SPSS5-相关与回归分析

合集下载

spss中相关与回归分析

spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16

建立数据文件:血红蛋 白的等级相关分析.sav.

定义变量 输入数据

开始分析

ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate

定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34

主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17

20:41

主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)

(整理)相关分析与回归分析SPSS实现

(整理)相关分析与回归分析SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进行相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元及多元回归模型的计算与检验。

(3) 学会回归模型的散点图与样本方程图形。

(4) 学会对所计算结果进行统计分析说明。

(5) 要求试验前,了解回归分析的如下内容。

♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验(t -检验);回归方程显著性检验(F -检验)。

二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度。

用来测度简单线性相关关系的系数是Pearson 简单相关系数。

2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。

回归分析是研究两个变量或多个变量之间因果关系的统计方法。

其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。

回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。

线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进行检验。

如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。

回归模型的检验包括一级检验和二级检验。

一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差检验等。

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

《SPSS统计分析》第11章 回归分析

《SPSS统计分析》第11章 回归分析

返回目录
多元逻辑斯谛回归
返回目录
多元逻辑斯谛回归的概念
回归模型
log( P(event) ) 1 P(event)
b0
b1 x1
b2 x2
bp xp
返回目录
多元逻辑斯谛回归过程
主对话框
返回目录
多元逻辑斯谛回归过程
参考类别对话框
保存对话框
返回目录
多元逻辑斯谛回归过程
收敛条件选择对话框
创建和选择模型对话框
返回目录
曲线估计
返回目录
曲线回归概述
1. 一般概念 线性回归不能解决所有的问题。尽管有可能通过一些函数
的转换,在一定范围内将因、自变量之间的关系转换为线性关 系,但这种转换有可能导致更为复杂的计算或失真。 SPSS提供了11种不同的曲线回归模型中。如果线性模型不能确 定哪一种为最佳模型,可以试试选择曲线拟合的方法建立一个 简单而又比较合适的模型。 2. 数据要求
线性回归分析实例1输出结果2
方差分析
返回目录
线性回归分析实例1输出结果3
逐步回归过程中不在方程中的变量
返回目录

线性回归分析实例1输出结果4
各步回归过程中的统计量
返回目录
线性回归分析实例1输出结果5
当前工资变量的异常值表
返回目录
线性回归分析实例1输出结果6
残差统计量
返回目录
线性回归分析实例1输出结果7
返回目录
习题2答案
使用线性回归中的逐步法,可得下面的预测商品流通费用率的回归系数表:
将1999年该商场商品零售额为36.33亿元代入回归方程可得1999年该商场 商品流通费用为:1574.117-7.89*1999+0.2*36.33=4.17亿元。

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。

本文将介绍如何使用SPSS进行相关分析和回归分析。

相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。

在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“相关”子菜单。

3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。

4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。

回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。

在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“回归”子菜单。

3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。

4.选择回归模型的方法(如线性回归、多项式回归等)。

5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。

6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。

在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。

回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。

值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。

例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。

总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。

通过上述步骤,用户可以轻松地完成数据分析和结果呈现。

然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。

SPSS相关性分析

SPSS相关性分析

回归分析

一元线性回归模型:
y 0 1 x
为截距,即常 其中x为自变量;y为因变量; 0 1 量; 为回归系数,表明自变量对因变量的影 响程度。

用最小二乘法求解方程中的两个参数,得到
1
( x x )( y y ) (x x)
i i 2 i
0 y bx
等级相关分析

等级相关分析 等级相关是指以等级次序排列 或以等级次序表示的变量之间的相关。主要包 括斯皮尔曼二列等级相关和肯德尔和谐系数多 列等级相关。
Spearman等级相关系数—定序变量之 间的相关性的度量

斯皮尔曼等级相关系数:


两个变量为定序变量。 一个变量为定序变量,另一个变量为尺度数据,且 两总体不是正态分布,样本容量n不一定大于30。 数据的秩:秩rank,是一种数据排序的方式,可以 知道某变量值在该列所有值中的名次。秩是对应数 值由大到小的,例如有100个数据都不一样的话, 最大的数值对应的秩就是100,最小的就是1。有重 复数据时候,会按同名称排列。

残差是指由回归方程计算得到的预测值与实际 样本值之间的差距,定义为:
ˆi yi (0 1x1 2 x2 ... p x p ) ei yi y
对于线性回归分析来讲,如果方程能够较好的 反映被解释变量的特征和规律性,那么残差序 列中应不包含明显的规律性。残差分析包括以 下内容:残差服从正态分布,其平均值等于0 ;残差取值与X的取值无关;残差不存在自相 关;残差方差相等。



设样本量为n,考察两个变量X和Y之间的相关 关系,X和Y的取值记为xi,yi。所有像(xi,yi) 2 对的个数为n(n-1)/2(也就是 Cn)。和分别 表示和的秩次,如果对于任意k,有我们称 (xk,yk)为同序对;否则,称为逆序对。 总的同序对的个数记为U,逆序对的个数记为V, 则Kendall的Tau系数的定义为:

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。

实验五相关分析与回归分析

实验五相关分析与回归分析

一・问题描述2016年1月12日13:04学习并使用SPSS软件进行相尖分析和回归分析,具体包括:(1) 皮尔逊pearson简单相尖系数的计算与分析(2) 学会在SPSS上实现一元及多元回归模型的计算与检验。

(3) 学会回归模型的散点图与样本方程图形。

(4) 学会对所计算结果进行统计分析说明。

二・实验原理2016年1月12日13:131・相尖分析的统计学原理相尖分析使用某个指标来表明现象之间相互依存尖系的密切程度。

用来测度简单线性相尖尖系的系数是Pearson简单相尖系数。

2・回归分析的统计学原理相尖尖系不等于因果尖系,要明确因果尖系必须借助于回归分析。

回归分析是研究两个变量或多个变量之间因果笑系的统计方法。

其基本思想是,在相尖分析的基础上,对具有相尖尖系的两个或多个变量之间数量变化的一般尖系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。

回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。

线性回归数学模型如下:在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数:回归模型中的参数估计出来之后,还必须对其进行检验。

如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。

回归模型的检验包括一级检验和二级检验。

一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相尖检验、异方差检验三・数据录入2016年1月13日20:05有“连续变量简单相尖系数的计算与分析_时间与成绩”数据文件,以此录入做相尖分析:至囁娈邑简羊牟黄希数的计管与分析■旳间与成続Q以据皋1:・IBM SPS5 StAtis有’二元线性回归—温度雲蛾壬原始彗据一份,以此予入做线性回归分析丄轴与细子3【?送產1】・1文件® 编菠(旦视團电)数据吵转換(I》分析®團形£)真用程库9)SD(W)刍■勻ffij「r團薪輩H四'实验内容与步骤及输出结果分析2016年1月12日13:14(一)连续变量简单相尖系数的计算与分析有如下案例: 学生每天学习时间T与学习综合成绩G之间的相尖性E1SA「E 1 nl1T G2 1. 154.03 1. 560_0生2*2£2.05 I 3. 070.16 3. 47-t.O7 4. 074.58 4. 277.095,5SI. 510 5. 985.011S. 065.512 6. 566.2138. 0呱014录入至U SPSS中。

「相关分析与回归分析SPSS实现」

「相关分析与回归分析SPSS实现」

「相关分析与回归分析SPSS实现」相关分析与回归分析是统计学中常用的方法,可以用来研究两个或多个变量之间的相关关系,并进行预测和解释。

SPSS(Statistical Package for the Social Sciences)是一种常见的统计分析软件,提供了完成相关分析和回归分析的功能。

本文将从相关分析和回归分析的基本原理、SPSS的操作步骤以及分析结果的解释等方面进行阐述。

首先,相关分析用于研究两个变量之间的相关关系。

可以通过计算相关系数来衡量两个变量之间的相关程度。

根据变量的度量尺度不同,常用的相关系数有皮尔逊相关系数、斯皮尔曼等级相关系数和切比雪夫距离等。

在SPSS中,进行相关分析的步骤如下:1.打开SPSS软件,并导入待分析的数据文件。

2.选择“分析”菜单,点击“相关”子菜单。

3.在弹出的对话框中,选择需要进行分析的变量,并选择相关系数的计算方法。

4.点击“确定”按钮,即可得到相关分析的结果。

相关分析的结果包括相关系数、显著性水平和样本大小等。

相关系数的取值范围在-1到1之间,接近-1或1表示两个变量呈现很强的正相关或负相关关系,接近0表示两个变量之间没有线性相关关系。

其次,回归分析用于预测和解释变量之间的关系。

回归分析可以包括一元回归分析和多元回归分析。

一元回归分析用于研究一个自变量对一个因变量的影响,多元回归分析则可以同时研究多个自变量对一个因变量的影响。

在SPSS中,进行回归分析的步骤如下:1.打开SPSS软件,并导入待分析的数据文件。

2.选择“分析”菜单,点击“回归”子菜单。

3.在弹出的对话框中,选择需要进行分析的因变量和自变量。

对于多元回归分析,可以选择多个自变量。

4.可以选择加入交互项和控制变量等进行高级分析。

5.点击“确定”按钮,即可得到回归分析的结果。

回归分析的结果包括回归方程、回归系数、显著性水平和拟合优度等。

回归方程可以用来预测因变量的取值,回归系数表示自变量对因变量的影响程度,显著性水平表示回归模型是否具有统计学意义,拟合优度表示回归模型对观测数据的拟合程度。

《SPSS数据分析教程》 ——回归分析..

《SPSS数据分析教程》 ——回归分析..
《SPSS数据分析教程》 ——回归分析
本章学习目标



掌握线性回归分析的基本概念 掌握线性回归的前提条件并能进行验证 掌握线性回归分析结果的解释 掌握多重共线性的判别和处理 能用线性回归模型进行预测
回归分析的基本概念
什么是回归分析


回归分析是研究变量之间相关关系的一种统计方法 如果两个变量之间的Pearson相关系数绝对值较大, 从散点图看出变量间线性关系显著,那么下一步就是 应用回归分析的方法来找出变量之间的线性关系。 例如,房屋的价格和房屋的面积,地理位置,房龄和 房间的个数都有关系。又比如,香烟的销量和许多地 理和社会经济因素有关,像消费者的年龄,教育,收 入,香烟的价格等。
回归模型的显著性的F检验

总平方和SST反映因变量Y的波动程度或者不确 定性,在建立了Y对X的回归方程后,总平方和 SST分解成回归平方和SSR与参差平方和SSE两 部分。其中SSR是由回归方程确定的,SSE是不 能由自变量X解释的波动,是由X之外的未加控 制的因素引起的。这样,SST中能够由自变量 解释的部分为SSR,不能由自变量解释的部分 为SSE。这样回归平方和越大,回归的效果越 好,据此构造F检验统计量
回归术语

对于有一个响应变量的线性回归,当p=1时, 我们称为简单线性回归(Simple Linear Regression,或称为一元线性回归),当 p>2 时我们称为多元线性回归(Multiple Linear Regression)。
回归和相关分析

回归分析是在相关分析的基础上,确定了变量 之间的相互影响关系之后,准确的确定出这种 关系的数量方法。因此,一般情况下,相关分 析要先于回归分析进行,确定出变量间的关系 是线性还是非线性,然后应用相关的回归分析 方法。在应用回归分析之前,散点图分析是常 用的探索变量之间相关性的方法。

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

SPSS第五章-回归分析

SPSS第五章-回归分析

SPSS第五章-回归分析一元回归分析在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。

其回归模型为y 称为因变量,x称为自变量,称为随机误差,a,b 称为待估计的回归参数,下标i表示第i个观测值。

如果给出a和b的估计量分别为,,则经验回归方程:一般把称为残差,残差可视为扰动的“估计量”。

例子:湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。

表1-1 三月上旬平均温度与越冬代二化螟发蛾盛期的情况表年份1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 三月上旬平均温度8.6 8.3 9.7 8.5 7.5 8.4 7.3 9.7 5.4 5.5 越冬代二化螟发蛾 3 5 3 1 4 4 5 2 7 5盛期(6月30日为0)数据保存在“DATA6-1.SAV”文件中。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”在SPSS数据编辑窗口中,创建“年份”、“温度”和“发蛾盛期”变量,并把数据输入相应的变量中。

或者打开已存在的数据文件“DATA6-1.SAV”。

2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图1-1所示的线性回归过程窗口。

设置控制变量“Selection Variable”为控制变量输入栏。

控制变量相当于过滤变量,即必须当该变量的值满足设置的条件时,观测量才能参加回归分析。

当你输入控制变量后,单击“Rule”按钮,将打开如图1-2所示的对话。

图1-2“Rule”对话框在“Rule”对话框中,右边的“Value”框用于输入数值,左边的下拉列表中列出了观测量的选择关系,其中各项的意义分别为:•“equal to”等于。

•“not equal to”不等于。

SPSS17.0在生物统计学中的应用-实验五、方差分析---六、简单相关及回归分析

SPSS17.0在生物统计学中的应用-实验五、方差分析---六、简单相关及回归分析

SPSS在生物统计学中的应用——实验指导手册实验五:方差分析一、实验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。

3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。

二、实验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。

例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。

为此引入方差分析的方法。

方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。

若存在显著差异,则说明该因素对各总体的影响是显著的。

方差分析有3个基本的概念:观测变量、因素和水平。

●观测变量是进行方差分析所研究的对象;●因素是影响观测变量变化的客观或人为条件;●因素的不同类别或不通取值则称为因素的不同水平。

在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。

在方差分析中,因素常常是某一个或多个离散型的分类变量。

⏹根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;⏹根据因素个数,可分为单因素方差分析和多因素方差分析。

在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。

本节仅练习最为常用的单变量方差分析。

三、实验演示内容与步骤㈠单变量-单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。

检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。

spss第五讲回归分析PPT课件

spss第五讲回归分析PPT课件
关于x的残差图 关于y的残差图 标准化残差图
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)


0




0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用F值作为标准
在回归方程中包括常项 缺失值的处理方式
用均值代替缺失值
一、线性回归分析( Linear Regression)
2、一元线性回归:
示例1:教材P260数据:20章_数据1.sav
识字量对阅读能力的影响有多大?
步骤:
(1)依据散点图检验线性关系 (2)操作过程:Analyze-Regression-Linear (3)结果输出观察重点:
二、双变量相关分析(Bivariate)
示例1:大学生人格(神经质、内外向程度) 与心理健康(SCL-90总分)之间有无相关?
SPSS操作:
1、绘制散点图,判定两变aphs-Scatter
2、打开Bivarite Correlations主对话框
偏相关分析的思想:控制其它变量的变化,即在剔 除其它变量影响的情况下,计算两变量之间的相 关关系。
两个变量间的线性相关关系,用偏相关系数表示。 应用条件:均为连续性变量。
Partial Correlations 对话框
分析变量
显著性检验 显示实际的显著性水平
控制变量
Options 对话框
均值及标准差 零阶相关矩阵(即:Pearson相关矩阵)
Model 1
Regression Residual Total
Sum of Squares 1845.333 899.634 2744.967
a. Predictors: (Constant), 识 字 量
b. Dependent Var iable: 阅 读 能力
ANOV Ab
df 1
28 29
解释回归平方和在总平方各中所占的比率,即解释回 归效果, r2=0.672,则表示因变量(阅读能力)的 变异中有67.2%是由自变量(识字量)而引起的。
结果输出
回归模型的方差分析:ANOVA(b)
用于检验回归模型与数据的拟合程度。P小于0.05,表 明因变量与自变量之间存在很强的线性关系,即回归 方程显著。
家庭经济状况与专业满意度的相关系数为0.028,P值 为0.428,说明两者之间无相关关系。
相关系数
三、偏相关分析 (Partial Correlation)
1、概述
由于多个变量的相互作用,难以体现出某两个变 量的真实相关关系,因此,在研究两个变量之间 的线性关系时需要控制可能对其产生影响的其它 变量。
Unstandardiz ed Coef f icients
Standardized Coef f icients
Model
B
Std. Error
Beta
1
(Cons tant)
-.593 11.162
识 字量
.031
.004
.820
a. Dependent Variable: 阅 读能 力
非标准化回归系数
成对剔除带有缺失值的观测量 剔除所有带有缺失值的观测量
输出结果:
神经质、内外向与SCL总分的相关系数分别为0.170,0.095,P值为0.000,说明两者之间具有显著相关关系。
二、双变量相关分析(Bivariate)
(二)等级相关: 1、等级相关种类
Spearman等级相关:秩相关系数,属于非参数统 计方法,适用范围较Pearson相关系数要广。
示例2:大学生家庭经济状况与专业满意度之间 有无相关?
Bivariate Correlations 对话框
适用于正 态分布等 间隔测度
的变量
分析变量
选项
用于计算分类变 量的秩相关,考 虑结点的影响
相关系数
用于计算分类 变量的秩相关
显著性检验
双尾检验
单尾检验 标识有显著意义的相关系数
输出结果:选项均为系统默认
二、双变量相关分析(Bivariate)
(一)积差(距)相关
1、概述
Pearson积差(距)相关:表示的是两个正态 分布且呈线性关系的连续型变量之间的相关关 系。
例如:语文与数学成绩均以百分制表示,若两 者均呈正态分布,且它们之间呈线性关系,就 可用Pearson积差相关来表示它们的变化关系。
估计标准误、 进入方程后对R2
ANOVA表等
和F值的影响
关于回归系数的选择项
与回归系数相关的统计量 非标准化回归系数95%置信限 非标准化回归系数的方差-协方差
描述性统计量 部分相关和偏相关
共线性诊断
德宾-沃森检验 观测值诊断
Linear Regression对话框
标准化预测值 标准化残差 剔除残差 调整预测值 学生化残差 学生化剔除残差
Kendall’s tau-b等级相关:两变量均为等级变 量或有序分类数据
统计效能较Pearson相关系数要低一些。
二、双变量相关分析(Bivariate)
2、等级相关系数的适用条件:
不满足要求的连续性变量;两个变量为顺序变量 (等级变量),或一个是顺序变量,另一个是连 续变量的数据;
数据总体并不是正态分布; 样本容量小于30时
自变量和因变量均为连续性变量 线性趋势;独立性;正态性;方差齐性
一、线性回归分析 ( Linear Regression)
(五)线性回归分析的应用: 1、回归分析方法:
Enter:强迫引入法,所有自变量全部进入方程 Stepwise:逐步回归法,最常用。在计算过程中逐步加
入有显著性意义的变量和剔除无显著性意义的变量。 Remove:强迫剔除法 Backward:向后逐步法 Forward:向前逐步法
t -.053 7.579
Sig. .958 .000
回归方程的建立
阅读能力=-0.593+0.031*识字量
常数
Coe fficientsa
标准化回归系数
Unstandardiz ed Coef f icients
Standardized Coef f icients
Model
B
Std. Error
(二) 回归的统计原理
两个定距变量的回归是用函数
y= f(x)
来分析的。我们最常用的是一元回归方程
y a bx
其中x为自变量;y为因变量;a为截距,即常量;b 为回归系数,表明自变量对因变量的影响程度。
以工资为因变量,工龄为自变量的回归模型
工资 440 430 420 410 400 390 380 370 360
二、双变量相关分析(Bivariate)
(一)积差(距)相关
2、Pearson积差相关系数的适用条件:
两个变量都是连续型随机变量 两个变量的总体都呈正态分布或接近正态分布,至少
是单峰对称的正态 必须是成对数据,而且每对数据之间相互独立 两个变量之间呈线性关系 要排除共变因素的影响 样本容量 n ≥30, Pearson积差相关系数才有意义。
示范练习:
SPSS操作:
打开Analyze-Correlate-Partial主对话框
示例1:在控制内外向变量的情况下研究情绪稳定性与 心理健康(SCL-90总分)状况之间的相关关系。
例2:在控制情绪稳定性变量的情况下研究社会支持与 心理健康(SCL-90总分)状况之间的相关关系。
作业:
回归方程:158.344-3.34*自尊+15.118*消极应对0.819*社会支持+0.235*神经质
结果输出
决定系数
Model Sum m ary
Model 1
R
R Square
.820a
.672
A djuste d R Square
.661
a. Predict ors : (Constant), 识 字 量
Std. Error of the Estimate
5.668
回归模型描述:Model Summary-决定系数r2
0
Y=350+20x
1
2
3
4 工龄 5
在统计学中,这一方程中的系数是靠x与y变量的大 量数据拟合出来的。
Y
Y=a+bx
(x,y)
X
比如通过工龄和工资的关系计算得出下列的回 归公式:
y=472+14.8x
就可知工龄每增长1年,工资会增加14.8元; 也可推测,工龄为15年的人,工资收入应为
Beta
1
(Cons tant)
-.593 11.162
识 字量
.031
.004
.820
a. Dependent Variable: 阅 读能 力
非标准化回归系数
t -.053 7.579
Sig. .958 .000
一、线性回归分析( Linear Regression)
3、多元线性回归:
在现实研究中,影响因变量的因素往往有多个, 需同时用多个自变量来预测因变量的变化。
Linear Regression对话框 (Analyze Regression linear)
因变量
指定回归方法
指定选择参与回归 分析观测量的变量
指定作为观测 量标签的变量
加权最小平方法
自变量
全部选入 逐步回归 强行剔除 向后剔除 向前选择
Linear Regression对话框
提供判定系数、 显示每个自变量
472 + 14.8 *15=694元。
一、线性回归分析( Linear Regression)
(三)回归分析的作用:
1、描述两变量的关系:寻找因变量数值随自变 量变化而变化的直线趋势。通过回归方程解释 两变量之间的关系会显得更为精确。
2、通过回归方程可以进行预测和控制。
(四)基本的适用条件:
示例2: 大学生心理调查.sav
人格、社会支持、消极应对、积极应对、自尊、自 我态度对心理健康的影响有多大?
相关文档
最新文档