3 刚体力学习题详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三

一、选择题

1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90︒,则v 0的大小为 [ ]

(A

; (B

; (C

(D )

22

163M gl

m 。 答案:A 解:

11122

,

1122

J J J J Mg l ωωωω=+⎧⎪

⎨=⋅⎪⎩ 22211, 243l m l J m J M l ⎛⎫=== ⎪⎝⎭ 0012/2v v l l ω==,0021/21

/22

v v l l ωω===,111121

()2J J J J ωωωω-=

= 21122J Mgl ω=, 2

112J J Mgl J ω⎛⎫

⋅= ⎪⎝⎭

, 22

114J Mgl J

ω= 2

2

202244143v ml l Mgl Ml ⎛⎫ ⎪⎝⎭=⋅,Mgl M v m =⋅202163,2

202

163M v gl m =,所以 3

40gl m M

v =

2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ⋅。在恒力矩作用下,10s 内其角速度降为40rad/s 。圆柱体损失的动能和所受力矩的大小为 [ ]

(A )80J ,80N m ⋅; (B )800J ,40N m ⋅;(C )4000J ,32N m ⋅;(D )9600J ,16N m ⋅。 答案:D

解:800=ω,40=ω,10=t ,4J =

2201122k E J J ωω-∆=

- 2

2011()4(64001600)9600(J)22

k E J ωω∆=-=⨯⨯-=

M 恒定,匀变速,所以有

0t ωωα=-,0t

ωω

α-=

,08040

416N m 10

M J J t

ωω

α--==⋅

=⨯

=⋅

3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

(1)它的角速度从0ω变为0/2ω所需时间是 [

]

(A )/2J ; (B )/J k ; (C )(/)ln 2J k ; (D )/(2)J k 。

(2)在上述过程中阻力矩所做的功为 [ ]

(A )20/4J ω; (B )203/8J ω-; (C )20/4J ω-; (D) 2

0/8J ω-。

答案:C ;B 。

解:已知 M k ω=-,0,

J ω,01

2

ωω=

(1)d M J k dt ωω==-,d J k dt ωω=-,d k

dt J

ωω=-

t

d k

dt J

ω

ω

ω

ω=-⎰⎰

,0ln

k t J ωω=-,所以 0ln ln 2J J

t k k

ωω== (2)2222200001111322248J A J J J ωωωωω⎛⎫===-=- ⎪

⎝⎭

4.如图所示,对完全相同的两定滑轮(半径R ,转动惯量J 均相同),若分别用F (N )的力和加重物重力P mg F ==(N) 时,所产生的角加速度分别为1α和2α,则 [ ]

(A )12αα> ; (B )12αα= ; (C )12αα< ; (D )不能确定 。

答案:A

解:根据转动定律,有12,mg R J T R J αα⋅=⋅=,

依受力图,有mg T ma -=,T mg ma mg =-< 所以,12αα>。

5. 对一绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应 [ ]

(A )增大; (B )减小; (C )不变; (D )无法确定。 答案:B

解:1102212()J J J J J J ωωωω+-=++

22

121212()J J m r m r m m ====, 12v

r

ωω==

所以

0012J

J J

ωωω=

<+

()

F mg =

二、填空题

1.半径为 1.5m r =的飞轮,初角速度0=10rad/s ω,角加速度25rad/s α=-,若初始时刻角位移为零,则在t = 时角位移再次为零,而此时边缘上点的线速度

为v =

答案:4s ;15m/s -。 解:已知

1.5m r =,0=10rad/s ω,25rad/s α=-,00=θ。

因const α=,为匀变速,所以有

20012t t θθωα=++。

令 0θ=,即 01()02

t t ωα+=得,由此得

022104s 5

t ωα⨯=-=-=-

0105410t ωωα=+=-⨯=-,所以 15m /s

v r ω==-

2. 一根质量为 m 、长度为 L 的匀质细直棒,平放在水平桌面上。若它与桌面间的滑动摩擦系数为μ,在0t =时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为ω0,则棒停止转动所需时间为

答案:023L

t g

ωμ=

解:m

df dmg drg gdr L μμλμ

=== dM r df =⨯,m dM rdf grdr L μ==, 2122m mg

M dM g L L L

μμ==⋅=

⎰ 又,2132d d mg

M J J mL dt dt L ωωμα=-=-=-=

,所以 32g d dt L μω=-,0

00

32t g d dt L

ωμω=-⎰⎰,两边积分得:032g

t L

μω=,

所以

023L t g

ωμ=

3. 在自由旋转的水平圆盘上,站一质量为m 的人。圆盘半径为R ,转动惯量为J ,角速度为ω。如果这人由盘边走到盘心,则角速度的变化 ∆ω =

;系统动

能的变化∆E k =

答案:2mR J ω;2

221(1)2mR mR J

ω+。 解:应用角动量守恒定律

2J mR J ωωω'+=

相关文档
最新文档