全等三角形的判定设计与反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定(ASA)教学设计与教学反思

一、概述

全等三角形的判定(ASA)需要一课时的学习时间,本课需要经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力; 熟记角边角定理的内容; 能运用角边角定理证明两个三角形全等; 通过对问题的共同探讨,培养学生的协作、交流能力。这节课是《全等三角形》的重要内容。三角形是最常见的几何图形之一,在日常生活中有着非常广泛的应用。

二、教学目标分析

1、知识与技能:

(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力。

(2)熟记角边角定理的内容。

(3)能运用角边角定理证明两个三角形全等。

(4)通过对问题的共同探讨,培养学生的协作、交流能力。

2、过程与方法:

(1)经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。

(2)在例题处理过程中组织引导学生自主探究、分析讨论、交流解法,巩固三角形全等的证明方法. (3)在习题交流中通过观察几何图形,培养学生的识图能力。

3、情感、态度与价值观

(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。

(2)培养学生善于思考、积极参与数学学习活动、勇于探索的钻研精神及作交流的意识.

(3)在教学过程中,使学生获得用所学数学知识解决实际问题的成功体验,提升用数学的意识.

[学习重点和难点]

(1)重点:指导学生分析问题,寻找判定三角形全等的条件及应用角边角定理解决问题。

(2)难点:三角形全等条件的探索过程。

三、学习者特征分析

学生对多媒体大屏幕环境下的课堂环境非常熟悉,学生具备一定的自学能力,思维活跃,对自己动手的活动兴趣很高;学生已经接触过全等三角形的很多性质,学生现在处于逻辑推理论证的初步阶段,从这章开始,学生应该逐步学会逻辑推理,这类题的推理书写对学生来说难度比较大,同时,我们知道,以前学生学习数学都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难度.

四、教学策略选择与设计

学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到“细观察、多动手、勤思考”.通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习。本节课采用“问题导学,自主探索” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。

五、教学资源与工具设计

(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。(4)剪刀

六、教学过程

(一)复习引入

多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。反之,这六个元素分别相等,这样的两个三角形一定全等。(在教师引导下回忆前面知识,为探究新知识作好准备。)

提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。)

(二)操作探究

出示探究一:(课前完成)

已知一个条件已知两个条件

条件与图形结论条件与图形结论

已知:AB=10cm已知:AB=10cm BC=13cm

已知:∠A=30°已知:∠A=30°∠B=45°

已知:AB=10cm∠B=45°

让学生按照表格中所给出的条件画出三角形。

画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。

本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。

得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。

(学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)

出示探究二:(生活中的数学问题)

提出问题:某科技小组的同学们在活动中,不小心将一块三角形形状的玻璃摔成三块。(如图),他们决定到市场去配一块同样形状和大小的玻璃,应该怎么办呢?

操作探究:教师发一些形状、大小完全相同的三角形纸片给学生,让学生把纸片按上图所示剪成三块,并请每个同学分析每一块中具备了原三角形中的几个条件,并考虑从残破的三角形纸片中至少选取几块,利用它能够画出一个和原三角形全等的三角形?然后让每个同学把自己画出的三角形剪下来,并与邻座同学的三角形互相叠合在一起,它们重合吗?

(教学中引导学生从实践入手,采取提问、猜测、探索、归纳等教学手段,使总结三角形全等的“角边角”判定.)

(三)归纳总结

提出问题:从上面的操作中,你发现具备什么条件的两个三角形全等?

总结规律:角边角定理:有两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”)(在此处要留给学生较充分的独立思考、探究时间,在探究过程中,提高逻辑推理能力;在总结的过程中培养学生的概括能力和语言表达能力。)

(规律得出后结合图形把该公理用几何符号语言表示,培养学生的符号意识)

(四)尝试应用

1、请同学们观察下列图形,从中找出全等的三角形,并把它们用序号表示出来。

2、例题讲解

出示例题:

例、已知:如图,AB、CD相交于O,且∠B=∠C,OB=OC

求证:△AOB≌△DOC

(先让学生独立分析已知条件、图形特征及其与结论的关系,并思考证明的方法。而后进行小组交流,方法展示,教师最后作评价与总结)

(要注意规范证明过程)

训练巩固:

相关文档
最新文档