圆柱与圆锥 题型归纳

合集下载

圆锥圆柱体常考题型归纳

圆锥圆柱体常考题型归纳

圆锥圆柱体常考题型归纳
本文旨在归纳圆锥和圆柱体的常见考题类型,为学生提供备考参考。

1. 圆锥体的体积计算问题
求解圆锥体的体积是常考题类型之一。

一般来说,我们可以用以下公式计算圆锥体的体积:
V = (1/3) * π * r^2 * h
其中,V表示圆锥体的体积,r表示底面半径,h表示高。

2. 圆锥体的表面积计算问题
求解圆锥体的表面积也是常考题类型之一。

一般来说,我们可以用以下公式计算圆锥体的表面积:
S = π * r * (r + l)
其中,S表示圆锥体的表面积,r表示底面半径,l表示斜高。

3. 圆柱体的体积计算问题
求解圆柱体的体积也是常考题类型之一。

一般来说,我们可以用以下公式计算圆柱体的体积:
V = π * r^2 * h
其中,V表示圆柱体的体积,r表示底面半径,h表示高。

4. 圆柱体的表面积计算问题
求解圆柱体的表面积也是常考题类型之一。

一般来说,我们可以用以下公式计算圆柱体的表面积:
S = 2 * π * r^2 + 2 * π * r * h
其中,S表示圆柱体的表面积,r表示底面半径,h表示高。

5. 圆锥与圆柱体的比较问题
比较圆锥和圆柱体的体积或表面积的大小也是常考题类型之一。

学生需要利用已知条件,比较两者的大小关系,并给出合理的解释。

以上是圆锥和圆柱体的常见考题类型的归纳,希望对学生备考
有所帮助。

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。

【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。

2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。

长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。

3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。

3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。

考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。

最完整、最全的圆柱与圆锥题型、考点归纳

最完整、最全的圆柱与圆锥题型、考点归纳

圆柱圆锥常考题型归纳一、圆柱1. 圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。

3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22S R π=增。

b.竖切(过直径):切面是长方形(如果h=2R ,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4Rh4. 圆柱的侧面展开图:a. 沿着高展开,展开图形是长方形,如果2h R π=,展开图形为正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

c.无论如何展开都得不到梯形5、圆柱的相关计算公式:a .底面积:2=S R π底b .底面周长:2C d r ππ==c .侧面积:2S Rh π=侧d .表面积 :S=2S 底+S 侧 =222R Rh ππ+e .体积 : 2V R h π=考试常见题型:a. 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b. 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c. 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d. 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,e. 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的切割:a.横切:切面是圆b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S 增=2Rh4、圆锥的相关计算公式a. 底面积:2=S Rπ底b. 底面周长:2C d r ππ==c. 体积: 2/3V R h π=考试常见题型:a. 已知圆锥的底面积和高,求体积,底面周长b. 已知圆锥的底面周长和高,求圆锥的体积,底面积c. 已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。

练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。

1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。

(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。

六年级圆柱和圆锥题型归纳

六年级圆柱和圆锥题型归纳

六年级圆柱和圆锥的体积训练题型一:圆柱的体积:圆柱所占空间的大小把圆柱切开拼成一个长方体(如图),长方体的长= 圆柱底面周长的一半长方体的宽= 圆柱的半径长方体的高= 圆柱的高长方体的底面积= 圆柱的底面积圆柱切开拼成一个长方体后,增加的面积是长方体的两个侧面积(宽×高/ 半径×高)公式:圆柱的体积(容积)= 底面积×高,(V = Sh 或者V = лr²h )正方体、长方体、圆柱,半圆柱、底面是环形的柱体都通用的体积公式是:底面积×高体积和容积的区别:1. 求物体的体积是从该物体的外部来测量,而求容积却是从物体的内部来测量。

2. 一种物体有体积,可不一定有容积。

如果一种既有体积又有容积的物体,它的体积一定大于它的容积。

3. 体积的单位和容积的单位不同:1 立方米= 1000 立方分米= 1000000 立方厘米 1 立方米= 1000 立方分米 1 立方分米= 1000 立方厘米1 立方米=1000 升 1 立方分米=1 升 1 立方厘米=1 毫升练习:1.等底等高的圆柱体、正方体、长方体的体积相比较,()。

①正方体体积大②长方体体积大③圆柱体体积大④一样大2.圆柱体的底面半径扩大2 倍,它的侧面积扩大()倍,体积扩大()倍。

3.圆柱体的底面半径和高都扩大3 倍,它的侧面积扩大()倍,体积扩大()倍。

4.圆柱的高扩大4 倍,底面半径缩小4 倍,它的体积()。

5.如果圆柱体的侧面展开是一个边长为3. 14 分米的正方形,圆柱的体积是()立方分米。

6.0. 08 平方米=()平方分米 3 立方米5 立方分米=()立方米2. 6 立方分米=()升= ()毫升7.一个圆柱体的底面半径是4 米,高6 米,它的侧面积是()平方米,体积是()立方米。

8.一个圆柱的底面周长是31. 4 厘米,高10 厘米,它的表面积是()平方厘米,体积是()立方厘米。

9.一个圆柱体容器中盛满12. 56 升水,从容器里面量得高是4 分米,那么容器的底面积是()。

圆柱和圆锥知识点和题型

圆柱和圆锥知识点和题型

圆柱、圆锥基本知识点1、圆的周长:C=πd =2πr2、圆的面积:S=πr23、圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。

S 侧=Ch=πdh=2πrh逆推公式有:C=S 侧÷h h=S 侧÷C 4、圆柱的表面积:S表=S 侧+2S底4、圆柱的体积:V柱=Sh=πr2 h 逆推公式有:S= V柱÷h h=V柱÷S5、圆锥的体积:V锥=3 1 Sh逆推公式有:S= V锥×3 ÷h h=V锥×3÷S6、等底等高的情况下,圆柱体积是圆锥体积的3倍。

等底等高的情况下,圆锥体积是圆柱体积的1/3 等底等高的情况下,圆锥体积比圆柱体积少2 /3 等底等高的情况下,圆柱体积比圆锥体积多2倍7、等体积等高的圆柱和圆锥,圆锥底面积是圆柱底面积的3倍;等体积等底面积的圆柱和圆锥,圆锥的高是圆柱高的3倍。

8、圆柱的横切:切成n段,需要n-1次,增加2×(n-1)个底面积9、圆柱的纵切:切1次,增加2个长方形,长方形的长是底面的直径,宽是圆柱的高10、圆锥的纵切:切1次,增加2个三角形,三角形的底是圆锥的直径,三角形的高是圆锥的高11、把一个正方体削成一个最大的圆柱(或圆锥),正方体的棱长就是圆柱(或圆锥)的底面直径和高。

12、①熔铸(或铸成),体积不变。

②注水问题:上升的(或下降)的水的体积等于放入的的物体的体积。

(完全浸没)13、一个圆柱的侧面展开图是一个正方形,说明底面周长和高的比是1∶1,半径和高的比是1∶2π,直径和高的比是1∶π14、当侧面积一定时,越是细、长的圆柱体积越小,越是粗、矮的圆柱体积越大。

15、特殊的π值 1.52π=7.065 2.52π=19.62516、圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。

圆柱圆锥题型整理

圆柱圆锥题型整理

圆柱和圆锥题型总结一、瓶子正倒放不论是正放还是倒放,瓶子的容积不变,正放酒的高度加上倒放时空余部分的高度,就是瓶子的高度一个容积为2500ml的饮料瓶,当瓶子正放时瓶内的饮料高为16cm,把瓶盖拧紧倒立,无饮料的部分高为4cm,瓶中有饮料多少L?有一种酒瓶,容积为286立方厘米,当瓶口向上时,瓶内酒的高度是18厘米,当瓶口向下时,余下部分的高度是4厘米,瓶内酒有多少毫升?一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示,它的容积为26.4cm3,瓶子正放时,瓶内药水液面高6cm,瓶子倒放时,空余部分高2cm,则瓶内药水的体积是多少立方厘米?一满瓶饮料,爸爸喝了一些后液面高度是10cm,若把瓶盖拧紧后倒置放平,空余部分高8cm,已知饮料瓶的内直径是6cm,这瓶饮料原有多少毫升?二、切割问题1.圆柱切割一个圆柱形木块按图甲中的方式切成形状、大小四块,表面积增加了96cm2,按图乙的方式切成形状、大小相同的三块,表面积增加了50.24cm2,若把它削成一个最大的圆锥,体积减少多少立方厘米?把一个高为5cm的圆柱从直径处沿高剖成两个半圆柱,这两个半圆柱的表面积比原来增加80cm2,原来圆柱的体积是多少立方厘米?2.削成最大的圆柱(圆锥)三、浸水问题1、完全浸没物体体积=水上升体积一个高40厘米的圆柱形水桶,底面半径是20厘米,这个桶盛有半桶水,小红将一块石头完全浸入水桶中,水面比原来上升了3厘米,这块石头的体积是多少?在一个底面直径是40厘米的圆柱形水桶里,浸没了一根半径是10厘米的圆柱形铁块.当铁块从水桶里取出后,水面下降了8厘米,这根圆柱形铁块的长是多少厘米?一个圆柱形容器内,放有一个长方体铁块,现在打开一个水龙头往容器中注水3分钟,水恰好没过铁块的顶面;又过了18分钟后,水灌满了容器.已知容器的高度是50cm,铁块的高度是20cm,那么铁块的底面积与容器底面积的比是多少?在一个底面直径10厘米圆柱体形杯中装有水,水里浸没一个底面半径是2厘米的圆锥形铅锤,当铅锤取出时,水面下降2厘米,铅锤的高是多少厘米?一个底面半径是6厘米的圆柱形容器(厚度不计)里面装有一些水,水中浸没着一个高9厘米的圆锥形铅锥.当铅锤从水中取出后,水面下降了0.5厘米.这个铅锤的底面积是多少?一个圆柱形铁盒,底面半径是10厘米,高是18.84厘米,现在圆柱形铁盒正立在桌上,铁盒中盛有部分水,水面高度是12.56厘米.如果往这个铁盒中放入若干个长3.14厘米,宽1.57厘米,高1厘米的长方体铁块,至少加入多少个铁块后,使水刚好不外溢?一个底面直径为20厘米的圆柱形容器中装有水,水中放着一个底面直径为12厘米,高为5厘米的圆锥体铅锤,当铅锤从水中取出后,容器中水面高度下降了几厘米?有一个底面积是300平方厘米,高10厘米的圆柱体容器,里面盛有5厘米深的水。

小学数学圆柱圆锥考点总结

小学数学圆柱圆锥考点总结

圆柱圆锥常考题型归纳一、公式转换1、圆的知识圆的周长=直径×π=2×半径×πC=πd= 2πr逆推公式有:直径=圆的周长÷πd = C÷π半径=圆的周长÷π÷2r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。

圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2S 表=S 侧+2S 底(3)圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V 柱÷S圆柱的底面积=圆柱的体积÷高h=V 柱÷S3( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。

( 2 )半个圆柱的表面积= 侧面积÷2 +一个底面积+直径×高(3)14圆柱的表面积=侧面积÷4+半个底面积+直径×高4、圆锥的体积=底面积×高×1 3V 锥= 13 Sh逆推公式有:圆锥的高=圆锥的体积×3÷底面积h=V 锥×3÷S圆锥的底面积=圆锥的体积×3÷高S= V 锥×3 ÷h1.基本题型1,一个圆柱的侧面积是 25.12 平方厘米,底面半径是 2 厘米,求该圆柱的表面积是多少?2.一个圆柱型粮囤,底面半径是 4 米,高 2 米,若每立方米粮食重 500 千克,求该粮囤能装多少千克粮食?2.把体积是 282.6 平方厘米的铁块熔铸成底面半径为 6 平方厘米的圆锥型零件,求该零件高是多少?二、切割问题,表面积增加或减少1.基本公式:增加的面数+每个面的面积=增加的表面积切割面(增加的面)=底面1、切割、拼接表面积增加、减少问题。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.看图计算.1〕求圆柱的表面积〔单位:dm〕2〕求部件的体积〔单位:cm〕【答案】〔1〕解:×10×〔×10÷2〕2×2×25×2628+157785〔平方分米〕答:圆柱的表面积是785平方分米。

〔2〕解:×〔×2÷2〕2×〔×2÷2〕2×4=××1××1×4〔立方厘米〕答:部件的体积是立方厘米。

【分析】【剖析】〔1〕圆柱的表面积是两个底面积加上一个侧面积,依据圆面积公式计算出底面积,用底面周长乘高求出侧面积;2〕圆柱的体积=底面积×高,圆锥的体积=底面积×高×,依据公式计算,用圆柱的体积加上圆锥的体积就是整体积。

2.如图,一个内直径是 20cm的贞洁水水桶里装有贞洁水,水的高度是22cm.将水桶倒放时,空余局部的高度是3cm,无水局部是圆柱形.这个贞洁水水桶的容积是多少升?【答案】解:×〔20÷2〕2×〔×20÷2〕2×3×100×〔22+3〕×100×257850〔立方厘米〕7850立方厘米=升答:这个贞洁水水桶的容积是升。

【分析】【剖析】水桶的容积包含水的体积和空余局部的体积,依据圆柱的体积公式分别计算后再相加即可求出水桶的容积。

3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,杯中水面距杯口厘9厘米的圆锥形铅锤完整浸入水中,水会溢出314立方厘米.求铅锤米.假定将一个半径为的高.【答案】解:×〔20÷2〕2×2.24+314×100×2.24+314703.36+314〔立方厘米〕,2〕÷〔×9×3÷÷12〔厘米〕,答:铅锤的高是12厘米。

小升初数学总复习圆柱和圆锥做题要点与例题分析

小升初数学总复习圆柱和圆锥做题要点与例题分析

小升初数学总复习圆柱和圆锥做题要点与例题分析圆柱和圆锥(1)圆柱和圆锥的特征(2)圆柱的表面积和体积要点:圆柱的侧面积 = 底面周长×高圆柱的表面积 = 侧面积 + 底面积× 2圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积×高,用含有字母的式子表示是:V = sh 或者V = лr²h 。

例题:用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)侧面积:3.14 × 3 × 15 = 141.3(平方分米)≈ 142(平方分米)例题:一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部 抹上水泥。

如果每平方米要用水泥20千克,一共要用多少千克水泥?底面积:25.12 ÷ 3.14 ÷ 2 = 4(米)3.14 × 4 ² = 50.24(平方米)侧面积:25.12 × 4 = 100.48(平方米)表面积:50.24 + 100.48 = 150.72(平方米)水泥质量: 150.72 × 20 = 3014.4千克例题:在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?3.14 ×(0.8÷2)² × 2 × 60 = 60.288(立方米)(3)圆锥的体积要点:圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。

即V = 31sh 或者V = 31лr ²h 。

北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题

北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题

北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题(赶紧收藏)其他单元陆续更新……第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.面的旋转:圆柱(1)圆柱是由是由长方形绕长或宽旋转360度得到的立体图形,这个长方形的长和宽就是圆柱体的底面半径和高,沿高线切割后的切面是长方形;如果由正方形旋转则得到的圆柱体底面半径和高相等,沿高线切割后的切面是正方形。

(2)基本特征:a、圆柱有三个面,2个底面+1个侧面;圆柱的两个底面是半径相等的(或完全相等的)两个圆,侧面是一个曲面。

b、圆柱上下两个底面间的距离叫做圆柱的高。

c、圆柱有无数条高,且高的长度都相等。

圆锥(1)圆锥是由直角三角形绕一条直角边旋转360度得到的立体图形,围绕旋转的直角边是圆锥的高,另一条直角边是圆锥的底面半径;沿高线切割后的切面是等腰三角形。

(2)基本特征:a、圆锥有两个面,1个底面+1个侧面;圆锥的底面是一个圆,和底面相对的位置是顶点,侧面是一个曲面,展开是一个扇形。

b、圆锥顶点到底面圆心的距离是圆锥的高。

c、圆锥只有一条高。

二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。

长方形的长相当于圆柱的底面周长,宽相当于圆柱的高;如果展开是一个正方形则说明圆柱的底面周长和高相等。

(如果不是沿高剪开,有可能还会是平行四边形或其他不规则图形,但都可以剪拼成长方形或正方形)2、.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh4、圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或 S表=2πrh+2πr25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

【六年级下册数学】 圆柱与圆锥 常考题型解题思路

【六年级下册数学】 圆柱与圆锥 常考题型解题思路

【六年级下册数学】圆柱与圆锥•常考题型解题思路(1)直接利用公式计算体积V圆锥=13Sh=13πr2hV圆柱=Sh=πr2h(2)组合图形体积计算:圆柱上接圆锥V=13πr2h圆锥+πr2h圆柱(3)空心圆柱体积计算解:V=S大圆底面积h-S小圆底面积h=(S大圆底面积-S小圆底面积)h=π(R²-r²)h(4)等底等高的圆柱和圆锥的体积关系以及拓展问题结论一:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍。

结论二:圆柱和圆锥的体积与高分别相等,圆锥底面积是圆柱底面积的3倍。

结论三:圆柱和圆锥的体积与底面积分别相等,圆锥的高是圆柱的高的3倍(5)判断是否刚好组成一个圆柱(圆柱的长等于底面圆的周长)举例:用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上半径多少厘米的圆形铁片正好可以做成圆柱形容器?解:25.12÷3.14÷2=4(厘米)或18.84÷3.14÷2=3(厘米)(6)求包装圆柱时用的彩带长度,有打结处要加上举例:求右图中彩带的长度解:长度=8个高+6个直径+打结处(7)直接运用公式求圆柱表面积举例:求右图表面积解:S表面积=Ch+2πr2 =πdh+2πr2=2πrh+2πr2=2πr(h+r)=C (h+r)(8)无盖圆柱(一个地面+一个侧面):圆柱游泳池、无盖缸举例:圆柱形的一个水池,在池壁和底面贴上瓷砖,池底直径20米,池深1.2米,贴瓷砖的面积是多少平方米。

解:S表面积=πdh+πr2=20×1.2π+π×102=124π=389.36(㎡)(9)圆柱通风管(一个侧面):烟囱、压路机举例1:大厅有20根底面半径为0.3米,高6米的圆柱形柱子,每平方米用油漆1千克,刷这些柱子要用油漆多少千克?解:S侧=2πrh×根数×1=2×3.14×0.3×6×20×1=226.08(千克) (10)组合图形表面积:多个大小不一的圆柱叠放、沿着高切的半圆柱解:2πR2+S小侧面+S中侧面+S大侧面πr2+S小侧面的一半+ dh(11)侧面积的倍数变化问题举例:圆柱的底面直径扩大到原来的6倍,高缩小到原来的1,则3圆柱的侧面积如何变化?解:S侧=πdh,侧面积扩大成原来的2倍。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.将一根长16分米的圆柱形钢材截成三段较短的圆柱形,其表面积增加了24 平方分米,这根钢材原来的体积是多少?【答案】解:24÷4=6(平方分米)16×6=96(立方分米)答:这根钢材原来的体积是96立方分米。

【解析】【分析】将一根圆柱形钢材截成三段,增加了四个底面积,据此求出圆柱形钢材的底面积,再用底面积乘高即可求出这根钢材的体积。

2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

【精品】最新人教版六年级下册第三单元《圆柱与圆锥》题型整理+常考题集训(提升)(答案版)

【精品】最新人教版六年级下册第三单元《圆柱与圆锥》题型整理+常考题集训(提升)(答案版)

第三章《圆柱和圆锥》常考题集训题型:侧面展开图1.(2019春•江城区期中)把一个高是9.42厘米的圆柱的侧面展开,得到一个正方形,则这个圆柱的底面半径是 厘米.【解析】9.42 3.142÷÷32=÷ 1.5=(厘米),答:这个圆柱的底面半径是1.5厘米.故答案为:1.5.2.(2018春•盐城期中)一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面直径的比=_______. 【解析】设圆柱的底面直径为d ,则::1d d ππ=.答:这个圆柱的高与底面直径的比等于:1π.3.(2019春•兴化市月考)如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积. 【解析】设圆柱的底面直径为x 分米,3.1416.56x x +=4.1416.56x = 4x =.23.14(42)(42)⨯÷⨯⨯ 3.1448=⨯⨯12.568=⨯100.48=(立方分米), 答:体积是100.48立方分米.题型:倍数变化1.(2019•长沙模拟)一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的12,圆柱的侧面积( C ) A .扩大到原来的2倍 B .缩小到原来的12C .不变D .扩大到原来的3倍2.(2019•海珠区模拟)一个圆柱的底面半径扩大到原来的3倍,高不变,则它的体积将扩大到原来的______倍;如果圆柱的底面半径不变,高扩大到原来的3倍,则它的体积将扩大到原来的______倍. 【解析】9 33. 一个圆锥的底面周长扩大到原来的2倍,高不变,它的体积就扩大到原来的______倍; 44.圆锥体与圆柱体底面积的比是3:5,高的比是2:1,它们的体积比=_________。

2:5题型:高变化1.(2019春•莲湖区期中)有一个圆柱,底面直径是10厘米,若高增加4厘米,则侧面积增加( )平方厘米. A .31.4B .62.8C .125.6【解析】3.14104⨯⨯ 3.1440=⨯125.6=(平方厘米).答:侧面积增加125.6平方厘米.故选:C .2.(2019•防城港模拟)一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的表面积就增加125.6平方厘米,原来这个圆柱的体积是多少平方厘米?【解析】圆柱的底面周长:125.6262.8÷=(厘米);底面积23.14(62.8 3.142)⨯÷÷23.1410=⨯ 3.14100=⨯314=(平方厘米);体积:314×10=3140(立方厘米)题型:圆柱与圆锥的关系1.(2019春•卢龙县期末)长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是( D ) A .长方体、正方体和圆柱的体积相等 B .正方体体积是圆锥体积的3倍 C .圆锥体积是圆柱体积的13D .长方体、正方体和圆柱的表面积相等2.(2019•株洲模拟)活动课上.淘气和笑笑用同样大小的一块橡皮泥捏图形.淘气捏成一个圆柱体;笑笑捏成同样高的一个圆锥.下面说法正确的有( )个. D ②①橡皮泥的表面积没变;②橡皮泥的体积没变;③圆柱是圆锥底面积的3倍;④圆柱和圆锥底面半径的比是1:3 A .4B .3C .2D .13.(2019春•皇姑区期末)用24个铁圆锥,可以熔铸成( )个等底等高的铁圆柱. A .12B .8C .6D .4【解析】2438÷=(个),答:可以熔铸成8个等底等高的圆柱.故选:B .4.(2019春•宁津县期中)一个圆柱高6cm ,一个圆锥与它底面积相等,体积也相等,圆锥的高是( C ) A .2cmB .6cmC .18cm5.(2019•永州模拟)一个圆锥和一个圆柱的高相等,若要使体积一样,圆锥底面积应是圆柱底面积的( ) A .3倍 B .13C .π倍D .1π故选:A .6.(2019•益阳模拟)一个圆柱与一个圆锥等底等高,它们的体积之和是380dm ,圆锥的体积是( ) A .315dm B .320dm C .330dm D .345dm故选:B .7.(2019•保定模拟)一个圆柱和一个圆锥等底等高,体积相差3100dm ,圆锥的体积是( 3)dm A .50B .100C .150D .1003【解析】3100250()dm ÷=答:圆锥的体积是350dm .故选:A . 8.(2018秋•肃州区期末)把一个圆柱形木料削成一个最大的圆锥,削掉的体积是圆柱体积的 . 【答案】239.(2019•保定模拟)把一个圆柱削成一个最大的圆锥体,已知削去的部分是18方分米,这个圆柱体的体积是 . 2710.(2019•保定模拟)小明做了一个圆柱体容器和几个圆锥体容器,尺寸如图所示(单位:)cm ,将圆柱体内的水倒入( B )圆锥体内,正好倒满.A .B .C .故选:B .11.(2019•保定模拟)把一个高15厘米的圆锥形容器装满水,倒入与它等底等高的圆柱形玻璃容器中,水的高度是( )厘米. A .20B .15C .10D .5【解析】11553⨯=(厘米)答:水的高是5厘米.故选:D .12.(2019•鄞州区)李明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器.当水全部倒完后,发现从圆锥形容器内溢出36.2毫升水.这时,圆锥形容器内还有水( )毫升. A .36.2B .54.3C .18.1D .108.6【解析】36.2(31)÷-36.22=÷18.1=(毫升),答:圆锥形容器内还有水18.1毫升.故选:C .题型:等积变换1.(2019春•越秀区期末)一块底面半径6cm ,高12cm 的圆锥形钢材,把它熔铸成一根横截面半径是1cm 的圆柱形钢条,这根钢条长多少厘米?【解答】解;221 3.14612(3.141)3⨯⨯⨯÷⨯13.143612 3.143=⨯⨯⨯÷452.16 3.14=÷144=(厘米) 答:这根钢条长144厘米.2.六年的小学生活即将结束,洋洋计划星期天请5名同学到家中商量去养老院参加义务劳动的事。

圆柱与圆锥常见九种典型题型(已排版可直接打印)

圆柱与圆锥常见九种典型题型(已排版可直接打印)

圆柱圆锥常见九种典型题型一、公式转换1.基本公式:①圆柱的相关计算公式:底面积:S底=底面周长:C= = 。

原柱侧面积= ×(文字)S侧===。

(字母)逆推公式有:C= 。

h= 。

圆柱的表面积:S=2S底+S侧= 。

圆柱的体积:V柱= =逆推公式有:S= h=②圆锥的相关计算公式a.底面积:S底=πR2b.底面周长:C=πd=2πRc 体积:V= πR2 h逆推公式有:S= h=③圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。

2. 等底等高的情况下,圆锥体积是圆柱体积的。

3. 等底等高的情况下,圆锥体积比圆柱体积少。

4. 等底等高的情况下,圆柱体积比圆锥体积多倍。

5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。

6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。

一、基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。

二,切割拼接问题,表面积增加或减少1.基本公式:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?5、把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?6、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?三.放入或拿出物体,水面上升或下降。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米= 0.05米沙堆的底面半径:25.12+ (2x3.14)=25.12+6.28=4 (米)1沙堆的体积:x3.14x42x1.8 = 3.14x16x0.6 = 3.14x9.6 = 30.144 (立方米)所铺沙子的长度:30.144+ (8x0.05)=30.144+0.4 = 75.36 (米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的1底面半径,用公式:C+2n=r,要求沙堆的体积,用公式:V= nr2h,最后用沙堆的体积+ (公路的宽x铺沙的厚度)=铺沙的长度,据此列式解答.2.工地上有一个圆锥形的沙堆,高是1.5 米,底面半径是6 米,每立方米的沙约重1.7 吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14x62x1.5x x1.7=3.14x18x1.7=56.52x1.7,96 (吨)答:这堆沙约重96吨。

1【解析】【分析】圆锥的体积=底面积x高x ,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

4.一个圆柱体容器的底面直径是16 厘米,容器中盛有10 厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?【答案】解:3.14x (16“)2x3= 3.14x64x3= 200.96x3= 602.88 (立方厘米)答:圆锥形铁块体积是602.88立方厘米。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高 1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?【答案】解:×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.一个圆锥体形的沙堆,底面周长是25.12米,高 1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积:×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C ÷2π=r ,要求沙堆的体积,用公式:V=πr2h ,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.计算下面圆柱的表面积和体积,圆锥的体积。

(1)(2)【答案】(1)解:表面积: 3.14×52×2+3.14×5×2×13=157+408.2=565.2(cm2)体积:3.14×52×13=1020.5(dm3)(2)×3.14×82×15=×3.14×64×15=1004.8(cm3)【解析】【分析】(1)圆柱的表面积=底面积×2+侧面积,侧面积=底面周长×高,圆柱的体积=底面积×高,根据公式计算即可;(2)圆锥的体积=底面积×高×,根据公式计算体积即可。

北师大版六年级下册数学第一单元圆柱与圆锥易错题型梳理

北师大版六年级下册数学第一单元圆柱与圆锥易错题型梳理

六年级数学下册北师大版第一单元重点题型梳理 圆柱与圆锥主要内容:认识圆柱与圆锥、掌握圆柱表面积和体积计算公式及其变式、掌握圆锥体积公式及其变式、等底等高的圆柱与圆柱体积关系以及延申题、表面积切接变化问题、等体积转换问题、空心圆柱体积计算、组合图形面积和体积计算......【重点题型整理知识点一:认识点动成线,线动成面,面转成体1、长方形、正方体旋转问题以及直角三角形旋转问题2、圆柱和圆锥的高两个底面间的距离叫做圆柱的高:圆柱有无数条高,每条高都相等。

圆锥的顶点到底面圆心的距离叫圆锥的高。

圆锥只有一条高。

知识点二:表面积的计算圆柱表面积计算和体积计算公式【面积单位统一、进率要熟记:体积、容积】 圆柱的表面积=一个侧面+两个底面S 表=S 侧+2S 底因为:S 侧=Ch ,C=πd=2πr ,S 底=πr 2所以:C=S 侧÷h ;h=S 侧÷C ;r=C ÷π÷2S 侧=πdh=2πrh ,S 表=Ch+2πr 2=πdh+2πr 2=2πrh+2πr 2=2πr (h+r )=C (h+r ) 乘法分配率题型:①判断是否刚好组成一个圆柱(圆柱的长等于底面圆的周长)②求包装圆柱时用的彩带长度,有打结处要加上③直接运用公式求圆柱表面积④无盖圆柱(一个地面+一个侧面):圆柱游泳池、无盖缸⑤圆柱通风管(一个侧面):烟囱、压路机⑥组合图形表面积:多个大小不一的圆柱叠放、沿着高切的半圆柱举例:⑦侧面积的倍数变化问题⑧圆柱表面积切接变化问题【图示如下(1)(2)(3)(4)】1、把圆柱平行于底面横切,切面是大小相同的圆;2、沿底面直径纵切,切面是大小相同的长方形。

3、把圆锥横切,每个切面是圆,但大小不同;4、沿底面直径纵切,切面是大小相同的等腰三角形。

(1) (2) (3) (4)⑨圆柱切成若干份拼成长方体,增加两个左右两边的长方形(2rh )⑩结合比考查知识点三:体积计算问题圆柱体积:圆柱分割后拼成一个类似长方体,【V 长方体=S 底×h 】体积不变。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。

【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。

用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。

2.将一根底面直径是20厘米,长1米的圆木沿着直径劈成相等的两半。

每半块木头的表面积和体积是多少?【答案】解:1米=100厘米,表面积:3.14×(20÷2)2+[3.14×20×100]÷2+20×100=5454(平方厘米)体积:3.14×(20÷2)2×100÷2=15700(立方厘米)答:每半块木头的表面积是5454平方厘米,体积是15700立方厘米。

【解析】【分析】根据题意,劈开的每半块木头的表面积是原来木头的表面积的一半增加了一个切面的面积,据此代入公式解答即可;劈开的每半块木头的体积是原来木头的体积的一半,据此代入公式解答即可;圆柱表面积S=2×底面积+侧面积=2×3.14×r2+3.14×d×h;截面面积S=dh;体积V=3.14×r2×h。

3.计算下面圆柱的表面积。

(单位:厘米)【答案】解:3.14×(4÷2)²×2+3.14×4×6=100.48(平方厘米)【解析】【分析】圆柱体的表面积是两个底面积加上一个侧面积,底面积根据圆面积公式计算,用底面周长乘高求出侧面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱圆锥常考题型归纳
一、圆柱
1. 圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。


2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。

3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22S R π=增。

b.竖切(过直径):切面是长方形(如果h=2R ,切面为正方形),该长
方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的
面积,即S 增=4Rh
4. 圆柱的侧面展开图:a. 沿着高展开,展开图形是长方形,如果2h R π=,展开图形为
正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

c.无论如何展开都得不到梯形
5、圆柱的相关计算公式:
a .底面积:2=S R π底
b .底面周长:2C d r ππ==
c .侧面积:2S Rh π=侧
d .表面积 :S=2S 底+S 侧 =222R Rh ππ+
e .体积 : 2
V R h π=
考试常见题型:a. 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
b. 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
c. 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
d. 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,
e. 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的切割:a.横切:切面是圆
b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高
是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,
即S 增=2Rh
4、圆锥的相关计算公式a. 底面积:2=S R
π底
b. 底面周长:2C d r ππ==
c. 体积: 2/3V R h π=
考试常见题型:a. 已知圆锥的底面积和高,求体积,底面周长
b. 已知圆锥的底面周长和高,求圆锥的体积,底面积
c. 已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

三、圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差23
sh 。

5、圆柱与圆锥等高,半径之比为:a b ,则体积之比为223:a b ,
6、圆柱与圆锥等底,高之比为:a b ,则体积之比为3:a b 。

题型总结
1、直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积
半径变化导致底面周长,侧面积,底面积,体积的变化。

两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体
积之比。

2、圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
3、横截面的问题
4、浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。

5、等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3.
具体题型
一,公式转换
1.基本公式:
圆柱:体积: 圆锥:体积:
侧面积: 底面积:
底面积: 底面周长:
表面积:
底面周长:
2.基本题型
1、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样
做成的铁桶的容积最大是多少?
2、在一个正方体纸盒中恰好能放入一个体积为282.6立方厘米的圆柱体卷纸,求这个正方体的容积。

3、求下面图形的侧面积和体积。

(单位:cm)
4、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆柱各高多少厘米?
5、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
二,切割问题,表面积增加或减少
1.基本公式:增加的面数+每个面的面积= 增加的表面积
切割面(增加的面)=底面
2.基本题型
1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?
2,把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?
3、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。

三.放入或拿出物体,水面上升或下降。

1. 基本公式:水面上升(下降)的高度×容器的底面积=物体的体积
溢出的水的体积=物体的体积
2.基本题型:
1、一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?
2、在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?
四.高增加或减少,侧面积增加或减少问题
1.关键点:A.画出展开图
B.圆柱底面周长=长方形的长圆柱高=长方形的宽
C.当圆柱底面周长=圆柱高时,圆柱展开是一个正方形
2.基本题型:
1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?
2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?
五,抓住体积不变类题型
1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等
2.基本题型:
1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?
六,圆锥圆柱的转换关系
1.基本关系:等底等高:圆柱体积=3圆锥体积
等体积:圆锥:底面积(倍)×高(倍)=3倍
1、圆柱圆锥等底等高,体积相差3厘米,求圆柱圆锥体积各是多少?。

相关文档
最新文档