全等三角形的判定设计与反思
三角形全等的判定(边边边)
三角形全等的判定(边边边定理)教学设计及反思教学目标及重点难点1.体悟探索方法,经历探索过程,归纳得出判定定理的过程。
2.能根据问题和情境,利用边边边定理判定两个三角形全等。
3.通过观察、猜想、概括、验证等数学活动,积累数学活动经验,培养学生的猜想探究能力和团结协作能力,同时在师生讨论交流中培养学生的发散性思维以及数学符号语言表达能力。
教学重点:探究三角形全等所需条件的过程,利用边边边定理判定两个三角形全等。
教学难点:探索三角形全等条件的过程。
二、教学过程(一)引入课题,激发探索欲望师:我们已经学习了三角形全等的相关概念及性质,你们知道全等三角形是怎么定义的吗?生 1 :全等三角形是能够完全重合的两个三角形。
生 2 :有三条边对应相等,三个角也对应相等的两个三角形全等。
师:生 1 说的是描述性定义,生 2 说的是课本上的定义,本质上都是正确的。
全等三角形具有的性质你能用文字语言、符号语言和图形语言表示出来吗?生 3 :全等三角形的性质是对应边相等、对应角相等(如图 1 )。
学生画图并在练习本上用符号语言表示:因为△ABC ≌△A′B′C′,所以 AB=A′B′, BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′(教师电脑展示 PPT )。
设计意图:在教师引导下回忆已学知识,激发探索欲望,让学生产生浓厚兴趣,为探索新知识做好准备。
(二)设计问题链,充分展示探索思维过程师:根据全等三角形的定义,如果三条边和三个角都分别对应相等,确实能判定两个三角形全等,但是否必须同时满足六个条件才能判定两个三角形全等呢?我们的证明过程是不是太过复杂了呢?如果减少一些条件是否也能达到证明全等的目的呢?今天我们就开始学习三角形全等的判定(板书课题)。
让学生猜想和探究:满足一个、两个、三个、四个、五个条件时,可以证明两个三角形全等吗?生 4 :满足一个条件,不论是角还是边,肯定不能证明两个三角形全等。
三角形全等的判定教学反思
三角形全等的判定教学反思三角形全等的判定教学反思篇一从本周起,我们将学习《全等三角形判定》,对于刚刚进入八年级的学生,这既是一个重点也是一个难点,几何与代数最大的区别是:几何是看得见、摸得着的,代数中特别是函数则比较抽象,不易理解。
就*内容,希望能给我们的孩子点燃学习的火种,指明学习的方向,其实《全等三角形的判定》就这么简单。
我用四课时完成了“全等三角形判定”的学习。
我的最大收获就是无论证明何种类型的全等题,学生都很少出现用SSA(假命题)证明全等的情况,而且百分之八十的学生都能比较清楚地表达验证的过程,并准确选择方法进行全等三角形的证明。
所以说,本部分的教学设计是比较成功的,既给学生留下了比较充分地探索空间(如第一节课),又从学生已有的认知基础出发(如第二课时),同时注重了必要的练习巩固(如第四节课)。
就第三节课来说,首先,本节课设计了探究活动,让学生带着问题进行探究,调动了学生学习的积极性,而且使好奇心得以持续发展。
学生在探究活动中,通过观察猜想、操作验证、归纳概括等一系列活动,使学生对问题的本质理解更为深刻。
学生不仅知道了全等三角形判定的方法,而且明白为什么可以通过它们证明两个三角形全等,也对“边边角”不能作为判定两个三角形全等的方法有了深刻的理解。
三角形全等的判定教学反思篇二本节课是人教版八年级数学第十二章第二节的内容,主要探索三角形全等的条件及利用全等三角形进行证明,而我所讲授的是第一课时:《三角形全等的判定方法一(SSS)》,它是后面几种判定方法的基础,也是*的重点及难点。
教材看似简单,仔细研究后才发现,对八年级学生来说有些困难,处理不好是难以成功的,况且对学生以后学习几何起着关键作用,因此在上这一课时,我精心设计,从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作,大胆猜想,实践操作,相互交流验证,很好地解决了问题,圆满地完成了本节课的任务,表现在以下几个方面:一、我认真备课,教学设计整体化,内容生活化。
三角形全等的判定教学反思2 (2)
三角形全等的判定教学反思21. 成功之处:在数学中,三角形全等是指两个三角形在形状和大小上完全相同,具有相等的对应角度和对应边长。
三角形全等判定是中学数学中至关重要的一部分,可以帮助学生通过几何推理来判断是否两个三角形是全等的。
这个判定方法被广泛地应用于解决实际问题中的相似性以及计算其三角形各个属性问题。
在教学实践中,比较常见的是通过 SSS、SAS、ASA、AAS 和 RHS 等五种判定方法来判断三角形是否全等,这些方法是十分有效和准确的。
当学生在掌握这些方法之后,不仅能够准确地判断两个三角形是否全等,而且在后续的学习中还会有很多有效的帮助。
2. 存在问题:在实际授课中,我们发现这些方法需要学生对三角形内角和外角、三角形的边长以及有关的角度等概念,有了基本几何概念的基础,才能获得正确的解答。
然而,基本几何概念是初中数学的基础,但因为学生学习水平和差异的程度不同,可能需要很长时间才能透彻理解和掌握这些概念。
此时,老师可以通过推荐相关资源、培训和练习来加强学生的实际应用。
同时,老师还需要注意教学中的精细度和细节,以防止学生因为概念上的问题而产生困惑。
3. 思考及其措施:当学生完成基础几何概念的学习之后,为了提升学生判断三角形全等的技能,我们可以采用以下措施:1)运用多媒体辅助教学,通过动态展示、视频演示和交互式掌握来加强学生的领域认知和应用能力。
2)注意创设实践场景,鼓励学生灵活运用三角形的全等性质、掌握相似三角形之间比较的方法,并给他们丰富的课后练习,以帮助他们夯实知识。
3)借助小组合作的形式,让学生自行模拟、推理、讨论和叙述,以提升学生的团队精神、批判性思维和判断力。
根据判定三角形全等的五个方法,我们可以通过具体案例来说明:例:如图所示,ABCD和EFHG是两个平面内的四边形,它们的4个角的度数分别为a°,b°,c°,d°与e°,f°,g°,h°,它们的四条边长分别为AB、AD、CD与EF、EG、GH。
《全等三角形》优秀的教学反思(通用21篇)
《全等三角形》优秀的教学反思(通用21篇)在工作和生活中,少不了要写各种各样的文档,不论是写制度、写总结、写方案、写方案、写教案还是写其它的材料,能写出一篇好的文档,体现了一个人的文笔,也体现着一个人的力量,下面是我整理的《《全等三角形》优秀的教学反思(通用21篇)》,快快拿去用吧!《全等三角形》优秀的教学反思篇1全等三角形第一课时,这节课比较简洁,我接受了先学后教的教学策略。
教学过程大致是:首先,同学自学。
其次,老师多媒体呈现教材上的图案以及制作的一些图案,引导同学识图,检测同学自我建构全等三角形概念的状况。
再次,老师演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。
通过教具演示让同学体会对应顶点、对应边、对应角的概念,并以找伴侣的形式练习对应顶点、对应边、对应角,加强对对应元素的娴熟程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对学问的巩固,再给出练习推断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
接下来,通过同学对全等三角形观看,得出全等三角形的性质。
并通过练习来理解全等三角形的性质并渗透符号语言推理。
最终老师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简洁的实际问题。
这节课有几点不足:1.同学动手活动少,应当在课前就要求同学自制一对全等三角形。
这样课堂上好操作,同学体验也深刻了,活而不乱,时间上也是可控的。
2.题目变形应当突出全等三角形的性质这一重点,所练习题的综合度和变化还是不够多。
3.多媒体演示如能协作同学手工制作的三角板同时进行,成效会更好。
但是要支配好观看次序和图形的变化次序。
《全等三角形》优秀的教学反思篇2一、教学方法让同学通过观赏来自生活中的精致图案,观看体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的查找方法,从而体会什么样的两个图形是全等三角形。
八年级数学上册《三角形全等的判定》教学反思
八年级数学上册《三角形全等的判定》教学反思1、八年级数学上册《三角形全等的判定》教学反思昨天对三角形全等进行复习,教学目的是:使学生能灵活运用“SSS”、“SAS”、“ASA”、“AAS”和“HL”来判定三角形全等;体会文字命题转化为数学符号语言的过程,掌握文字命题的证明。
对于本单元的知识内容,学生很容易掌握,但是,与单纯的知识内容相比,更重要的是利用这些知识内容解决问题。
因此,本课的复习就是重在证明题的分析方法上。
这一课的教学案设计是这样的,预习导学部分安排复习了定义、性质、判定方法;安排复习三角形全等的条件思路;安排复习找三角形全等的条件时经常见到的隐含条件;三个对应相等的条件不能使三角形全等的情况及其反例。
前置学习第二部分的三个选择题,有效地复习了“对应相等”、“两边夹角”、“边边角”和“角角角”不能的注意点。
又安排了两次全等的证明题,并由命题的.证明归纳文字命题:“等腰三角形底边的中点到两腰的距离相等”,为学习文字命题的证明作好了准备,也训练了学生语言表达能力。
在前置学习的基础上,我让学生上台叙述例题1的证明思路,并由两条题目的分析思路的探究体会怎样分析和总结证题时常有的合理联想,如“由垂直想互余,互余多了自有同角或等角的余角相等”、“由角平分线想折叠”等等。
接着学习例2和练习学习文字命题的证明步骤:根据题意画图形,结合图形写“已知”和“求证”,认真分析得“证明”。
这一课复习安排的内容比较多,学生思维训练很充分,证明和分析方法体会得不少,学生动手写证明的全过程偏少,文字命题的训练占全课的比重较小。
收获:利用学生主动的探究,学生对三角形判定和性质掌握比较好,而且由于学生对每一个判定和性质都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
不足:1、学生识别图形的能力差、如:“ASA”与“AAS”“HL”判别不清。
2、几何证明题一直是学生的一个弱点。
《全等三角形的判定》 教学设计
《全等三角形的判定》教学设计一、教学目标1、知识与技能目标学生能够理解并掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),能够运用这些判定方法证明两个三角形全等,并能利用全等三角形的性质解决相关的几何问题。
2、过程与方法目标通过观察、操作、比较、推理等活动,培养学生的空间观念、逻辑思维能力和推理能力,提高学生的动手操作能力和数学语言表达能力。
3、情感态度与价值观目标让学生在探索全等三角形判定方法的过程中,体验数学的乐趣,感受数学的严谨性,激发学生学习数学的兴趣和积极性,培养学生勇于探索、敢于创新的精神。
二、教学重难点1、教学重点全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)的理解和掌握。
2、教学难点灵活运用全等三角形的判定方法证明两个三角形全等,以及在复杂的图形中准确找出全等三角形的对应边和对应角。
三、教学方法讲授法、演示法、探究法、讨论法四、教学过程1、导入新课通过展示两个形状相同、大小相等的三角形图片,引导学生观察并思考:如何判断这两个三角形全等?从而引出本节课的主题——全等三角形的判定。
2、讲解新课(1)边边边(SSS)判定定理展示三根长度分别相等的小木棒,让学生动手拼成一个三角形,然后将这个三角形与同桌拼成的三角形进行比较,发现两个三角形完全重合,从而得出“三边对应相等的两个三角形全等”这一判定定理,即SSS 判定定理。
(2)边角边(SAS)判定定理在黑板上画出两个三角形,其中一个三角形的两条边和它们的夹角分别与另一个三角形的两条边和它们的夹角相等,让学生通过测量或折叠的方法,验证这两个三角形是否全等,从而得出“两边和它们的夹角对应相等的两个三角形全等”这一判定定理,即 SAS 判定定理。
(3)角边角(ASA)判定定理在纸上画出两个三角形,其中一个三角形的两个角和它们的夹边分别与另一个三角形的两个角和它们的夹边相等,让学生通过剪拼的方法,验证这两个三角形是否全等,从而得出“两角和它们的夹边对应相等的两个三角形全等”这一判定定理,即 ASA 判定定理。
三角形全等的判定教学反思
三角形全等的判定教学反思教学反思:三角形全等的判定引言:三角形全等的判定是初中数学中的重要内容之一,也是几何学中的基础概念。
在教学过程中,我采用了多种教学方法和策略,以帮助学生理解和掌握三角形全等的判定方法。
本文将对教学过程进行反思和总结,包括教学目标的设定、教学内容的安排、教学方法的选择以及学生的学习情况和反馈等方面。
一、教学目标的设定:在教学开始之前,我明确了以下教学目标:1. 理解三角形全等的概念和定义。
2. 掌握三角形全等的判定方法,包括SSS、SAS、ASA和AAS。
3. 能够应用所学知识解决与三角形全等相关的问题。
4. 培养学生的逻辑思维和推理能力。
二、教学内容的安排:为了达到上述教学目标,我将教学内容分为以下几个部分:1. 三角形全等的概念和定义:通过示意图和实例,引导学生理解三角形全等的含义和条件。
2. SSS(边边边)判定法:介绍SSS判定法的原理和应用,通过例题演示和学生练习,巩固学生的理解和运用能力。
3. SAS(边角边)判定法:讲解SAS判定法的原理和应用,通过实例分析和学生练习,培养学生的推理能力。
4. ASA(角边角)判定法:解释ASA判定法的原理和应用,通过案例分析和学生练习,提高学生的问题解决能力。
5. AAS(角角边)判定法:介绍AAS判定法的原理和应用,通过练习题和课堂讨论,加深学生对该方法的理解和掌握。
6. 应用题和拓展:设计一些综合性的应用题,让学生运用所学知识解决实际问题,同时拓展学生的思维。
三、教学方法的选择:为了提高教学效果,我采用了以下教学方法:1. 演示法:通过示意图和实例,直观地展示三角形全等的概念和判定方法,激发学生的学习兴趣。
2. 讨论法:在讲解判定方法的过程中,鼓励学生积极参与,提出自己的观点和思考,促进思维的碰撞和交流。
3. 练习法:通过大量的练习题,巩固学生对判定方法的掌握程度,培养学生的解决问题的能力。
4. 案例分析法:选取一些实际问题,引导学生分析和解决,培养学生的综合运用能力。
三角形全等的判定(SSS)教学设计与教学反思
三角形全等的判定(SSS )教学设计与教学反思一、教学目标1、知识与技能:(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力。
2、过程与方法:(1)经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。
(2)在例题处理过程中组织引导学生自主探究、分析讨论、交流解法,巩固三角形全等的证明方法.3、情感、态度与价值观在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。
二、学习重点和难点(1)重点:指导学生分析问题,寻找判定三角形全等的条件及应用“边边边”定理解决问题。
(2)难点:三角形全等条件的探索过程。
三、教具准备(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。
(4)剪刀四、教学过程(一)复习引入多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。
反之,这六个元素分别相等,这样的两个三角形一定全等。
(在教师引导下回忆前面知识,为探究新知识作好准备。
) 提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。
引导学生先确定探究的思路和方法,进一步培养理性思维。
)(二)操作探究出示探究一:(课前完成)多媒体已知一个条件 已知两个条件条件与图形 结论 条件与图形 结论已知:△ABC 与△DEF条件1:AB=10cm AC=12cm BC=13cm 条件2:DE=10cm DF=12cm EF=13cm让两个组学生按照条件1中所给出的条件画出三角形ABC,让另两个组学生按照条件2中所给出的条件画出三角形DEF 。
画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。
全等三角形的判定教学反思 三角形全等的判定教学反思质
全等三角形的判定教学反思三角形全等的判定教学反思质每个人都曾试图在平淡的学习、工作和生活中写一篇文章。
写作是培育人的观看、联想、想象、思维和记忆的重要手段。
大家想知道怎么样才能写一篇比较优质的范文吗?下面是我为大家收集的优秀范文,供大家参考借鉴,盼望可以关心到有需要的伴侣。
全等三角形的判定教学反思篇一通过让同学回忆基本作图,在作图过程中体会三角形全等的条件,在直观的操作过程中发觉问题、获得新知,使同学的学问承上启下,开拓思维,进展探究新知的力量。
讲解例题时要使同学明确:证明分别属于两个三角形的线段相等或角相等的问题,经常通过证明这两个三角形全等来解决。
学习要擅长总结,在总结的过程中提高。
应给同学搭建一个质疑、沟通和相互学习的平台,保证此环节的时间和质量,引导同学从学问、方法、学习习惯等多方面进行总结和反思。
学问、方法方面的收获,老师要适时点播,点出本节课所用到的数学思想、方法,这是学习的精髓,但不能忽视孩子们其他方面的收获,如好的听课习惯,好的思维、设想,要相互学习,这些好的收获更有助于同学的全面、和谐进展。
全等三角形的判定教学反思篇二这一节课的讲学稿是经过了反复推敲,经过反复修改过了的学案。
为了能够提高课堂效率,我在自学提要中支配了一组作图题,让他们通过自己动脑、动手按要求作图,在作图的同时推断分别只给一组条件对应相等,两组条件对应相等,三组条件对应相等时能否画出全等的三角形?也为上课提高课堂效率作铺垫,使同学们能较快,较好的探讨出全等三角形判定的条件。
通过这样的设计很好的突破本节课的重点。
在教学过程中使用课件的动画演示,使同学能够较快得出全等三角形判定的条件,并且较简单的理解和把握全等三角形判定的条件。
课堂练习的设计上:第三题目的是训练同学把握两个三角形全等的书写格式。
接着在把握了书写格式的基础上,第四,五两题就是训练同学会通过题目给的条件,找出三条对应相等得边,进而证明三角形全等。
第6题对把握得比较快的同学可以去做一做。
八年级数学上人教版《三角形全等的判定》教学反思
《三角形全等的判定》教学反思
在本节课的教学中,我注重学生思维能力和实际应用能力的提高,通过引导学生探究三角形全等的判定方法及其应用等方面,积极促进学生对三角形全等相关知识的理解和掌握。
以下是我对本次教学的反思:
一、教学内容的组织与安排
本节课的教学内容主要包括三角形全等的定义和性质、三角形全等的判定方法及其应用等方面。
在组织教学内容时,我注重从学生的实际出发,通过实例和例题的讲解,引导学生自主探究三角形全等的判定方法,让学生在实际操作中掌握证明的步骤和方法。
同时,我也注重对教学内容的总结和归纳,帮助学生形成完整的知识体系。
二、教学方法的选择与实践
在本节课的教学中,我采用了多种教学方法,包括讲解、演示、探究、讨论等。
通过讲解和演示,让学生明确三角形全等的概念和性质;通过探究和讨论,让学生自主探究三角形全等的判定方法及其证明过程。
同时,我也注重对学生的思维进行启发和引导,帮助学生掌握解决问题的方法和技巧。
三、教学效果的反馈与反思
通过本次教学,我发现大部分学生对三角形全等的概念和性质有了较好的理解,也能够掌握三角形全等的判定方法和证明过程。
但是,在应用方面,部分学生还存在一定的问题,需要加强练习和实践。
同时,我也发现部分学生在自主探究方面还存在一定的困难,需要加强对学生思维能力的培养和引导。
综上所述,本次教学取得了一定的效果,但也存在一些需要改进和提高的地方。
在今后的教学中,我将继续注重教学内容的组织和安排,注重教学方法的选择和实践,注重教学效果的反馈和反思,不断提高自己的教学水平和能力。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形判定教学反思
全等三角形判定教学反思在进行全等三角形判定的教学反思中,我深刻认识到了一些需要改进和加强的地方。
全等三角形判定作为初中几何的一个重要内容,对于学生的逻辑思维和推理能力有较高的要求,所以在教学过程中我遇到了一些困难和挑战。
首先,在教学设计上,我没有充分考虑到学生们的基础知识和能力水平的不同。
有些学生对于全等三角形判定的思路和方法掌握得较为困难,而有些学生则能迅速理解和应用。
为了提高教学效果,我应该在示范解题的时候,结合具体的例子和实际生活中的场景,帮助学生们建立抽象思维和几何推理的能力。
其次,在教学方法上,我主要采用了讲解和演示的方式,没有充分运用讨论和合作学习的方式进行教学。
通过鼓励和引导学生们提出自己的观点和假设,并进行合作探究和讨论,可以帮助他们更好地理解全等三角形的判定方法,并培养他们的团队合作和沟通能力。
此外,教学过程中我没有给予学生足够的练习机会和反馈。
全等三角形的判定需要熟练的推理和计算能力,只有通过大量的练习才能够提高学生的解题能力。
因此,我应该在课堂上加强练习的数量和质量,并及时给予学生正确的反馈和指导。
在教学过程中,我还发现学生们对于全等三角形的判定条件和方法容易混淆和记忆错误。
为了帮助学生们记忆和理解,我应该设计一些简单明了的记忆法和巧妙的解题技巧,让学生们能够在考试中迅速准确地判断两个三角形是否全等。
另外,教学材料的选择和使用也很重要。
我应该挑选一些具有代表性的例题,涵盖不同的情况和方法,让学生们能够全面掌握全等三角形的判定方法。
同时,还可以引入一些有趣的综合应用题,激发学生们的兴趣和动力。
针对以上反思,我今后在教学全等三角形判定时,我将更加注重教学设计的差异性,适应学生们不同的学习需求和能力水平。
我将积极探索多种教学方法,如讨论和合作学习,拓展学生们的思维方式和解题技巧。
此外,我将加强练习和反馈的环节,提高学生们的解题能力和自信心。
同时,我还将不断丰富和创新教学材料,使学生们能够理解和应用全等三角形的判定方法。
三角形全等的判定教学反思(必备10篇)
三角形全等的判定教学反思(必备10篇)三角形全等的判定教学反思第1篇[授课流程反思]通过让学生回忆基本作图,在作图过程中体会三角形全等的条件,在直观的操作过程中发现问题、获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力。
[讲授效果反思]讲解例题时要使学生明确:证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决。
学习要善于总结,在总结的过程中提高。
应给学生搭建一个质疑、交流和相互学习的平台,保证此环节的时间和质量,引导学生从知识、方法、学习习惯等多方面进行总结和反思。
[师生互动反思]知识、方法方面的收获,教师要适时点播,点出本节课所用到的数学思想、方法,这是学习的精髓,但不能忽视孩子们其他方面的收获,如好的听课习惯,好的思维、设想,要互相学习,这些好的收获更有助于学生的全面、和谐发展。
三角形全等的判定教学反思第2篇[授课流程反思]本节课的设计先让学生动手操作以便使学生对三角形的内角和有一定感性认识,然后再根据拼图说出结论成立的理由,由浅入深,循序渐进,学生易接受.教师引导学生对三角形的三个内角进行拼合,可以出现不同的方法,这样能让学生充分发挥白己的主动性和创新能力。
[讲授效果反思]组织学生进行探索或分组讨论,经过讨论找到不同的解决方法.在解决问题的过程中,关注学生在推理过程中语言使用的准确性,引导学生用规范的格式进行书写。
[师生互动反思]无论是例题还是习题的教学均采用“尝试一交流一讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用。
三角形全等的判定教学反思第3篇本节课是探索三角形全等的重要判定方法之一,也是本章的重点。
反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容逻辑化。
在课题的引入方面,通过复习回顾,问题展示导入新课。
既提问复习了全等三角形的判定方法,又很好的过渡新问题上来。
把知识不知不觉地体现出来,学得自然新鲜。
新知学习于学生已掌握的知识基础上,学生学得轻松有趣。
全等三角形的判定教案
全等三角形的判定教案以下是一份关于全等三角形判定的教学教案:一、教学目标1. 让学生理解并掌握全等三角形的判定方法。
2. 通过实际操作和推理,培养学生的逻辑思维能力和空间想象力。
3. 激发学生对几何学习的兴趣,提高解决问题的能力。
二、教学重难点重点:全等三角形的几种判定方法。
难点:灵活运用判定方法证明三角形全等。
三、教学准备三角板、教学课件四、教学过程师:同学们,咱们今天来学习全等三角形的判定。
那大家想想,什么样的三角形是全等三角形呀?生:能够完全重合的三角形。
师:对啦,那怎么判断两个三角形全等呢?这就是咱们今天要重点研究的啦。
(展示课件上两个三角形)师:大家看看这两个三角形,觉得它们全等吗?生:光看不太确定。
师:那咱们就来找找方法。
首先啊,有一种方法叫边边边,就是如果三条边都相等,那这两个三角形就全等。
大家理解不?生:嗯,有点明白。
师:那老师来画两个三角形,三条边都相等,你们看看它们是不是全等。
(在黑板上画图)师:现在能看出来全等了吧?生:能。
师:这就是边边边判定方法。
那还有其他方法哦,比如边角边。
谁来说说边角边是什么意思呀?生:就是两条边和它们的夹角相等。
师:真不错!那咱们再来看个例子。
(展示课件例子)师:同学们自己来判断一下这个是不是符合边角边。
(学生讨论)师:谁来说说?生:符合,两条边和夹角都相等。
师:非常好!那还有角边角、角角边这些方法,大家自己去探索一下哦。
接下来咱们做几道练习题巩固一下。
五、教学反思在教学过程中,通过师生互动和实例分析,学生较好地掌握了全等三角形的判定方法。
但部分学生在理解和运用上还存在一些困难,需要在后续教学中加强练习和辅导。
要多鼓励学生自己思考和探索,提高他们的学习积极性和主动性。
全等三角形教学反思(精选15篇)
全等三角形教学反思(精选15篇)全等三角形教学反思(精选壹五篇)随着社会一步步向前发展,我们要有一流的教学能力,反思过去,是为了以后。
那要怎么写好反思呢?以下是小编帮大家整理的全等三角形教学反思,仅供参考,希望能够帮助到大家。
全等三角形教学反思1教师是在不断地总结教学经验和教学反思中成长的,下面是我对这一节课的教学反思:一、教材选择“全等三角形、”是学习平面图形关系的引言课,关于全等三角形的教学反思。
内容涉及的知识点不多,知识的切入点比较低。
而人教版将其建立在已学内容“图形的变化”基础上,加强与前面的知识点的联系。
八年级学生有一定的自学、探索能力,求知欲强。
借助于学案的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。
二、教法和学法让学生通过折叠、作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法,三、教学过程设计首先,本节课我本创设情境,以学生为主,突出重点的意图,结合学案使之得到充分的诠释。
我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题,总结出概念。
我通过具体练习让学生总结,并带领学生寻找快速寻找对应的方法,练习的设计采用由易到难的手法,符合学生的认知规律,一气呵成,突破了本节课的重点和难点。
真正做到以生为本,抓住课堂45分钟,突出效率教学。
在B组练习中,我让学生尝试使用数学推理的格式,使学生熟悉这种推理方法。
其次,我在结尾总结全等三角形时让学生在生活中寻找实例,体现了数学与生活的'联系,培养数学兴趣。
再次从教学流程来说:情境创设---自学概念与特征---练习与小结---变式练习---应用数学,我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了书上没有的常见图形练习,也为全等图形的变换奠定了基础。
再通过探究实践,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。
三角形全等的判定教学反思
三角形全等的判定教学反思篇一:《全等三角形的判定1》教案及教学反思《全等三角形的判定1》教案及教学反思教学目标1知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等.2能力目标:使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.3思想目标:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。
教学重点、难点:重点:利用边边边证明两个三角形全等难点:探究三角形全等的条件教学过程(一)复习提问1、什么叫全等三角形?2、全等三角形有什么性质?3、若△ABC≌△DEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.(二)新课讲解:问题1:如图:在△ABC和△DEF中,AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,则△ABC和△DEF全等吗问题2:△ABC和△DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗一个条件可分为:一组边相等和一组角相等两个条件可分为:两个边相等、两个角相等、一组边一组角相等探究一:1.只给一个条件(一组对应边相等或一组对应角相等)。
①只给一条边:②只给一个角:2.给出两个条件:①一边一内角:°②两内角:②两°内角°:③两边:502cm4cm2cm4cm问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?3.给出三个条件三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一角相等例:画△ABC,使AB=2,AC=3,BC=42画法:1画线段BC=42分别以A、B为圆心,以2和3为半径作弧,交于点C。
则△ABC即为所求的三角形把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?归纳:有三边对应相等的两个三角形全等.可以简写成“边边边”或“SSS”用数学语言表述:在△ABC和△DEF中∴△≌△DEF(SSS)(三)题例训练:例1填空:1、在下列推理中填写需要补充的条件,使结论成立:如图,在△AOB和△DOC中AO=DO(已知)______=________(已知)∴△AOB≌△DOC(SSS)2、如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。
《全等三角形》教学反思
全等三角形教学反思1. 引言在数学教学中,全等三角形是一个非常重要的概念。
全等三角形的概念对于进一步学习和理解几何学有着至关重要的作用。
然而,在教学过程中,我发现学生对全等三角形的理解和运用存在一定的困难。
通过本文,我将反思我在全等三角形教学中的不足,并提出一些改进的措施。
2. 教学目标在开始反思之前,让我们先回顾一下在教学全等三角形时的主要目标。
•理解全等三角形的定义和性质,能够判断两个三角形是否全等。
•掌握全等三角形的判定方法,包括SSS、SAS、ASA和AAS。
•运用全等三角形的性质解决相关问题。
3. 反思和问题分析3.1 教材选择首先,我反思了我在教学中选择的教材。
在教学全等三角形时,我使用了一本严谨而详细的教材,但它过于抽象,没有足够多的实例来帮助学生理解和应用全等三角形的概念。
这导致学生很难从抽象的定义中建立起直观的认识。
3.2 缺乏引导性的问题其次,在课堂上,我没有充分发挥教师的引导作用。
我过于注重知识的传授,没有给学生足够的机会动手实践和发现。
学生大部分时间都是被动听讲,缺乏主动性和参与感。
这导致学生缺乏实践运用全等三角形概念的能力。
3.3 难度不适宜的问题最后,我认为教学中存在难度不适宜的问题。
有些学生在全等三角形的判定和应用上感到困惑,因为他们缺乏必要的基础知识和技巧。
因此,在教学中没有充分照顾到学生的不同水平和不同需求。
4. 改进措施4.1 教材选择鉴于教材的选择对于学生理解和应用全等三角形概念的重要性,我决定在下一次教学中选择一本更加生动实用的教材。
这本教材将包含更多的实例和练习题,帮助学生建立起直观的认识,并通过实例的引导帮助学生理解全等三角形的定义和性质。
4.2 引导式教学为了增加学生的主动参与和实践运用的机会,我将采取引导式教学的方法。
我会设计一系列的问题,让学生在小组合作中思考和探索全等三角形的判定和应用,并通过讨论和展示得出结论。
我还会引导学生从生活和实际问题中寻找全等三角形的应用,培养他们的数学思维和解决问题的能力。
《全等三角形》教学反思
《全等三角形》教学反思《全等三角形》教学反思篇1本节课的主要内容是全等形,全等三角形的概念,学生能够找全等三角形的对应边、对应角和对应顶点,以后学习证明三角形全等的基础,更是培养学生有条理的思考和表达的一个重要环节。
首先让学生了解本节课的学习目标,只有目标明确了,才能更好的进入本节课的学习。
为了真正的把课堂还给学生,在学生了解了学习目标的前提下进入自主学习状态,但不是让学生盲目的自学,而是结合自主学习单。
在完成学习单的过程中学生就会发现这节课中自己有哪些知识点不理解等的情况,然后把自己遇到的问题放到小组中解决。
这也就是接下来的合作探究过程,小组内的学生共同讨论。
整个过程以学生与学生的“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
小组内交流完之后就是学生展示,通过展示加深学生对知识的理解,而一些学生注意不到的地方,这时候老师可以做一个强调,是知识更系统化。
对于练习的设计,本课内容比较简单,但概念太多,因此在学习之后设计了大量练习,让学生在练习中巩固所学知识,加深对概念的理解和运用。
反思本课的不足之处:新课标要求教师由传统的知识传授者转变为学生学习活动的引导者,感觉这一过程没有达到自然化。
《全等三角形》的主要内容是以概念的形式为主,名词较多,在概念的传授上,没有做到让学生深层次的掌握。
在全等三角形的性质上学生不能很好的灵活运用,不能把全等三角形的概念运用到简单的计算和推理中,需要让学生在这一部分多加练习。
还有,本课的例题没有太多的新意,显得课堂的内容比较平淡,没有亮点。
最后对定理部分的内容介绍太少,要加强。
另外就是在涉及本课的难点时,留给学生思考的时间太短促。
《全等三角形》教学反思篇2本节课先复习旧知识,再提问学生两个三角形全等是否要六个元素分别相等式入手.在每个环节的安排中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来.1、猜想入手,激发学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定(ASA)教学设计与教学反思
一、概述
全等三角形的判定(ASA)需要一课时的学习时间,本课需要经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力; 熟记角边角定理的内容; 能运用角边角定理证明两个三角形全等; 通过对问题的共同探讨,培养学生的协作、交流能力。
这节课是《全等三角形》的重要内容。
三角形是最常见的几何图形之一,在日常生活中有着非常广泛的应用。
二、教学目标分析
1、知识与技能:
(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力。
(2)熟记角边角定理的内容。
(3)能运用角边角定理证明两个三角形全等。
(4)通过对问题的共同探讨,培养学生的协作、交流能力。
2、过程与方法:
(1)经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。
(2)在例题处理过程中组织引导学生自主探究、分析讨论、交流解法,巩固三角形全等的证明方法. (3)在习题交流中通过观察几何图形,培养学生的识图能力。
3、情感、态度与价值观
(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。
(2)培养学生善于思考、积极参与数学学习活动、勇于探索的钻研精神及作交流的意识.
(3)在教学过程中,使学生获得用所学数学知识解决实际问题的成功体验,提升用数学的意识.
[学习重点和难点]
(1)重点:指导学生分析问题,寻找判定三角形全等的条件及应用角边角定理解决问题。
(2)难点:三角形全等条件的探索过程。
三、学习者特征分析
学生对多媒体大屏幕环境下的课堂环境非常熟悉,学生具备一定的自学能力,思维活跃,对自己动手的活动兴趣很高;学生已经接触过全等三角形的很多性质,学生现在处于逻辑推理论证的初步阶段,从这章开始,学生应该逐步学会逻辑推理,这类题的推理书写对学生来说难度比较大,同时,我们知道,以前学生学习数学都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难度.
四、教学策略选择与设计
学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到“细观察、多动手、勤思考”.通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习。
本节课采用“问题导学,自主探索” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。
五、教学资源与工具设计
(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。
(4)剪刀
六、教学过程
(一)复习引入
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。
反之,这六个元素分别相等,这样的两个三角形一定全等。
(在教师引导下回忆前面知识,为探究新知识作好准备。
)
提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。
引导学生先确定探究的思路和方法,进一步培养理性思维。
)
(二)操作探究
出示探究一:(课前完成)
已知一个条件已知两个条件
条件与图形结论条件与图形结论
已知:AB=10cm已知:AB=10cm BC=13cm
已知:∠A=30°已知:∠A=30°∠B=45°
已知:AB=10cm∠B=45°
让学生按照表格中所给出的条件画出三角形。
画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。
本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。
得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。
(学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)
出示探究二:(生活中的数学问题)
提出问题:某科技小组的同学们在活动中,不小心将一块三角形形状的玻璃摔成三块。
(如图),他们决定到市场去配一块同样形状和大小的玻璃,应该怎么办呢?
操作探究:教师发一些形状、大小完全相同的三角形纸片给学生,让学生把纸片按上图所示剪成三块,并请每个同学分析每一块中具备了原三角形中的几个条件,并考虑从残破的三角形纸片中至少选取几块,利用它能够画出一个和原三角形全等的三角形?然后让每个同学把自己画出的三角形剪下来,并与邻座同学的三角形互相叠合在一起,它们重合吗?
(教学中引导学生从实践入手,采取提问、猜测、探索、归纳等教学手段,使总结三角形全等的“角边角”判定.)
(三)归纳总结
提出问题:从上面的操作中,你发现具备什么条件的两个三角形全等?
总结规律:角边角定理:有两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”)(在此处要留给学生较充分的独立思考、探究时间,在探究过程中,提高逻辑推理能力;在总结的过程中培养学生的概括能力和语言表达能力。
)
(规律得出后结合图形把该公理用几何符号语言表示,培养学生的符号意识)
(四)尝试应用
1、请同学们观察下列图形,从中找出全等的三角形,并把它们用序号表示出来。
2、例题讲解
出示例题:
例、已知:如图,AB、CD相交于O,且∠B=∠C,OB=OC
求证:△AOB≌△DOC
(先让学生独立分析已知条件、图形特征及其与结论的关系,并思考证明的方法。
而后进行小组交流,方法展示,教师最后作评价与总结)
(要注意规范证明过程)
训练巩固:
1、例题变式若将题目中∠B=∠D变为AB ∥DC.
求证:AB = DC
又该如何证明呢?
(变式的应用,可以巩固初学的知识与方法,加深对此定理应用的感悟。
并引导学生考虑:证完全等后,还能得到那些结论呢?理由是什么?)
题后小结:
当要求证相等的两条线段或两个角位于两个三角形中时,通常可借助证明它们所在的三角形全等得证。
(总结提炼全等三角形的应用)
2、完成教材后练习2、3题.
(通过练习训练,让学生体会成功的喜悦)
(五)课后小结
1、这节课通过对三角形全等条件探究,你有什么收获?
2、如何寻找证明全等条件:已知条件包含两部分,一是已知给出的,二是图中隐含的,如公共边、公共角、对顶角等。
3、三角形全等是证明三角形中边等、角等的重要依据。
(整理本节课在知识与学习方法上的上的收获与感悟,为以后的学习在研究思路上做好准备。
)
(六)课后作业
(根据学生的实际情况,分层次布置作业,分比做题和选做题,并可布置预习性作业).
七、教学评价与设计
练习题中的基础题完成得很好,准确率达到85%以上,而在综合应用题部分学生也注意到了审题和准确找出条件,比较难是一些隐含条件的题,通过小组讨论、交流,问题自然就解决了。
通过操作动手,学习的投入性与主动性非常高,也乐于发表自己的见解,取得了意想不到的教学效果。
多媒体课件能很好的解决教学的重难点,既提高了教学效率,学生又非常感兴趣。
批改作业发现学生已掌握全等三角形(SAS)证明,并能熟练运用全等三角形(SAS)证明,但学生在解题过程中,找全等条件是还有一定的难度,今后要多加练习。
八、教学反思
通过同学们的操作、交流、互动,我们实现了对全等三角形的判定(ASA)的多层面了解。
有一部分同学还有些关于全等三角形的判定(ASA)的知识是我们所没有了解,下来同学之间加强交流学习。
希望已经掌握本节的同学们能通过课外自己查阅相关资料,解决我们生活中的三角形全等,并构建造出属于我们自己的美丽天地!。