2; ⑤a 2>b 2其中正确的不等式个数是 A .1B .2C .3D .44.已知数列{}n a 满足10a =,12n n n a a +=+,那么10a 的值是A .110B .100C .90D .725.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是A .锐角三角形B .直角三角形C .钝角三角形D .都有可能6.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是A .,sin 1x R x ∃∈≤B .,sin 1x R x ∀∈≥C .,sin 1x R x ∃∈>D .,sin 1x R x ∀∈>7.在△ABC 中,AB =5,BC =7,AC =8,则AB BC ⋅的值为A .79B .69C .5D .5-8.如图所示,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为 A .(15+33)m B .(30+153)m C .(30+303)m D .(15+303)m9.设{}n a 是单调递增的等差数列,前三项和为12,前三项积为48,则它的首项是A .1B .2C .2±D .410.设0,0.a b >>若3是9a 与27b 的等比中项,则32a b+的最小值为 A .12B .24C .25D .3611.各项为正数的等比数列{}n a 的公比1q ≠,且2a ,321a ,1a 成等差数列,则3445a a a a ++值是A.12B.12C.12 D.12或1212.不等式2280x ax --<对于一切[1,1]a ∈-都成立,则x 的范围是A .(4,4)-B .(4,2)-C .(2,4)-D .(2,2)-第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.x 、y 满足约束条件:225040y x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,则y x z +=21的最小值是________.14.递减等差数列{a n }的前n 项和S n 满足S 5=S 10,则欲使S n 最大,则n =______.15.两个命题P :“对任意实数x 都有012>++ax ax 恒成立”;Q :“关于x 的方程02=+-a x x 有实数根”,如果P Q ∨为真命题,P Q ∧为假命题,则实数a 的取值范围是________________. 16.在锐角ABC ∆中,1,2,BC B A ==则AC 的取值范围是_____________.三、解答题(本大题共6小题,共70分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 17.(本题满分10分)在△ABC 中,已知3=a ,2=b ,B =45︒,求A 、C 及c .18.(本题满分12分)已知{}n a 为等差数列,且36a =-,60a =.(1)求{}n a 的通项公式;(2)若等差数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和.19.(本题满分12分)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+4x -5<0的解集为B , (1)求A ∪B ;(2)若不等式x 2+ax +b <0的解集是A ∪B ,求ax 2+x +b <0的解集.20.(本题满分12分)一批救灾物资随26辆汽车从某市以x km /h 的速度匀速开往相距400 km 的灾区.为安全起见,每两辆汽车的前后间距不得小于2()20x km ,车速不能超过100km /h ,设从第一辆汽车出发开始到最后一辆汽车到达为止这段时间为运输时间,问运输时间最少需要多少小时?21.(本题满分12分)设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1. (1)求数列{a n }和{b n }的通项公式; (2)设c n =a nb n,求数列{c n }的前n 项和T n .22.(本题满分12分)在△ABC中,a、b、c分别是角A、B、C所对的边,且acosB+bcosA=1.(1)求c;-,求⋅的最大值.(2)若tan(A+B)=32019-2020学年高二上数学期中模拟试卷含答案试题(文)答案1.B 2.C 3.B 4.C 5.C 6.A 7.C 8.A 9.B 10.D 11.A 12.D 13.a n =⎩⎨⎧≥-=2,161,4n n n14.3或325 15.1 16.717.解:已知命题p1≤x ≤5 命题 q m -1≤x ≤m +1∵⌝p 是⌝q 的充分而不必要条件∴⌝p ⇒⌝q ⌝p 不能推出⌝q ∴q ⇒p 且p 不能推出q ∴m -1≥1 且m +1≤5 ∴m ≥2且m ≤4 ∴2≤m ≤4 18.解(1)由已知得,当1≥n 时,()()()112111a a a a a a a a n n n n n +-++-+-=-++ =3()24244411-=+++++-n n n ,又21=a ,∴24-=n n a(2)由)24(-⋅==nn n n na b知,)21(2443424132n n S nn ++-⋅++⋅+⋅+⋅=,设=n T n n 443424132⋅++⋅+⋅+⋅∴143244342414+⋅+⋅+⋅+⋅=n n n T , ∴()1324444441+⋅-++++=-n n n n T ,∴()[]4413911+⋅-=+n n n T , =∴n s ()[])1(4413911+-+⋅-+n n n n19.设各处大房间x 间,小房间y 间时,收益为z 元,则x ,y 满足⎪⎩⎪⎨⎧∈≥≥≤+≤+N y x y x y x y x .,0,080060010001801518, 且目标函数z =200x +150y , 作出可行域如图, 作直线0l x y 34-=,把直线向右上方平移至l 的位置时,直线经过可行域上的一点A 且在y 轴上的截距最大,此时z =200+150y 取最大值. 解方程组⎩⎨⎧=+=+40356056y x y x 得A )760,720(,又∵N y x ∈,,当x =0时,y =12;当x =1时y =332;当x =2时,y=8;当x =3时,y =320, 所以最优解为(0.12)和(3,8),这时z 取最大值1800元答:隔出小房间12间,或大房间3间,小房间8间,均可获得最大收益. 20.解:(1)椭圆方程为:1121622=+y x (2)设p (x ,y )(-4≤x ≤4)则MP 2=(x -m )2+y 2又∵1121622=+y x ∴y 2=12(1-162x )∴MP 2=(x -m )2+12(1-162x )=41x 2-2mx +m 2+12∵x =4时MP 2取最小值∴4m ≥4 ∴m ≥121.解:(1)当n =1时,有2131a a =,∵0>a n ,∴1a =1当n =2时,有3231a a +=()221a a +,将1a =1代入上式,且0>a n ,解得 2a =2(2)由于33231n a a a +++ =()221n a a a +++ ①,则有3133231+++++n n a a a a =()2121+++++n n a a a a ②,②-①得31+n a =()2121+++++n n a a a a -()221n a a a +++ ,由于0>a n ,∴21+n a =()221n a a a +++ +1+n a ③,同理有2n a =()2121-+++n a a a +n a ()2≥n ④, ③-④得21+n a -2n a =1+n a +n a ,∴1+n a -n a =1,由于2a -1a =1,即当n =1时,也有1+n a -n a =1, ∴数列{}n a 是首项为1,公差为1的等差数列. 故n a n =(*N n ∈). (3)由(2)知, n a n =,则21+n n a a =()11+n n =⎪⎭⎫ ⎝⎛+-21121n n ,∴n S =311a a +421a a +531a a +…+111+-n n a a +21+n n a a =⎪⎭⎫ ⎝⎛-31121+⎪⎭⎫ ⎝⎛-412121+⎪⎭⎫⎝⎛-513121+…+⎪⎭⎫ ⎝⎛+--111121n n +⎪⎭⎫ ⎝⎛+-21121n n =⎪⎭⎫ ⎝⎛+----111121121n n =⎪⎭⎫⎝⎛+---11112143n n ,∵1+n S -n S =()()311++n n >0, ∴数列{}n S 为单调递增数列, ∴()311min ==S S n ,要使不等式n S >()a a -1log 31对任意正整数n 恒成立,只要31>()a a -1log 31.∵1-a >0, a >0, ∴0<a <1, 1-a >a , 即0<a <21,∴实数a 的取值范围是⎪⎭⎫⎝⎛21,0. 22.解(1)∵f (x )-x =0的两根是α、β∴f (x )-x =a (x -α)(x -β)若x ∈(0, α)则x -α<0 又因为α<β∴x -β<0 ∴当a >0时 f (x )-x >0∵f (x )- α= a (x -α)(x -β)+x -α=(x -α)(ax -a β+1)∵0<α<β<a1∴1-a β>0 又∵x ∈(0, α)∴x -α<0 ax -a β+1>0 ∴f (x )- α<0 ∴f (x )<α ∴当x ∈(0, α)时,x <f (x )<α (2)∵f (x )=ax 2+bx +c 的对称轴为x =-ab 2 ∴x 0=-a b 2 欲证x 0<2α只需证 -α a b∵-a b =α+β-a1、β是f (x )-x =ax 2+(b -1)x +c =0的两根∴α+β=-ab 1-∴-a b =α+β-a 1 ∵0<β<a 1 ∴β-a 1<0 ∴-a b =α+β-a1<α∴此题得证(3)略解, m =92019-2020学年高二上数学期中模拟试卷含答案本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上.2.选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁和平整.第一部分选择题(共 50 分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}Z k k x x N x x M ∈+==≤<=,12,30,则图中阴影部分表示的集合是 A .φB .{}1 C .{}3,1D .{}3,1,02.“0=x ”是“0=xy ”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件3.下列对一组数据的分析,不正确的说法是A .数据标准差越小,样本数据分布越集中、稳定.B .数据平均数越小,样本数据分布越集中、稳定C .数据极差越小,样本数据分布越集中、稳定D .数据方差越小,样本数据分布越集中、稳定 4.已知向量),,2(t a = 满足5=a,则实数t 值是A .1-或1B .1-C .33或-D .21-或215.命题:p x y =在R 上是增函数;命题:q 若x x f 2log )(=,则有:)()()(y f x f y x f +=⋅A .真q p ∧B .假p ⌝C .真q ⌝D .真q p ∨6.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为3的等腰三角形,侧视图(或称左视图)是一个底边长为4、高为3的等腰三角形.则该儿何体的侧面积为 A .13820+ B .13410+ C .36D .607.执行右边的程序框图,若4p =,则输出的S =A .1631 B .87 C .3231D .16158.当42<<x ,则 22,log ,2x x x的大小关系是A .xx x 2log 22>> B .22log 2x x x>> C .x x x22log 2>> D .x x x22log 2>>9.已知点()1,0A ,直线l :24y x =-,点R 是直线l 上的一点,若RA AP =,则点P 的轨迹方程为 A .2y x =- B .2y x = C .28y x =-D .24y x =+10.若对任意实数x ,022sin 2cos 2<--+k x k x 恒成立,则实数k 的取值范围是A .2121+<<-kB .21->kC .121≤<-kD .1->k第二部分非选择题(共100分)二、填空题:本大题共4小题, 每小题5分, 共20分.把答案填在答卷的相应位置.11.已知椭圆1162522=+y x ,则椭圆的焦点坐标是 ____ 12.数列{}n a 是等差数列,27=a ,则前13项和=13S______13.设y x , 满足约束条件,0,00132013⎪⎩⎪⎨⎧≥≥≤--≥+-y x y x y x 若目标函数()0,0>>+=b a by ax z 的最大值为1,则正数b a ,满足的关系是_________,ba 21+的最小值是______ 14.定义在),(+∞-∞上的偶函数)(x f 满足:)()2(x f x f -=+,且在[]0,2-上是增函数,下面是关于)(x f 的判断: (1))(x f 是周期函数; (2))(x f 在[]2,0上是增函数; (3))(x f 在[]4,2上是减函数; (4))(x f 的图象关于直线2=x 对称.则正确的命题序号是____________三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分12分)ABC ∆的面积是,4角C B A ,,的对边分别是c b a ,,,53cos ,2==A b (1)求212cos 2cos2++A A 的值; (2)分别求a c ,的值.16.(本题满分12分)甲、乙、丙、丁四名广交会志愿者分在同一组.广交会期间,该组每天提供上午或下午共两个时间段的服务,每个时间段需且仅需一名志愿者.(1)如果每位志愿者每天仅提供一个时间段的服务,求甲、乙两人在同一天服务的概率; (2)如果每位志愿者每天可以提供上午或下午的服务,求甲、乙两人在同一天服务的概率.17.(本题满分14分)如图所示,四棱锥ABCD P -中,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是菱形,60B =∠AD ,E 为PC 的中点,(1)求证:PA ∥平面BDE ; (2)求证:AD PB ⊥;(3)(文科)求三棱锥PDB C -的体积.(3)(理科) 求直线PC 与平面ABCD 所成角的正切值.18.(本题满分14分)已知数列{}n a 的前n 项和n S 和通项n a 满足()*N 2121∈-=n a S n n . (1)求数列{}n a 的通项公式;(2)设n n a n c ⋅=,求数列{}n c 的前n 项和n T ,并证明43<n T .19.(本题满分14分)已知圆:C ()()42122=-++y x(1)若直线l :)2(-=x k y 与圆C 有公共点,求直线l 的斜率k 的取值范围; (2)(文科)若过)0,2(的直线m 被圆C 截得的弦长为14,求直线m 的方程;(2)(理科)若斜率为1的直线m 被圆C 截得的弦AB 满足OB OA ⊥(O 是坐标原点),求直线m 的方程.20.(本题满分14分)已知函数12)(2-+-=a x ax x f ,R ∈a(1)若函数)(x f 满足)1()1(x f x f +=-,求实数a 的值;(2)若函数)(x f 在区间⎥⎦⎤⎢⎣⎡2,21上总是单调函数,求实数a 的取值范围;(3)若函数)(x f 在区间⎥⎦⎤⎢⎣⎡2,21上有零点,求实数a 的取值范围.2019-2020学年高二上数学期中模拟试卷含答案时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分) 1.若0<<b a ,则下列不等式中不成立的是( )A .ba 11> B .ab a 11>- C .||||b a >D .1<ab2.设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1, 37S =,则5S =( )A .152 B .314 C .334D .1723.不等式1213≥--x x 的解集是( )A .}243|{≤≤x xB .}432|{≤>x x x 或 C .}243|{<≤x xD .}43|{≥x x4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+ b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真5.若数列}{n a 的通项公式是1210(1)(32),nn a n a a a =-⋅-+++=则 ( )A .15B .12C .-12D .-156.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( )A .12 B .32C .52D .17.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9 A .99B .96C .98D .978.“a +c >b +d ”是“a >b 且c >d ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件9.正项等比数列{a n }与等差数列{b n }满足7711,b a b a ==且71a a ≠,则4a ,4b 的大小关系为( )A .4a =4bB .4a <4bC .4a >4bD .不确定10.已知函数f (x )=x 9x 3m ⋅-+m +1对x ∈(0,∞+)的图象恒在x 轴上方,则m 的取值范围是( ) A .2-22<m <2+22 B .m <2 C .m <2+22D .m ≥2+2211.若实数x 、y 满足22030x y y ax y a +-≥⎧⎪≤⎨⎪--≤⎩且22x y +的最大值等于34,则正实数a 的值等于( )A .35B .34C .53D .4312.用两种金属材料做一个矩形框架,按要求长(较长的边)和宽选用的金属材料的价格分别为3元/米和5元/米,且长和宽必须是整数米,现预算花费不超过100元,则做成矩形框架围成的最大面积是( ) A .40米2B .30米2C .20米2D .35米2二、填空题(本大题共4小题,每小题5分,共20分)13.等差数列{}n a 中,123n n n a a a --++=,18n S =,31S =,则n =________; 14.已知xx y x 432,0--=>函数的最大值是________________. 15.命题:∀x ∈R ,x >0的否定是__________________. 16.若不等式23+>ax x 的解集是(4,m ),则a =________,m =________. 三、解答题(本大题共6小题,17题10分18,19,20,21,22各12分.共70分) 17.命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,命题q :实数x 满足x 2-x -6≤0或x 2+2x -8>0, 且⌝p 是⌝q 的必要不充分条件,求a 的取值范围.18.已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .19.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?20.设数列{a n }的前n 项和为S n ,a 1=1,S n =na n -2n (n -1).(1)求数列{a n }的通项公式a n ;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:15≤T n <14.21.解关于x 的不等式22(1)40ax a x -++>22.设数列{a n}的前项n和为S n,若对于任意的正整数n都有S n=2a n-3n.(1)设b n=a n+3,求证:数列{b n}是等比数列,并求出{a n}的通项公式.(2)求数列{na n}的前n项和.2019-2020学年高二上数学期中模拟试卷含答案A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1) 2、已知命题p :0x ∀>,44x x+≥;命题q :0x R ∃∈,021x =-.则下列判断正确的是( ) A .p 是假命题 B .q 是真命题 C .()p q ∧⌝是真命题 D .()p q ⌝∧是真命题 3、已知条件p :1x >,q :11x<,则p q 是的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4、设定点M 1(0,-3),M 2(0,3),动点P 满足条件|P M 1|+|PM 2|=a +a9(其中a 是正常数),则点P 的轨迹是( )A .椭圆B .线段C .椭圆或线段D .不存在5、已知,x y 是正数,且满足224x y <+<.那么22x y +的取值范围是( )A 416(,)55 B 4(,16)5 C (1,16) D 16(,4)56、如图,E 、F 分别是三棱锥P-ABC 的棱AP 、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为( ) A. 90°B. 60°C. 45°D. 30°7、ABC ∆的内角,,A B C 的对边分别是a ,b ,c ,若2B A =,1a =,则c =( )A C .2 D .18、已知各项不为0的等差数列{}n a 满足2478230a a a -+=,数列{}n b 是等比数列,且77b a =,则2811b b b 等于( )A .1B .2C .4D .89、在如图所示的空间直角坐标系xyz O -中,一四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②10、已知ABC ∆中,D BC 是边的中点,过点D 的直线分别交直线AB 、AC 于点E 、F ,若AE AB λ=,AF AC μ=,其中0,0λμ>>,则λμ的最小值是( )A .1B .12C .13D .1411、设F 1,F 2分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,与直线y b =相切的2F 交椭圆于点E ,且E是直线EF 1与2F 的切点,则椭圆的离心率为( )A B .C D 12、设1a >,定义111()122f n n n n=+++++,如果对任意的*n N ∈且2n ≥,不等式()1127log 77log a a f n b b ++>+恒成立,则实数b 的取值范围是( )A . 292,17⎛⎫ ⎪⎝⎭B . ()0,1C . ()0,4D .()1,+∞ 二、填空题:本大题共4小题,每小题5分.1314、椭圆221(0)9x y b b+=>的焦距为2,则实数b 的值为 15、已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围是 .16、不等式2215(2x 3)2x 9log x x -->--的解集为_____________ 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17、(本小题满分10分)已知非空集合203x A xx ⎧-⎫=<⎨⎬-⎩⎭,()(){}220B x x m x m =---<. (1)当12m =时,求A B ⋂; (2)命题:p x A ∈,命题:q x B ∈,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.18、(本小题满分12分)已知函数b x a x x f lg )2(lg )(2+++=满足2)1(-=-f 且对于任意R x ∈, 恒有x x f 2)(≥成立.(1)求实数b a ,的值; (2)解不等式5)(+<x x f .19、(本小题满分12分)已知向量(sin ,2cos )a x x ωω=,(cos ,cos )3b x x ωω=-(0)ω>,函数()(3)1f x a b a =+-,且函数()f x 的最小正周期为2π。

四川省成都市2019-2020学年高考数学仿真第四次备考试题含解析

四川省成都市2019-2020学年高考数学仿真第四次备考试题含解析

四川省成都市2019-2020学年高考数学仿真第四次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行 D .三棱锥1F ABD -的体积为定值【答案】C 【解析】 【分析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断. 【详解】对于A ,设平面1AD E 与直线BC 交于点G ,连接AG 、EG ,则G 为BC 的中点 分别取1B B 、11B C 的中点M 、N ,连接AM 、MN 、AN ,11//A M D E Q ,1A M ⊂/平面1D AE ,1D E ⊂平面1D AE , 1//A M ∴平面1D AE .同理可得//MN 平面1D AE , 1A M Q 、MN 是平面1A MN 内的相交直线∴平面1//A MN 平面1D AE ,由此结合1//A F 平面1D AE ,可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上上的动点.A ∴正确.对于B ,Q 平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,1A F ∴与BE 是异面直线,B ∴正确.对于C ,由A 知,平面1//A MN 平面1D AE , 1A F ∴与1D E 不可能平行,C ∴错误.对于D ,因为//MN EG ,则F 到平面1AD E 的距离是定值,三棱锥1F AD E -的体积为定值,所以D 正确; 故选:C . 【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.2.若复数z 满足i 2i z -=,则z =( )A BC .2D 【答案】D 【解析】 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算. 【详解】解:由题意知,i 2i z =+,()22212121i i i iz i i i ++-+∴====--,∴12i z =-== 故选:D. 【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.3.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ). A .50,3A B ⎛⎫= ⎪⎝⎭I B .10,3A B ⎛⎤= ⎥⎝⎦I C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭D .(0,)A B =+∞U【答案】D 【解析】 【分析】根据题意,求出集合A ,进而求出集合A B U 和A B I ,分析选项即可得到答案. 【详解】根据题意,{}215|log (31)2|33B x x x x ⎧⎫=-<=<<⎨⎬⎩⎭则15(0,),,33A B A B ⎛⎫⋃=+∞⋂= ⎪⎝⎭故选:D 【点睛】此题考查集合的交并集运算,属于简单题目, 4.已知集合(){}lg 2A x y x ==-,集合1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =I ( ) A .{}2x x >- B .{}22x x -<<C .{}22x x -≤<D .{}2x x <【答案】C 【解析】 【分析】求出集合的等价条件,利用交集的定义进行求解即可. 【详解】解:∵{}2A x x =<,{}22B x x =-≤≤, ∴{}22A B x x ⋂=-≤<, 故选:C. 【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题. 5.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=【答案】C 【解析】 【分析】判断出已知条件中双曲线C 的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项. 【详解】两条渐近线的夹角转化为双曲渐近线与x 轴的夹角时要分为两种情况.依题意,双曲渐近线与x 轴的夹角为30°或60°,双曲线C 的渐近线方程为3y x =±或y =.A 选项渐近线为3y x =±,B 选项渐近线为y =,C 选项渐近线为12y x =±,D 选项渐近线为y =.所以双曲线C 的方程不可能为221312y x -=.故选:C 【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.6.要得到函数2sin 2y x x =-的图像,只需把函数sin 22y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 【答案】A 【解析】 【分析】运用辅助角公式将两个函数公式进行变形得2sin 23y x π⎛⎫=--⎪⎝⎭以及2sin 23y x π⎛⎫=-⎪⎝⎭,按四个选项分别对2sin 23y x π⎛⎫=- ⎪⎝⎭变形,整理后与2sin 23y x π⎛⎫=--⎪⎝⎭对比,从而可选出正确答案. 【详解】 解:1sin 22sin 22sin 22sin 22233y x x x x x x ππ⎛⎫⎛⎫⎛⎫=-=-=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 222sin 2cos 22sin 2223y x x x x x π⎛⎫⎛⎫ ⎪ ⎪- ⎪⎝⎭⎝⎭===-. 对于A :可得2sin 22sin 22sin 22333y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:A. 【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.7.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A .2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B .2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C .2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D .2016年我国数字出版营收占新闻出版营收的比例未超过三分之一 【答案】C 【解析】 【分析】通过图表所给数据,逐个选项验证. 【详解】根据图示数据可知选项A 正确;对于选项B :1935.5238715720.9⨯=<,正确;对于选项C :16635.3 1.523595.8⨯>,故C 不正确;对于选项D :123595.878655720.93⨯≈>,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.8.设1k >,则关于,x y 的方程()22211k x y k -+=-所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线【答案】C 【解析】 【分析】根据条件,方程()22211k x y k -+=-.即222111y x k k -=-+,结合双曲线的标准方程的特征判断曲线的类型. 【详解】解:∵k >1,∴1+k>0,k 2-1>0,方程()22211k x y k -+=-,即222111y x k k -=-+,表示实轴在y 轴上的双曲线,故选C . 【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为222111y x k k -=-+是关键.9.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为 7816 6572 0802 6314 0702 4369 9728 0198 3204 92344935 820036234869 69387481A .08B .07C .02D .01【答案】D 【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力. 10.已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的部分图象如图所示,则38f π⎛⎫=⎪⎝⎭( )A 26-B .26+C 62-D 62+【答案】A 【解析】 【分析】先利用最高点纵坐标求出A ,再根据324123T ππ⎛⎫=-- ⎪⎝⎭求出周期,再将112,π⎛⎫⎪⎝⎭代入求出φ的值.最后将38π代入解析式即可. 【详解】由图象可知A =1,∵324123T ππ⎛⎫=-- ⎪⎝⎭,所以T =π,∴22Tπω==. ∴f (x )=sin (2x+φ),将112,π⎛⎫⎪⎝⎭代入得(6sin π+φ)=1,∴6π+φ22k k Z ππ=+∈,,结合0<φ2π<,∴φ3π=.∴()23f x sin x π⎛⎫=+⎪⎝⎭. ∴3384312f sin sin πππππ⎛⎫⎛⎫⎛⎫=+=+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin 1234sin πππ⎛⎫=-- ⎪⎝⎭34344sin cos cos sin ππππ⎛⎫=--=⎪⎝⎭. 故选:A. 【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题. 11.若1tan 2α=,则cos2=α( ) A .45-B .35- C .45D .35【答案】D 【解析】 【分析】直接利用二倍角余弦公式与弦化切即可得到结果. 【详解】 ∵1tan 2α=, ∴22222211cos sin 1tan 34cos21cos sin 1tan 514ααααααα---====+++, 故选D 【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.12.函数()y f x =()x R ∈在(]1∞-,上单调递减,且(1)f x +是偶函数,若(22)(2)f x f -> ,则x 的取值范围是( ) A .(2,+∞) B .(﹣∞,1)∪(2,+∞) C .(1,2) D .(﹣∞,1)【答案】B 【解析】 【分析】根据题意分析()f x 的图像关于直线1x =对称,即可得到()f x 的单调区间,利用对称性以及单调性即可得到x 的取值范围。

【附加15套高考模拟试卷】【天府高考】2020届全国高考大联考信息卷:数学(理)试卷(1)含答案

【附加15套高考模拟试卷】【天府高考】2020届全国高考大联考信息卷:数学(理)试卷(1)含答案

【天府高考】2020届全国高考大联考信息卷:数学(理)试卷(1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()f x 是定义在R 上的连续可导的函数,且满足当()0()0f x x f x x'≠+>时,,则函数 1()()g x f x x=+的零点个数为( ) A .0B .1C .2D .02或2.设正数,x y 满足,23x y x y >+=,则195x y x y+-+的最小值为( ) A .83B .3C .32 D .233.双曲线M 的焦点是1F ,2F ,若双曲线M 上存在点P ,使12PF F ∆是有一个内角为23π的等腰三角形,则M 的离心率是( )A .31+B .21+C .31+D .21+4.七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )A .516B .1132C .38 D .13325. “对任意的正整数n ,不等式()()lg 1lg 0an a n a a <+>都成立”的一个充分不必要条件是( )A .01a <<B .102a <<C .02a <<D .102a <<或1a >6.在复平面内,复数z a bi =+(),a R b R ∈∈对应向量OZ uuu r(O 为坐标原点),设OZ r =u u u r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦ ,由棣莫弗定理导出了复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,则5132⎛⎫+= ⎪ ⎪⎝⎭( )A.1322i-B.13i22--C.1322i+D.1322i-+7.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足111y xy xy≥-⎧⎪≥-⎨⎪≤⎩则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件8.已知集合2{|210,,}A x ax x a x=++=∈∈R R只有一个元素,则a的值为()A.0 B.1 C.0或1 D.—19.函数2πsin12()12xf xx x=-+的零点个数为()A.0B.1C.2D.410.函数()3sin(2)cos(2)(||)2f x x xπθθθ=+++<的图像向左平移12π个单位长度后得函数()g x的图像,若()g x的图像关于点(,0)6π对称,则()g x的单调递减区间是()A.7[2,2],1212k k k Zππππ++∈B.5[,],1212k k k Zππππ-++∈C.5[,],1212k k k Zππππ-++∈D.57[,],1212k k k Zππππ-++∈11.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.920π+B.926π+C.520π+D.526π+12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺二、填空题:本题共4小题,每小题5分,共20分。

四川省成都市2019-2020学年高考数学模拟试题含解析

四川省成都市2019-2020学年高考数学模拟试题含解析

四川省成都市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A 33263cmB 36463cmC 33223cmD 36423cm 【答案】B【解析】设折成的四棱锥的底面边长为a ,高为h ,则32h a =,故由题设可得12124222a a a +=⨯⇒=所以四棱锥的体积2313646=(42)423V =,应选答案B . 2.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( )A 10B .3C .3D .4【答案】A【解析】【分析】根据复数相等的特征,求出3a 和b ,再利用复数的模公式,即可得出结果.【详解】 因为3(21)ai b a i +=--,所以3,(21),b a a =⎧⎨--=⎩, 解得3,31,b a =⎧⎨=⎩ 则22|3|131310a bi i +=+=+=故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.3.已知向量a b (3,1),3)==r r ,则向量b r 在向量a r 方向上的投影为( )A.BC .1-D .1【答案】A【解析】【分析】 投影即为cos a b b aθ⋅⋅=r r r r ,利用数量积运算即可得到结论. 【详解】设向量a r 与向量b r 的夹角为θ,由题意,得31a b ⋅=+=-r r2a ==r,所以,向量b r 在向量a r方向上的投影为cos 2a b b aθ⋅-⋅===r r 故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.4.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( ) A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D【解析】【分析】 由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小;而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得 ()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅ 221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >,综上可知a c b >>,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.5.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21x f x =-,则()()20f f -+=( ) A .3-B .2C .3D .2- 【答案】A【解析】【分析】由奇函数定义求出(0)f 和(2)f -.【详解】 因为()f x 是定义在[]22-,上的奇函数,(0)0f ∴=.又当(]0,2x ∈时,()()()2()21,22213x f x f f =-∴-=-=--=-,()()203f f ∴-+=-.故选:A .【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键.6.已知非零向量a r ,b r 满足()a a ⊥r r ,()b b ⊥r r ,则a r 与b r 的夹角为( ) A .6π B .4π C .3π D .2π 【答案】B【解析】【分析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得a r 与b r 的夹角.【详解】根据平面向量数量积的垂直关系可得()20a a a b ⋅=-⋅=r r r r , ()20b b b b ⋅=⋅=r r r r ,所以22a b b ==⋅r r r ,即a b =r r ,由平面向量数量积定义可得2cos ,a b a b=⋅r r r r ,所以cos ,2a b =r r ,而[],0,a b π∈r r , 即a r 与b r 的夹角为4π. 故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.7.若i 为虚数单位,则复数22sincos 33z i ππ=-+,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】首先根据特殊角的三角函数值将复数化为12z i =-,求出z ,再利用复数的几何意义即可求解. 【详解】Q 221sin cos 332z i i ππ=-+=,122i z -∴=+,则z在复平面内对应的点的坐标为3,21⎛⎫- ⎪⎪⎝⎭,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.8.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为( )A.B.C.D.【答案】A【解析】【分析】设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积.【详解】如图,设三棱柱为,且,高.所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为.设球心为,则由球的几何知识得为直角三角形,且, 所以, 即球的半径为, 所以球的体积为.故选A .【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率.9.设,,a b R i ∈是虚数单位,则“复数z a bi =+为纯虚数”是“0ab =”的( )A .充要条件B .必要不充分条件C .既不充分也不必要条件D .充分不必要条件 【答案】D【解析】【分析】结合纯虚数的概念,可得0,0a b =≠,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数z a bi =+为纯虚数,则0,0a b =≠,所以0ab =,若0ab =,不妨设1,0a b ==,此时复数1z a bi =+=,不是纯虚数,所以“复数z a bi =+为纯虚数”是“0ab =”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.10.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A【解析】【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-. 故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题. 11.已知向量()1,2a =r ,()2,2b =-r ,(),1c λ=-r ,若()//2c a b +r r r ,则λ=( ) A .2-B .1-C .12-D .12【答案】A【解析】【分析】 根据向量坐标运算求得2a b +rr ,由平行关系构造方程可求得结果.【详解】()1,2a =r Q ,()2,2b =-r ()24,2a b ∴+=r r()//2c a b +r r r Q 24λ∴=-,解得:2λ=- 故选:A【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则12210x y x y -=.12.已知集合{}{}2|1,|31x A x x B x ==<…,则()R A B U ð=( )A .{|0}x x <B .{|01}x x 剟C .{|10}x x -<…D .{|1}x x -… 【答案】D【解析】【分析】先求出集合A ,B ,再求集合B 的补集,然后求()R A B U ð【详解】 {|11},{|0}A x x B x x =-=<剟,所以 (){|1}R A B x x =-U …ð.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 3 B.
C.
D.
二、填空题:本大题共 4 个小题,每小题 5 分,共 20 分.请把答案填在答题卷对应题号后的横线上.
13.在菱形 ABCD 中,=(1,2),=(-4, ),则 的值为__ __.
14.一个与球心距离为 的平面截球所得圆面面积为 ,则球的表面积为______
15.实数 x,y 满足
支持 保留 不支持
50 岁以下
800 450 200
50 岁以上(含 50 岁) 100 150 300
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取 个人,已知从持“不支持”态度的人中抽取了 25 人,求 的值;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取 5 人看成一个总体,从这 5 人中任意选取 2 人, 求至少有 1 人年龄在 50 岁以上的概率;
,动圆 与圆 和圆 均内切.
(Ⅱ)点
为轨迹 上点,且点 为第一象限点,过点 作两条直线与轨迹 交于 两点,直线
斜率互为相反数,则直线 斜率是否为定值,若是,求出定值,若不是,请说明理由.
21. (本小题满分 12 分)
设函数
,
垂直.
(Ⅰ)求 的值;
,已知曲线
在点
处的切线与直线
(Ⅱ)记函数
是否存在自然数 ,使得函数 在
关于 的不等式

(Ⅰ)当 恒成立?
时,解此不等式;(Ⅱ)设函数
文科数学
参考答案
一、选择题 CBBAB CBBCA CD
二、填空题
,当 为何值时,
13. __2__. 14.__12 ___15. 三、解答题
16. ACDE
17.解:(Ⅰ)∵ ∴ ∴函数的最小正周期为
……………………4 分 …………………… 5 分
(Ⅰ)求证: AC2=CQ·AB; (Ⅱ)若 AQ=2AP,AB=,BP=2,求 QD. 23.(本小题满分 10 分)选修 4-4:坐标系与参数方程
在极坐标系中,已知射线 C1:
,动圆 C2:
. (Ⅰ)求 C1,C2 的直角坐标方程; (Ⅱ)若射线 C1 与动圆 C2 相交于 M 与 N 两个不同,求 x0 的取值范围. 24.(本小题满分 10 分)选修 4-5:不等式选讲
(a<1),且
的最大值是最小值的 4 倍,则 a 的值是______
16.若函数
满足:在定义域 内存在实数 ,使得
则称函数 为“ 的饱和函数”.给出下列四个函数:
成立,




其中是“ 的饱和函数”的所有函数的序号为 三、解答题:共 70 分.解答应写出必要的文字说明、证明过程及演算步骤. 17.(本小题满分 12 分)
已知函数 (Ⅰ)求函数
,
,
的最小正周期和单调递增区间;


(Ⅱ)若
,求
的值.
梯形, 点,
18.(本小题满分 12 分)如图所示,已知四棱锥
中底面



,E 为线段 上一

(Ⅰ)求证:PA∥平面 EBD,
(Ⅱ)若
,求三棱锥
的体积.
19(本小题满分 12 分)
中央城市工作会议提到,"原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开,实 现内部道路公共化,解决交通布局问题。" 你家小区围墙要拆了,你怎么看?对此,新闻媒体进行了上调查,所有参与调查的人中,持“支持”“保留” 和“不支持”态度的人数如下表所示
(Ⅲ)在接受调查的人中,有 8 人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0, 8.2,把这 8 个人打出的分数看作一个总体,从中任取 1 个数,求该数与总体平均数之差的绝对值超过 0.6 的概率.
20.(本小题满分 12 分)
已知圆
,圆
(Ⅰ)求动圆圆心 的轨迹 的方程;
A.
B.
C.
D.
11.已知函数
对任意自变量 x 都有
是公差不为 0 的等差数列,且
A.0 B. 1008 C.2016 D.4032
,则
,且函数
在[1,+∞)上单调.若数列{an}
的前 2016 项之和为( )
12.在平面直角坐标系中,点 P 是直线

,过点 M 作圆
上一动点,点 F(1,0),点 Q 为 PF 的中点,点 M 满足 的切线,切点分别 A,B,则|AB|的最小值为( )
…2 分


)得


所以函数 单调递增区间为
(Ⅱ)由
,得

………………7 分
………………………9 分
……12 分 18.解:(Ⅰ)连结 AC,交 BD 于点 M,连结 EM.
高考模拟数学试卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符 合题目要求的.
1.若集合
,则
()
A.
B.
C.
D.
2.在区间 (A)
内任取一个数 ,则 大于 1 的概率为( )
(B)
(C)
(D)
3.设 A.2
,且 B.1
为正实数,则 ( )
C.0
在,求出 ,如果不存在,请说明理由;
内存在唯一零点?如果存
(Ⅲ)设函数
,求 的最大值.
选做题:请考生在第 22、23、24 三题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-1:几何证明选讲
已知 PQ 与圆 O 相切于点 A,直线 PBC 交圆于 B、C 两点,D 是圆上一点,且 AB∥DC ,DC 的延长线 交 PQ 于点 Q.
D.
4.“
”是“
”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5.已知各项不为 0 的等差数列 等于( )
满足
,数列 是等比数列,且
,则
A.
B.
C.
D.64
6.△ABC 中,内角 A、B、C 对 的面积为( )
A. B. C.
D.
7.抛物线
( <0)与双曲线
有一个相同的焦点,则动点( )的轨迹是(

A.椭圆的一部分 B.双曲线的一部分 C.抛物线的一部分 D.直线的一部分
8.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )
A.7 B.9 C.10 D.11
9.下列四个结论中正确个数的是:( )
①.设回归直线方程为
,当变量 x 增加一个单位时, 平均增加 3 个单位;
②.已知平面 和互不相同的三条直线
,若 、 是异面直线,

直;
③.过平面 的一条斜线(与平面相交不垂直的直线)有一个平面与平面 垂
④.如果
,且
,则 在 方向上的投影相等
A.1 个
B. 2 个
C.3 个
D.4 个
10.某个几何体的三视图如右图所示,则这个几何体的体积为( )
相关文档
最新文档